(58)【調査した分野】(Int.Cl.,DB名)
前記過酸化物は、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、一過硫酸カリウムおよびオキソンからなる群より選択される少なくとも1種である、請求項3に記載の研磨用組成物。
【発明を実施するための形態】
【0011】
本発明の研磨用組成物は、金属を含む層を有する研磨対象物の研磨に用いられる。また、本発明の研磨用組成物は、砥粒と、酸と、酸化剤と、分散媒と、を含み、この際、酸の酸解離定数(pKa)が研磨用組成物のpHより高い。上記構成を有する研磨用組成物によれば、研磨対象物である金属を含む層を平滑に研磨できる。また、本発明の研磨用組成物によれば、研磨対象物である金属を含む層を、エッチング速度は低く抑えつつ高い研磨速度で研磨できる。
【0012】
なお、本明細書において、「酸解離定数(pKa)」を単に「酸解離定数」または「pKa」とも称する。また、「研磨用組成物のpHより高い酸解離定数(pKa)を有する酸」を単に「本発明に係る酸」とも称する。「金属を含む層を有する研磨対象物の研磨用組成物」を単に「本発明に係る研磨用組成物」または「研磨用組成物」とも称する。
【0013】
上記特開2013−42131号公報(米国特許出願公開第2013/045598号明細書に相当)の組成物は、2価のカチオン部分及び2価のアニオン部分からなる式(I)のジ第4級化合物(特に第4級アミン化合物;段落「0029」)を含む。このジ第4級化合物の存在により、確かにエッチング速度を低く抑えることができる。しかしながら、このジ第4級化合物のカチオン部分は砥粒(例えば、Si−)表面に吸着して砥粒の凝集さらには沈降を誘導するため、砥粒の安定性が低下する。同時に、砥粒の2次粒子径が大きくなるため研磨後の表面が粗く(表面粗さRaの値が高く)なってしまう。CMPプロセス立ち上げ初頭からタングステンは電気伝導度が高いことや埋め込み性が高いことを理由に適用されてきた。しかし、タングステンは硬度や脆性が高いため加工することが難しく、最終的な仕上がり面粗さが銅やアルミニウム等の金属に比べて悪いことが広く知られている。上記に加え、近年の微細化(高集積化)によりタングステンの結晶粒の面あれが重要な問題となってきており、この面あれを化学機械研磨(CMP)法で解消することが求められている。このため、上記特開2013−42131号公報(米国特許出願公開第2013/045598号明細書に相当)の組成物では、現在要求されている平坦化を十分達成できない。また、上記特開2013−42131号公報(米国特許出願公開第2013/045598号明細書に相当)の組成物には、ヨウ素酸カリウムが酸化剤として必須に使用され、この酸化剤は金属酸化膜(例えば、酸化タングステン(WO
3)膜)の形成を促進する。しかし、このヨウ素酸カリウムはヨウ素ガスを発生させる原因となる。ヨウ素ガスは人が吸入すると咳、喘鳴、息苦しさなどを誘発したりするため、組成物の製造や当該組成物を用いた研磨作業時には、換気を十分したり、作業者が保護手袋や保護衣を着用する必要があるなど、作業環境を厳密に管理する必要がある。したがって、近年の作業環境の健全化をかんがみると、ヨウ素を含む化合物を可能な限り使用しないことが望ましい。
【0014】
これに対して、本発明は、研磨用組成物のpHより高い酸解離定数(pKa)を有する酸を使用することを特徴とする。当該構成によると、上記ジ第4級化合物を用いなくとも、金属を含む層(金属を含む層を有する研磨対象物)を平滑に(低い表面粗さ(Ra)に)研磨できる。また、本発明の研磨用組成物を用いることによって、金属を含む層(金属を含む層を有する研磨対象物)を、エッチング速度は低く抑えつつ高い研磨速度で研磨できる。上記効果を奏する詳細なメカニズムは不明であるが、以下のように考えられる。なお、以下のメカニズムは推測であり、本発明の技術的範囲を制限するものではない。すなわち、上述したように、従来は、タングステンをはじめとする金属膜はエッチングされにくいため、金属を含む層を速い研磨速度で研磨することに重点がおかれていた。しかし、近年では金属を含む層を薄膜化できる技術が開発されたため、研磨速度の向上はさほど重要とはならず、その代わりにLSI製造プロセスの微細化に伴い表面の平坦化に重きがおかれるようになった。通常、金属を含む層の化学機械研磨(CMP)は、以下のようなメカニズムで行われる:研磨用組成物中に含まれる酸化剤によって、金属を含む層の表面は酸化され、金属酸化膜を形成する。この金属酸化膜が砥粒によって物理的にかきとられることで研磨され、研磨された金属表面はまた酸化剤により酸化されて金属酸化膜を形成し、この金属酸化膜が砥粒でかきとられるというサイクルを繰り返す。しかし、従来の方法では、研磨後の基板表面は十分な平滑性を持たないという課題があった。本発明者らは上記課題について鋭意検討を行ったところ、結晶粒間の粒界の腐食が表面粗さの低下の原因であると推測した。すなわち、金属酸化物(例えば、酸化タングステン)が水と接することで金属水酸化物(例えば、水酸化タングステン)となって溶解するが、この化学反応による溶解の方が砥粒によるかきとりより早いため、エッチング速度が上昇し、面あれが生じてしまうと推測した。ここで、砥粒によるかきとり速度を上げることも解決手段の一つとして検討されたが、砥粒濃度を高くする必要があり、コスト高により実用性が低いと考えた。このため、本発明者らは、上記溶解を抑制する他の手段について鋭意検討を行ったところ、キレーティング能力の低い、すなわち、組成物のpHに対して高いpKaを有する酸を使用することが有効であると考えた。詳細には、pKaは酸が解離した基(例えば、カルボキシル基)量の指標であり、pKaが高いことは解離した基が少ないことを意味する。このため、pKaの高い酸を使用することによって、酸のキレート能は低くなるため、このような酸を含む組成物を用いると、研磨時に、金属(例えば、タングステン)の基板からの溶解(溶出)を抑制して、研磨後の表面粗さを低減できる。
【0015】
したがって、本発明の研磨用組成物によれば、金属を含む層(研磨対象物)をエッチング速度は低く抑えつつ高い研磨速度で研磨できる。また、金属の溶出を抑制できるため、本発明の研磨用組成物で金属を含む層(研磨対象物)を研磨すると、表面粗さ(Ra)を低減でき、平坦な表面を有する層(基板)を得ることができる。加えて、本発明の研磨用組成物によれば、砥粒濃度を上げなくとも、金属を含む層(研磨対象物)をエッチング速度は低く抑えつつ高い研磨速度で平滑な表面に研磨できる。
【0016】
以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。
【0017】
また、本明細書において、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%RHの条件で行う。
【0018】
[研磨対象物]
本発明に係る研磨対象物は、金属を含む層である。ここで、金属を含む層は、少なくとも研磨対象となる面が金属を含むものであればよい。このため、金属を含む層は、金属から構成される基板、金属を含む層または金属から構成される層を有する基板(例えば、高分子もしくは他の金属の基板上に金属を含む層または金属から構成される層が配置されてなる基板)であってもよい。好ましくは、金属を含む層は、金属から構成される層(例えば、基板)または金属から構成される層を有する研磨対象物(例えば、基板)である。
【0019】
ここで、金属としては、特に制限されない。例えば、タングステン、銅、アルミニウム、コバルト、ハフニウム、ニッケル、金、銀、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム等が挙げられる。上記金属は、合金または金属化合物の形態で含まれていてもよい。これら金属は、単独でもまたは2種以上組み合わせて用いてもよい。本発明の研磨用組成物は、LSI製造プロセスの微細化がもたらす高集積化技術に好適に使用でき、特にトランジスタ周辺のプラグやビアホール用の材料を研磨する際に適している。また、充填する材料としては、タングステン、銅、アルミニウム、コバルトが好ましく、タングステンがより好ましい。すなわち、本発明の特に好ましい形態によると、金属がタングステンである(本発明の研磨用組成物は、タングステンを含む層の研磨に使用される)。
【0020】
[研磨用組成物]
本発明の研磨用組成物は、砥粒と、酸と、酸化剤と、分散媒と、を含み、この際、酸の酸解離定数(pKa)が研磨用組成物のpHより高い。以下、本発明の研磨用組成物の構成を説明する。
【0021】
(砥粒)
本発明の研磨用組成物は、砥粒を必須に含む。研磨用組成物中に含まれる砥粒は、研磨対象物を機械的に研磨する作用を有し、研磨用組成物による研磨対象物の研磨速度を向上させる。
【0022】
使用される砥粒は、無機粒子、有機粒子、および有機無機複合粒子のいずれであってもよい。無機粒子の具体例としては、例えば、シリカ、アルミナ、セリア、チタニア等の金属酸化物からなる粒子、窒化ケイ素粒子、炭化ケイ素粒子、窒化ホウ素粒子が挙げられる。有機粒子の具体例としては、例えば、ポリメタクリル酸メチル(PMMA)粒子が挙げられる。該砥粒は、単独でもまたは2種以上混合して用いてもよい。また、該砥粒は、市販品を用いてもよいし合成品を用いてもよい。
【0023】
これら砥粒の中でも、シリカが好ましく、特に好ましいのはコロイダルシリカである。
【0024】
砥粒は表面修飾されていてもよい。通常のコロイダルシリカは、酸性条件下でゼータ電位の値がゼロに近いために、酸性条件下ではシリカ粒子同士が互いに電気的に反発せず凝集を起こしやすい。これに対し、酸性条件でもゼータ電位が比較的大きな負の値を有するように表面修飾された砥粒は、酸性条件下においても互いに強く反発して良好に分散する。その結果、研磨用組成物の保存安定性を向上できる。このような表面修飾砥粒は、例えば、アルミニウム、チタンまたはジルコニウムなどの金属あるいはそれらの酸化物を砥粒と混合して砥粒の表面にドープさせることにより得ることができる。
【0025】
なかでも、特に好ましいのは、有機酸を固定化したコロイダルシリカである。研磨用組成物中に含まれるコロイダルシリカの表面への有機酸の固定化は、例えばコロイダルシリカの表面に有機酸の官能基が化学的に結合することにより行われている。コロイダルシリカと有機酸を単に共存させただけではコロイダルシリカへの有機酸の固定化は果たされない。有機酸の一種であるスルホン酸をコロイダルシリカに固定化するのであれば、例えば、“Sulfonic acid−functionalized silica through quantitative oxidation of thiol groups”, Chem. Commun. 246−247 (2003)に記載の方法で行うことができる。具体的には、3−メルカプトプロピルトリメトキシシラン等のチオール基を有するシランカップリング剤をコロイダルシリカにカップリングさせた後に過酸化水素でチオール基を酸化することにより、スルホン酸が表面に固定化されたコロイダルシリカを得ることができる。あるいは、カルボン酸をコロイダルシリカに固定化するのであれば、例えば、”Novel Silane Coupling Agents Containing a Photolabile 2−Nitrobenzyl Ester for Introduction of a Carboxy Group on the Surface of Silica Gel”, Chemistry Letters, 3, 228−229 (2000)に記載の方法で行うことができる。具体的には、光反応性2−ニトロベンジルエステルを含むシランカップリング剤をコロイダルシリカにカップリングさせた後に光照射することにより、カルボン酸が表面に固定化されたコロイダルシリカを得ることができる。
【0026】
砥粒の平均会合度はまた、5.0未満であることが好ましく、より好ましくは3.0以下、さらに好ましくは2.5以下である。砥粒の平均会合度が小さくなるにつれて、このような範囲であれば、砥粒の形状が原因の表面粗さを良好なものとすることができる。砥粒の平均会合度はまた、1.0以上であることが好ましく、より好ましくは1.05以上である。この平均会合度とは砥粒の平均二次粒子径の値を平均一次粒子径の値で除することにより得られる。砥粒の平均会合度が大きくなるにつれて、研磨用組成物による研磨対象物の研磨速度は向上する有利な効果がある。
【0027】
砥粒の平均一次粒子径の下限は、10nm以上であることが好ましく、15nm以上であることがより好ましく、20nm以上であることがさらに好ましい。また、砥粒の平均一次粒子径の上限は、200nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることがさらに好ましい。このような範囲であれば、研磨用組成物による研磨対象物の研磨速度は向上し、また、研磨用組成物を用いて研磨した後の研磨対象物の表面に表面欠陥が生じるのをより抑えることができる。なお、砥粒の平均一次粒子径は、例えば、BET法で測定される砥粒の比表面積に基づいて算出される。
【0028】
砥粒の平均二次粒子径の下限は、15nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることがさらに好ましい。また、砥粒の平均二次粒子径の上限は、300nm以下であることが好ましく、260nm以下であることがより好ましく、220nm以下であることがさらに好ましい。このような範囲であれば、研磨用組成物による研磨対象物の研磨速度は向上し、また、研磨用組成物を用いて研磨した後の研磨対象物の表面に表面欠陥が生じるのをより抑えることができる。なお、ここでいう二次粒子とは、砥粒が研磨用組成物中で会合して形成する粒子をいい、この二次粒子の平均二次粒子径は、例えば動的光散乱法により測定することができる。
【0029】
研磨用組成物中の砥粒のアスペクト比の上限は、2.0未満であることが好ましく、1.8以下であることがより好ましく、1.5以下であることがさらに好ましい。このような範囲であれば、砥粒の形状が原因の表面粗さを良好なものとすることができる。なお、アスペクト比は、走査型電子顕微鏡により砥粒粒子の画像に外接する最小の長方形をとり、その長方形の長辺の長さを同じ長方形の短辺の長さで除することにより得られる値の平均であり、一般的な画像解析ソフトウエアを用いて求めることができる。研磨用組成物中の砥粒のアスペクト比の下限は、1.0以上である。この値に近いほど、砥粒の形状が原因の表面粗さを良好なものとすることができる。
【0030】
研磨用組成物中の砥粒における、レーザー回折散乱法により求められる粒度分布において微粒子側から積算粒子重量が全粒子重量の90%に達するときの粒子の直径(D90)と全粒子の全粒子重量の10%に達するときの粒子の直径(D10)との比であるD90/D10の下限は、1.1以上であることが好ましく、1.2以上であることがより好ましく、1.3以上であることがさらに好ましい。また、研磨用組成物中の砥粒における、レーザー回折散乱法により求められる粒度分布において微粒子側から積算粒子重量が全粒子重量の90%に達するときの粒子の直径(D90)と全粒子の全粒子重量の10%に達するときの粒子の直径(D10)との比D90/D10の上限は特に制限はないが、2.04以下であることが好ましい。このような範囲であれば、砥粒の形状が原因の表面粗さを良好なものとすることができる。
【0031】
研磨用組成物中の砥粒の含有量の下限は、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。また、研磨用組成物中の砥粒の含有量の上限は、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。このような範囲であれば、研磨対象物の研磨速度が向上し、また、研磨用組成物のコストを抑えることができ、研磨用組成物を用いて研磨した後の研磨対象物の表面に表面欠陥が生じるのをより抑えることができる。
【0032】
(酸)
本発明の研磨用組成物は、当該組成物のpHより高い酸解離定数(pKa)を有する酸を必須に含む。本発明に係る酸は、防食剤として作用する。このため、本発明に係る酸の存在により、研磨対象である金属の溶解(溶出)抑え、金属を含む層(研磨対象物)を平滑に(低い表面粗さ(Ra)で)研磨できる。また、エッチング速度は低く抑えつつ高い研磨速度で金属を含む層(研磨対象物)を研磨できる。
【0033】
本明細書において、酸の酸解離定数(pKa)は、酸性度の指標であり、酸の解離定数(Ka)の逆数に常用対数をとったものである。すなわち、酸の酸解離定数(pKa)は、希薄水溶液条件下で、酸解離定数Ka=[H
3O
+][B
−]/[BH]を測定し、pKa=−logKaにより求められる。なお、上記式において、BHは、有機酸を表し、B−は有機酸の共役塩基を表す。pKaの測定方法は、pHメーターを用いて水素イオン濃度を測定し、該当物質の濃度と水素イオン濃度から算出することができる。なお、多塩基酸の場合は、第1段目のKaについて算出した値(pKa1)である。
【0034】
ここで、研磨用組成物のpHと酸の酸解離定数との差は、研磨用組成物のpH<酸のpKaの関係を満たせば特に制限されない。金属の溶解(溶出)の抑制効果のさらなる向上を考慮すると、酸の酸解離定数(pKa)と前記組成物のpHとの差[=(酸の酸解離定数(pKa))−(組成物のpH)]は、好ましくは0.9以上、より好ましくは1.0以上、さらに好ましくは1.2以上、特に好ましくは1.4超である。このような差を満たす酸は、研磨時に、金属の基板からの溶解(溶出)をより有効に抑制して、研磨後の金属を含む層(研磨対象物)の表面粗さをさらに低減できる。また、このような酸を含む研磨用組成物を用いれば、研磨速度は高く維持したまま研磨時のエッチング速度をより低減できる。
【0035】
ここで、酸のpKaは、研磨用組成物のpHより高ければ特に制限されず、研磨対象である金属の種類によって適宜選択できる。具体的には、酸の酸解離定数(pKa)は、好ましくは2.9以上5.0未満、より好ましくは3.0を超え4.9以下、さらに好ましくは3.2以上4.8以下、特に好ましくは3.4を超え4.8以下である。このようなpKaを有する酸は、研磨時に、金属の基板からの溶解(溶出)をより有効に抑制して、研磨後の金属を含む層(研磨対象物)の表面粗さをさらに低減できる。また、このような酸を含む研磨用組成物を用いれば、研磨速度は高く維持したまま研磨時のエッチング速度をより低減できる。
【0036】
酸は、研磨用組成物のpHより高いpKaを有する限りいずれの酸を使用してもよいが、金属の溶解抑制能の点から、カルボキシル基を有する有機酸ならびにカルボキシル基及び末端に水酸基(すなわち、−CH
2OH)を有する有機酸であることが好ましい。具体的には、クエン酸、コハク酸、マロン酸、酒石酸、乳酸、リンゴ酸、酢酸、フタル酸、グリコール酸、クロトン酸、吉草酸、2−ヒドロキシ酪酸、γ−ヒドロキシ酪酸、2−ヒドロキシイソ酪酸、3−ヒドロキシイソ酪酸、グリセリン酸、安息香酸、ロイシン酸、プロピオン酸、酪酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、サリチル酸、シュウ酸、グルタル酸、アジピン酸、ピメリン酸、リンゴ酸、マンデル酸などが挙げられる。これらのうち、コハク酸、酢酸、フタル酸、グリコール酸、クロトン酸、吉草酸、γ−ヒドロキシ酪酸、2−ヒドロキシイソ酪酸、3−ヒドロキシイソ酪酸、安息香酸が好ましい。このような酸は、研磨時に、金属の基板からの溶解(溶出)をより有効に抑制して、研磨後の金属を含む層(研磨対象物)の表面粗さをさらに低減できる。また、このような酸を含む研磨用組成物を用いれば、研磨速度は高く維持したまま研磨時のエッチング速度をより低減できる。
【0037】
上記酸は、単独で使用されてもまたは2種以上の混合物の形態で使用されてよい。なお、酸を2種以上で使用する場合の酸の酸解離定数(pKa)は、上記方法によって測定できる。
【0038】
研磨用組成物中の酸の含有量は、特に制限されないが、研磨用組成物のpHが1以上7以下、より好ましくは1.05以上5以下となるような量であることが好ましい。このようなpHの研磨用組成物は保管安定性に優れる。また、研磨用組成物の取り扱いが容易である。加えて、研磨対象物である金属の研磨速度を向上できる。
【0039】
(酸化剤)
本発明の研磨用組成物は、上記砥粒及び酸に加えて、酸化剤を必須に含む。本発明に係る酸化剤は特に制限されないが、過酸化物が好ましい。すなわち、本発明の好ましい形態によると、酸化剤は過酸化物である。このような過酸化物の具体例としては、以下に制限されないが、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、一過硫酸カリウムおよびオキソンなどが挙げられる。上記酸化剤は、単独でもまたは2種以上混合して用いてもよい。すなわち、本発明の好ましい形態によると、過酸化物は、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、一過硫酸カリウムおよびオキソンからなる群より選択される少なくとも1種である。酸化剤は、過硫酸塩(過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム)および過酸化水素がより好ましく、特に好ましいのは過酸化水素である。
【0040】
研磨用組成物中の酸化剤の含有量(濃度)の下限は、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。酸化剤の含有量が多くなるにつれて、研磨用組成物による研磨速度が向上する利点がある。また、研磨用組成物中の酸化剤の含有量(濃度)の上限は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。酸化剤の含有量が少なくなるにつれて、研磨用組成物の材料コストを抑えることができるのに加え、研磨使用後の研磨用組成物の処理、すなわち廃液処理の負荷を軽減することができる利点を有する。また、研磨対象物表面の過剰な酸化が起こりにくくなり、研磨後の金属表面の粗さを低減する利点も有する。
【0041】
なお、酸化剤により金属を含む層の表面に酸化膜が形成するため、酸化剤は、研磨直前に添加することが好ましい。
【0042】
(分散媒)
本発明の研磨用組成物は、各成分を分散または溶解するために分散媒を含む。ここで、分散媒は、特に制限されないが、水が好ましい。他の成分の作用を阻害することを抑制するという観点から、不純物をできる限り含有しない水がより好ましく、具体的には、イオン交換樹脂にて不純物イオンを除去した後、フィルタを通して異物を除去した純水や超純水、または蒸留水が好ましい。
【0043】
(他の成分)
上述したように、本発明の研磨用組成物は、砥粒と、酸と、酸化剤と、分散媒と、を必須に含むが、上記成分に加えて他の添加剤を含んでもよい。ここで、他の添加剤としては、特に制限されず、研磨用組成物に通常に添加される添加剤が使用できる。具体的には、錯化剤、金属防食剤、防腐剤、防カビ剤、還元剤、水溶性高分子、難溶性の有機物を溶解するための有機溶媒等が挙げられる。なお、本発明の研磨用組成物は、例えば特開2013−42131号公報に記載されるジ第4級化合物を実質的に含まない。また、本発明の研磨用組成物は、ヨウ素ガス発生の引き金になりうるヨウ素化合物(例えば、ヨウ素酸カリウム)を実質的に含まない。ここで、「実質的に含まない」とは、対象となる物質が、研磨用組成物に対して、10質量%以下(下限:0質量%)の割合で存在することを意味し、5質量%以下(下限:0質量%)の割合で存在することが好ましい。
【0044】
以下、上記他の添加剤のうち、錯化剤、金属防食剤、防腐剤、及び防カビ剤について説明する。
【0045】
研磨用組成物に必要であれば含まれうる錯化剤は、研磨対象物の表面を化学的にエッチングする作用を有し、研磨用組成物による研磨対象物の研磨速度をより効果的に向上させうる。
【0046】
使用可能な錯化剤の例としては、例えば、無機酸またはその塩、有機酸またはその塩、ニトリル化合物、アミノ酸、およびキレート剤等が挙げられる。これら錯化剤は、単独でもまたは2種以上混合して用いてもよい。また、該錯化剤は、市販品を用いてもよいし合成品を用いてもよい。
【0047】
錯化剤として、前記無機酸または前記有機酸の塩を用いてもよい。特に、弱酸と強塩基との塩、強酸と弱塩基との塩、または弱酸と弱塩基との塩を用いた場合には、pHの緩衝作用を期待することができる。このような塩の例としては、例えば、塩化カリウム、硫酸ナトリウム、硝酸カリウム、炭酸カリウム、テトラフルオロホウ酸カリウム、ピロリン酸カリウム、シュウ酸カリウム、クエン酸三ナトリウム、(+)−酒石酸カリウム、ヘキサフルオロリン酸カリウム等が挙げられる。
【0048】
ニトリル化合物の具体例としては、例えば、アセトニトリル、アミノアセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、ベンゾニトリル、グルタロジニトリル、メトキシアセトニトリル等が挙げられる。
【0049】
アミノ酸の具体例としては、グリシン、α−アラニン、β−アラニン、N−メチルグリシン、N,N−ジメチルグリシン、2−アミノ酪酸、ノルバリン、バリン、ロイシン、ノルロイシン、イソロイシン、フェニルアラニン、プロリン、サルコシン、オルニチン、リシン、タウリン、セリン、トレオニン、ホモセリン、チロシン、ビシン、トリシン、3,5−ジヨード−チロシン、β−(3,4−ジヒドロキシフェニル)−アラニン、チロキシン、4−ヒドロキシ−プロリン、システイン、メチオニン、エチオニン、ランチオニン、シスタチオニン、シスチン、システイン酸、アスパラギン酸、グルタミン酸、S−(カルボキシメチル)−システイン、4−アミノ酪酸、アスパラギン、グルタミン、アザセリン、アルギニン、カナバニン、シトルリン、δ−ヒドロキシ−リシン、クレアチン、ヒスチジン、1−メチル−ヒスチジン、3−メチル−ヒスチジンおよびトリプトファンが挙げられる。
【0050】
キレート剤の具体例としては、ニトリロ三酢酸、ジエチレントリアミン五酢酸、エチレンジアミン四酢酸、N,N,N−トリメチレンホスホン酸、エチレンジアミン−N,N,N’,N’−テトラメチレンスルホン酸、トランスシクロヘキサンジアミン四酢酸、1,2−ジアミノプロパン四酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミンオルトヒドロキシフェニル酢酸、エチレンジアミンジ琥珀酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、β−アラニンジ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、N,N’−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N’−ジ酢酸、1,2−ジヒドロキシベンゼン−4,6−ジスルホン酸等が挙げられる。
【0051】
これらの中でも、無機酸またはその塩、カルボン酸またはその塩、およびニトリル化合物からなる群より選択される少なくとも1種が好ましく、研磨対象物に含まれる金属化合物との錯体構造の安定性の観点から、無機酸またはその塩がより好ましい。
【0052】
研磨用組成物が錯化剤を含む場合の、錯化剤の含有量(濃度)は特に制限されない。例えば、錯化剤の含有量(濃度)の下限は、少量でも効果を発揮するため特に限定されるものではないが、0.001g/L以上であることが好ましく、0.01g/L以上であることがより好ましく、1g/L以上であることがさらに好ましい。また、錯化剤の含有量(濃度)の上限は、20g/L以下であることが好ましく、15g/L以下であることがより好ましく、10g/L以下であることがさらに好ましい。このような範囲であれば、研磨対象物の研磨速度が向上し、また、研磨用組成物を用いて研磨した後の、研磨対象物の表面の平滑性を向上させる上で有利である。
【0053】
次に、研磨用組成物に必要であれば含まれうる金属防食剤は、金属の溶解を防ぐことで研磨表面の面荒れ等の表面状態の悪化を抑えるよう作用する。ただし、本発明に係る酸が金属防食剤として作用するため、本発明の研磨用組成物は金属防食剤を別途添加せずとも、金属の溶解を十分抑制・防止できる。
【0054】
使用可能な金属防食剤は、特に制限されないが、好ましくは複素環式化合物または界面活性剤である。複素環式化合物中の複素環の員数は特に限定されない。また、複素環式化合物は、単環化合物であってもよいし、縮合環を有する多環化合物であってもよい。該金属防食剤は、単独でもまたは2種以上混合して用いてもよい。また、該金属防食剤は、市販品を用いてもよいし合成品を用いてもよい。
【0055】
金属防食剤として使用可能な複素環化合物の具体例としては、例えば、ピロール化合物、ピラゾール化合物、イミダゾール化合物、トリアゾール化合物、テトラゾール化合物、ピリジン化合物、ピラジン化合物、ピリダジン化合物、ピリンジン化合物、インドリジン化合物、インドール化合物、イソインドール化合物、インダゾール化合物、プリン化合物、キノリジン化合物、キノリン化合物、イソキノリン化合物、ナフチリジン化合物、フタラジン化合物、キノキサリン化合物、キナゾリン化合物、シンノリン化合物、ブテリジン化合物、チアゾール化合物、イソチアゾール化合物、オキサゾール化合物、イソオキサゾール化合物、フラザン化合物等の含窒素複素環化合物が挙げられる。
【0056】
さらに具体的な例を挙げると、ピラゾール化合物の例としては、例えば、1H−ピラゾール、4−ニトロ−3−ピラゾールカルボン酸、3,5−ピラゾールカルボン酸、3−アミノ−5−フェニルピラゾール、5−アミノ−3−フェニルピラゾール、3,4,5−トリブロモピラゾール、3−アミノピラゾール、3,5−ジメチルピラゾール、3,5−ジメチル−1−ヒドロキシメチルピラゾール、3−メチルピラゾール、1−メチルピラゾール、3−アミノ−5−メチルピラゾール、4−アミノ−ピラゾロ[3,4−d]ピリミジン、アロプリノール、4−クロロ−1H−ピラゾロ[3,4−D]ピリミジン、3,4−ジヒドロキシ−6−メチルピラゾロ(3,4−B)−ピリジン、6−メチル−1H−ピラゾロ[3,4−b]ピリジン−3−アミン等が挙げられる。
【0057】
イミダゾール化合物の例としては、例えば、イミダゾール、1−メチルイミダゾール、2−メチルイミダゾール、4−メチルイミダゾール、1,2−ジメチルピラゾール、2−エチル−4−メチルイミダゾール、2−イソプロピルイミダゾール、ベンゾイミダゾール、5,6−ジメチルベンゾイミダゾール、2−アミノベンゾイミダゾール、2−クロロベンゾイミダゾール、2−メチルベンゾイミダゾール、2−(1−ヒドロキシエチル)ベンズイミダゾール、2−ヒドロキシベンズイミダゾール、2−フェニルベンズイミダゾール、2,5−ジメチルベンズイミダゾール、5−メチルベンゾイミダゾール、5−ニトロベンズイミダゾール等が挙げられる。
【0058】
トリアゾール化合物の例としては、例えば、1,2,3−トリアゾール(1H−BTA)、1,2,4−トリアゾール、1−メチル−1,2,4−トリアゾール、メチル−1H−1,2,4−トリアゾール−3−カルボキシレート、1,2,4−トリアゾール−3−カルボン酸、1,2,4−トリアゾール−3−カルボン酸メチル、1H−1,2,4−トリアゾール−3−チオール、3,5−ジアミノ−1H−1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール−5−チオール、3−アミノ−1H−1,2,4−トリアゾール、3−アミノ−5−ベンジル−4H−1,2,4−トリアゾール、3−アミノ−5−メチル−4H−1,2,4−トリアゾール、3−ニトロ−1,2,4−トリアゾール、3−ブロモ−5−ニトロ−1,2,4−トリアゾール、4−(1,2,4−トリアゾール−1−イル)フェノール、4−アミノ−1,2,4−トリアゾール、4−アミノ−3,5−ジプロピル−4H−1,2,4−トリアゾール、4−アミノ−3,5−ジメチル−4H−1,2,4−トリアゾール、4−アミノ−3,5−ジペプチル−4H−1,2,4−トリアゾール、5−メチル−1,2,4−トリアゾール−3,4−ジアミン、1H−ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール、1−アミノベンゾトリアゾール、1−カルボキシベンゾトリアゾール、5−クロロ−1H−ベンゾトリアゾール、5−ニトロ−1H−ベンゾトリアゾール、5−カルボキシ−1H−ベンゾトリアゾール、5−メチル−1H−ベンゾトリアゾール、5,6−ジメチル−1H−ベンゾトリアゾール、1−(1’,2’−ジカルボキシエチル)ベンゾトリアゾール、1−[N,N−ビス(ヒドロキシエチル)アミノメチル]ベンゾトリアゾール、1−[N,N−ビス(ヒドロキシエチル)アミノメチル]−5−メチルベンゾトリアゾール、1−[N,N−ビス(ヒドロキシエチル)アミノメチル]−4−メチルベンゾトリアゾール等が挙げられる。
【0059】
テトラゾール化合物の例としては、例えば、1H−テトラゾール、5−メチルテトラゾール、5−アミノテトラゾール、および5−フェニルテトラゾール等が挙げられる。
【0060】
インダゾール化合物の例としては、例えば、1H−インダゾール、5−アミノ−1H−インダゾール、5−ニトロ−1H−インダゾール、5−ヒドロキシ−1H−インダゾール、6−アミノ−1H−インダゾール、6−ニトロ−1H−インダゾール、6−ヒドロキシ−1H−インダゾール、3−カルボキシ−5−メチル−1H−インダゾール等が挙げられる。
【0061】
インドール化合物の例としては、例えば1H−インドール、1−メチル−1H−インドール、2−メチル−1H−インドール、3−メチル−1H−インドール、4−メチル−1H−インドール、5−メチル−1H−インドール、6−メチル−1H−インドール、7−メチル−1H−インドール、4−アミノ−1H−インドール、5−アミノ−1H−インドール、6−アミノ−1H−インドール、7−アミノ−1H−インドール、4−ヒドロキシ−1H−インドール、5−ヒドロキシ−1H−インドール、6−ヒドロキシ−1H−インドール、7−ヒドロキシ−1H−インドール、4−メトキシ−1H−インドール、5−メトキシ−1H−インドール、6−メトキシ−1H−インドール、7−メトキシ−1H−インドール、4−クロロ−1H−インドール、5−クロロ−1H−インドール、6−クロロ−1H−インドール、7−クロロ−1H−インドール、4−カルボキシ−1H−インドール、5−カルボキシ−1H−インドール、6−カルボキシ−1H−インドール、7−カルボキシ−1H−インドール、4−ニトロ−1H−インドール、5−ニトロ−1H−インドール、6−ニトロ−1H−インドール、7−ニトロ−1H−インドール、4−ニトリル−1H−インドール、5−ニトリル−1H−インドール、6−ニトリル−1H−インドール、7−ニトリル−1H−インドール、2,5−ジメチル−1H−インドール、1,2−ジメチル−1H−インドール、1,3−ジメチル−1H−インドール、2,3−ジメチル−1H−インドール、5−アミノ−2,3−ジメチル−1H−インドール、7−エチル−1H−インドール、5−(アミノメチル)インドール、2−メチル−5−アミノ−1H−インドール、3−ヒドロキシメチル−1H−インドール、6−イソプロピル−1H−インドール、5−クロロ−2−メチル−1H−インドール等が挙げられる。
【0062】
これらの中でも好ましい複素環化合物はトリアゾール化合物であり、特に、1H−ベンゾトリアゾール、5−メチル−1H−ベンゾトリアゾール、5,6−ジメチル−1H−ベンゾトリアゾール、1−[N,N−ビス(ヒドロキシエチル)アミノメチル]−5−メチルベンゾトリアゾール、1−[N,N−ビス(ヒドロキシエチル)アミノメチル]−4−メチルベンゾトリアゾール、1,2,3−トリアゾール、および1,2,4−トリアゾールが好ましい。これらの複素環化合物は、研磨対象物表面への化学的または物理的吸着力が高いため、研磨対象物表面により強固な保護膜を形成することができる。このことは、本発明の研磨用組成物を用いて研磨した後の、研磨対象物の表面の平滑性を向上させる上で有利である。
【0063】
また、金属防食剤として使用される界面活性剤は、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤が挙げられる。
【0064】
陰イオン性界面活性剤の例としては、例えば、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキル硫酸エステル、アルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸、アルキルエーテル硫酸、アルキルベンゼンスルホン酸、アルキルリン酸エステル、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンスルホコハク酸、アルキルスルホコハク酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルジスルホン酸、およびこれらの塩等が挙げられる。
【0065】
陽イオン性界面活性剤の例としては、例えば、アルキルトリメチルアンモニウム塩、アルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルアミン塩等が挙げられる。
【0066】
両性界面活性剤の例としては、例えば、アルキルベタイン、アルキルアミンオキシド等が挙げられる。
【0067】
非イオン性界面活性剤の具体例としては、例えば、ポリオキシエチレンアルキルエーテルなどのポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、およびアルキルアルカノールアミドが挙げられる。中でもポリオキシアルキレンアルキルエーテルが好ましい。
【0068】
これらの中でも好ましい界面活性剤は、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルエーテル硫酸塩、およびアルキルベンゼンスルホン酸塩である。これらの界面活性剤は、研磨対象物表面への化学的または物理的吸着力が高いため、研磨対象物表面により強固な保護膜を形成することができる。このことは、本発明の研磨用組成物を用いて研磨した後の、研磨対象物の表面の平坦性を向上させる上で有利である。
【0069】
研磨用組成物が金属防食剤を含む場合の、金属防食剤の含有量(濃度)は特に制限されない。例えば、金属防食剤の含有量(濃度)の下限は、0.001g/L以上であることが好ましく、0.005g/L以上であることがより好ましく、0.01g/L以上であることがさらに好ましい。また、金属防食剤の含有量(濃度)の上限は、10g/L以下であることが好ましく、5g/L以下であることがより好ましく、2g/L以下であることがさらに好ましい。このような範囲であれば、金属の溶解を防ぎ研磨表面の面荒れ等の表面状態の悪化を抑えることができる。
【0070】
さらに、研磨用組成物に必要であれば含まれうる防腐剤および防カビ剤としては、例えば、2−メチル−4−イソチアゾリン−3−オンや5−クロロ−2−メチル−4−イソチアゾリン−3−オン等のイソチアゾリン系防腐剤、パラオキシ安息香酸エステル類、およびフェノキシエタノール等が挙げられる。これら防腐剤および防カビ剤は、単独でもまたは2種以上混合して用いてもよい。
【0071】
[研磨用組成物の製造方法]
本発明の研磨用組成物の製造方法は、特に制限されず、例えば、砥粒、酸、酸化剤、および必要に応じて他の添加剤を、分散媒(例えば、水)中で攪拌混合することにより得ることができる。すなわち、本発明は、前記砥粒、前記酸、および前記酸化剤を混合することを含む、研磨用組成物の製造方法をも提供する。
【0072】
なお、上述したように、酸化剤は金属を含む層の表面への酸化膜形成を促進するため、まず、砥粒、酸、および必要に応じて他の添加剤を、分散媒(例えば、水)に添加して予備組成物を調製し、酸化剤は研磨直前に上記予備組成物に添加することが好ましい。
【0073】
各成分を混合する際の温度は特に制限されないが、10〜40℃が好ましく、溶解速度を上げるために加熱してもよい。また、混合時間も、均一混合できれば特に制限されない。
【0074】
[研磨方法および基板の製造方法]
上述のように、本発明の研磨用組成物は、金属を含む層(研磨対象物)の研磨に好適に用いられる。よって、本発明は、金属を含む層を有する研磨対象物を本発明の研磨用組成物で研磨する研磨方法をも提供する。また、本発明は、金属を含む層を有する研磨対象物を前記研磨方法で研磨する工程を含む、基板の製造方法を提供する。
【0075】
研磨装置としては、研磨対象物を有する基板等を保持するホルダーと回転数を変更可能なモータ等とが取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤を有する一般的な研磨装置を使用することができる。
【0076】
前記研磨パッドとしては、一般的な不織布、ポリウレタン、および多孔質フッ素樹脂等を特に制限なく使用することができる。研磨パッドには、研磨液が溜まるような溝加工が施されていることが好ましい。
【0077】
研磨条件については、例えば、研磨定盤の回転速度は、10〜500rpmが好ましい。研磨対象物を有する基板にかける圧力(研磨圧力)は、0.5〜10psiが好ましい。研磨パッドに研磨用組成物を供給する方法も特に制限されず、例えば、ポンプ等で連続的に供給する方法が採用される。この供給量に制限はないが、研磨パッドの表面が常に本発明の研磨用組成物で覆われていることが好ましい。
【0078】
研磨終了後、基板を流水中で洗浄し、スピンドライヤ等により基板上に付着した水滴を払い落として乾燥させることにより、金属を含む層を有する基板が得られる。
【0079】
本発明の研磨用組成物は一液型であってもよいし、二液型をはじめとする多液型であってもよい。上述したように、酸化剤は金属を含む層の表面への酸化膜形成を促進する。このため、砥粒、酸、分散媒(例えば、水)、および必要に応じて他の添加剤を含む第一液および酸化剤および必要であれば分散媒(例えば、水)を含む第二液からなる二液型であることが好ましい。また、本発明の研磨用組成物は、研磨用組成物の原液を水などの希釈液を使って、例えば10倍以上に希釈することによって調製されてもよい。
【0080】
本発明の研磨用組成物は金属研磨の工程、特にタングステン研磨の工程に使用されることが好ましい。さらに、本発明の研磨用組成物は、タングステン研磨の工程を、タングステンを含む層の大部分を取り除くために行われるメイン研磨工程と、タングステンを含む層及び絶縁体層を仕上げ研磨するバフ研磨工程とに大別したとき、バフ研磨工程に使用されることが好ましい。
【実施例】
【0081】
本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。また、下記実施例において、特記しない限り、操作は室温(25℃)/相対湿度40〜50%RHの条件下で行われた。
【0082】
実施例1〜15、比較例1
純水1Lに、砥粒(スルホン酸固定コロイダルシリカ;平均一次粒子径:30nm、平均二次粒子径:60nm、アスペクト比:1.24、D90/D10:2.01)を最終の研磨用組成物に対して2.0質量%の量となるように加え、下記表1に示される酸を加えることで研磨用組成物を調製した。なお、酸は、後述する酸化剤を添加する前の研磨用組成物のpHが2.0になるように加えた。また、タングステンウェーハを研磨する直前に、酸化剤として過酸化水素水(30質量%)を最終の研磨用組成物に対して0.45質量%の量となるように攪拌しながら、上記研磨用組成物に加えた。酸化剤を加えた後の最終研磨用組成物のpHを表1に合わせて示す。研磨用組成物(液温:25℃)のpHは、pHメーター(株式会社堀場製作所製 型番:LAQUA)により確認した。
【0083】
実施例16
砥粒を未修飾コロイダルシリカ(平均一次粒子径:30nm、平均二次粒子径:60nm、アスペクト比:1.24、D90/D10:2.01)に変更したこと以外は、実施例12と同様にして研磨用組成物を調製した。
【0084】
上記で得られた研磨用組成物について、下記方法に従って、研磨速度(Removal Rate)(Å/min)、エッチング速度(Etching Rate)(Å/min)、および表面粗さを評価した。結果を下記表1に示す。
【0085】
[研磨速度(Removal Rate)の測定]
各研磨用組成物を用いて、研磨対象物を以下の研磨条件で研磨する。研磨前後の研磨対象物の厚み(膜厚)を、手動シート抵抗器(VR−120、株式会社日立国際電気製)によって測定する。下記(研磨速度の算出方法)により、研磨前後の研磨対象物の厚み(膜厚)の差を研磨時間で除することによって、研磨速度(Removal Rate)(Å/min)を求める。なお、研磨対象物としては、タングステンウェーハ(大きさ:32mm×32mm)を使用する。
【0086】
【化1】
【0087】
(研磨速度の算出方法)
研磨速度(研磨レート)(Å/min)は、下記式(1)により計算する。
【0088】
【数1】
【0089】
[エッチング速度(Etching Rate)の測定]
下記操作によりエッチング試験を行う。すなわち、各研磨用組成物300mLを300rpmで攪拌させたサンプル容器に、研磨対象物を10分間浸漬することで行なう。浸漬後ウェーハは、純水で30秒洗浄し、エアーガンによるエアブロー乾燥で乾燥させる。エッチング試験前後の研磨対象物の厚み(膜厚)を、手動シート抵抗器(VR−120、株式会社日立国際電気製)によって測定する。下記(エッチング速度の算出方法)により、エッチング試験前後の研磨対象物の厚み(膜厚)の差をエッチング試験時間で除することによって、エッチング速度(Etching Rate)(Å/min)を求める。なお、研磨対象物としては、タングステンウェーハ(大きさ:32mm×32mm)を使用する。
【0090】
(エッチング速度の算出方法)
エッチング速度(エッチングレート)(Å/min)は、下記式(2)により計算する。
【0091】
【数2】
【0092】
[表面粗さの測定]
上記[研磨速度(Removal Rate)の測定]と同様にして、研磨用組成物を用いて、研磨対象物を研磨する。研磨後の研磨対象物の研磨面における表面粗さ(Ra)を、走査型プローブ顕微鏡(SPM)を用いて測定する。なお、SPMとして、株式会社日立ハイテクノロジーズ製のNANO−NAVI2を使用する。カンチレバーは、SI−DF40P2を使用する。測定は、走査周波数0.86Hz、X:512pt、Y:512ptで3回行い、これらの平均値を表面粗さ(Ra)とする。
【0093】
【表1】
【0094】
上記表1の結果から、酸解離定数(pKa)が前記組成物のpHより高い酸を含む研磨用組成物を用いることによって、金属(タングステン)基板を、エッチング速度は低いが高い研磨速度で研磨できることがわかる。また、本発明の研磨用組成物で研磨することによって、表面粗さ(Ra)のより小さい(すなわち、平滑性に優れる)研磨面を有する基板が得られることが示される。
【0095】
なお、本出願は、2016年3月25日に出願された日本特許出願第2016−61554号に基づいており、その開示内容は、参照により全体として引用されている。