(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
以下に発明の詳細を説明する。
本発明に用いる架橋剤を含む重合体は、分子内に下記式(I)由来の構造を有する単量体(a)と分子内に重合性不飽和結合を有する水溶性不飽和単量体(b)を共重合して得られる重合体である。
【0015】
【化6】
R
1、R
2:炭素−炭素不飽和結合をもたない炭素、酸素、窒素および水素から選ばれる群からなる原子で構成される直鎖若しくは分岐を有する鎖状の官能基。
W:15族の非金属元素。
X、Y:それぞれ炭素、酸素、窒素および水素から選ばれる群からなる原子で構成される直鎖若しくは分岐を有する鎖状の官能基であって、かつそれぞれ炭素−炭素不飽和結合を少なくとも1つ持つ。ただし、XとYは異なる構造を有する。
Z:塩素イオン、臭素イオンまたはヨウ素イオン。
【0016】
【化7】
ここで、R
3は、水素原子又はメチル基であり、R
4はOまたはNHであり、R
5はC
nH
2n(n=1〜6)である。
【0017】
炭素−炭素不飽和結合をもたない鎖状の官能基において、メチル基、エチル基、プロピル基、i‐プロピル基、n−ブチル基、i‐ブチル基、カルボニル基などが挙げられる。
Wは、15族の非金属元素であり、窒素、リン、ヒ素、アンチモン、ビスマスが挙げられる。
炭素‐炭素不飽和結合を少なくとも1つもつ鎖状の官能基とは、(メタ)アクリロイル基、クロトノイル基、ビニルエーテル基などが挙げられる。
例えば、式(X)のR
3が水素原子、R
4がOである(メタ)アクリル基や、式(X)のR
3が水素原子、R
4がNHである(メタ)アクリルアミド基を有する構造であることが好ましい。
(メタ)アクリル基や(メタ)アクリルアミド基を有する構造であると、水溶性不飽和単量体(b)との共重合性に優れる。
【0018】
【化8】
ここで、R
6は、水素原子、メチル基または炭素数1〜6の直鎖、分岐状若しくは環状構造を有するアルキルエステル基である。
【0019】
架橋性単量体(a)は、XとYの構造が異なる為、XとYの重合性が異なる。
例えば、メチレンビスアクリルアミドやジアリルアミン、トリアリルアミン等は、分子構造が対称であり官能基の重合性が等しい為、同時に主鎖の伸長と架橋が起こり、その構造のコントロールが困難である。
それに対し、本発明で用いられる架橋性単量体(a)を用いた場合、主鎖の伸長と分岐架橋に反応性差があるためその構造制御がきわめて容易になり、その結果均一な水溶液系でも分岐構造を有し、かつ水溶性の重合体が容易に製造できる。
さらに、分岐された重合体は分子量の割に水溶液粘度が低く、取扱い性がよいのが特徴である。高分子凝集剤は汚濁水や汚泥と速やかに混合する必要があり、その点で高粘性の直鎖状高分子水溶液より分岐型のほうが使いやすい。また他の架橋分岐型高分子凝集剤は不均一で溶解性の悪いゲル状物が残ることがままあるが、本発明においては分岐効果が得られかつ不溶化物の少ない重合体を容易に得ることができる。
【0020】
本発明において、式(I)由来の構造が、下記式(II)であることが好ましい。
【0021】
【化9】
ここで、R
10及びR
11は、それぞれ独立して炭素数1〜6の直鎖又は分岐のあるアルキル基であり、R
7は、水素原子又はメチル基であり、R
8はOまたはNHであり、R
9はC
nH
2n(n=1〜6)であり、R
12は、水素原子、メチル基または炭素数1〜6の直鎖、分岐状若しくは環状構造を有するアルキルエステル基である。
【0022】
式(I)由来の構造が、式(II)であることにより、反応性差が顕著に現れ、分岐/架橋度のコントロールが容易となる。
【0023】
本発明における架橋性単量体(a)としては、以下式(III−1)〜(III−12)で示される各単量体が例示できる。これらは単独で使用しても良く、二種類以上で併用しても良い。
【0025】
本発明における架橋性単量体(a)の製造方法としては、特に制限されることはないが、例えば、以下のような方法が上げられる。
まず、重合性不飽和結合を有する3級アミンを有機溶剤に溶解させた溶液(A)と、重合性不飽和結合を有するハロゲン化物を有機溶剤に溶解させた溶液(B)をそれぞれ準備する。次に、溶液(A)をビーカー中で撹拌した状態で、滴下漏斗を用いて溶液(B)をビーカーに滴下し、そのまま撹拌し続ける。その際、撹拌時間や滴下時のビーカーの温度は任意に設定して良い。
【0026】
架橋性単量体(a)の添加量は、凝集性能(高フロック強度、フロックの粗大化、及び脱水ケーキの低含水率化)および得られるポリマーの水に対する溶解性の観点から、水溶性不飽和単量体(b)の100質量%に対して、0.001質量%以上1.0質量%以下が好ましく、0.003質量%以上0.7質量%以下がさらに好ましく、0.005質量%以上0.5質量%以下が特に好ましい。
【0027】
本発明における水溶性不飽和単量体(b)は、水100g(20℃)に対する溶解度が5g以上の不飽和単量体を意味し、下記が挙げられる。
【0028】
(b1)ノニオン性モノマー
下記の(b1−1)〜(b1−3)及びこれらの混合物が例示される。
(b1−1)水酸基またはニトリル基含有(メタ)アクリレート
例えば、炭素数5〜25の水酸基含有化合物[具体的には、(ヒドロキシエチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリグリセロールモノ(メタ)アクリレート等]、またはニトリル基含有化合物[2−シアノエチル(メタ)アクリレート等]が挙げられる。
【0029】
(b1−2)(メタ)アクリルアミド化合物
例えば、(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミド、N−メチル−、エチル−およびイソプロピル(メタ)アクリルアミド、N,N’−ジメチル−、ジエチル−およびジイソプロピル(メタ)アクリルアミド]およびN−アルキロール、(メタ)アクリルアミド[N−メチロール(メタ)アクリルアミド、N,N’−ジメチロール(メタ)アクリルアミド等]が挙げられる。
【0030】
(b1−3)(b1−1)および(b1−2)以外の窒素原子含有ビニルモノマー
例えば、アクリロニトリル、N−ビニルホルムアミド、N−ビニル−2−ピロリドン、ビニルイミダゾール、N−ビニルスクシンイミドおよびN−ビニルカルバゾールなどが挙げられる。
【0031】
(b2)カチオン性モノマー
下記の(b2−1)〜(b2−5)、及びこれらの塩が例示できる。これらの塩のとしては、例えば、無機酸( 塩酸、硫酸、リン酸および硝酸等)塩、第4級アンモニウム塩(例えばメチルクロライド塩、ジメチル硫酸塩およびベンジルクロライド塩、およびこれらの混合物)が挙げられる。
【0032】
(b2−1)3級アミノ基含有(メタ)アクリレート
例えば、N,N−ジアルキルアミノアルキル(メタ)アクリレート[具体的には、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレートおよびN,N−ジエチルアミノプロピル(メタ)アクリレート等、およびN−モルホリノエチル(メタ)アクリレート等のN−モルホリノアルキル(メタ)アクリレートが挙げられる。
【0033】
(b2−2)3級アミノ基含有(メタ)アクリルアミド化合物
例えば、N,N−ジアルキルアミノアルキル(メタ)アクリルアミド[具体的には、N,N−ジメチルアミノエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジエチルアミノエチル(メタ)アクリルアミドおよびN,N−ジエチルアミノプロピル(メタ)アクリルアミド等、およびN−モルホリノエチル((メタ)アクリルアミド等のN−モルホリノアルキル(メタ)アクリルアミドが挙げられる。
【0034】
(b2−3)1級または2級アミノ基を有するビニル化合物
例えばビニルアニリン、アリルアミン、N−メチルビニルアミン等の、炭素数3〜12のアミノ基を有するビニル化合物が挙げられる。
【0035】
(b2−4)アミンイミド基を有する化合物
例えば、1,1,1−トリメチルアミン(メタ)アクリルイミド、1,1−ジメチル−1−エチルアミン(メタ)アクリルイミド、1,1−ジメチル−1−(2’−フェニル−2’−ヒドロキシエチル)アミン(メタ)アクリルイミドおよび1,1,1−トリメチルアミン(メタ)アクリルイミド、が挙げられる。
【0036】
(b2−5)(b2−1)〜(b2−4)以外の窒素原子含有ビニル化合物
例えば、2−ビニルピリジン、3−ビニルピペリジン、ビニルピラジンおよびビニルモルホリン等が挙げられる。
【0037】
(b3)アニオン性モノマー
例えば、アルカリ金属(リチウム、ナトリウム、カリウム等)又はアルカリ土類金属(マグネシウム、カルシウム等)の塩、アンモニウム塩および炭素数1〜20のアミン類、およびこれらの混合物が挙げられる。
【0038】
(b3−1)不飽和カルボン酸(無水物も含む)
例えば、(メタ)アクリル酸、ビニル安息香酸又はアリル酢酸等のモノカルボン酸、ジ(無水)マレイン酸、フマル酸、イタコン酸等のジカルボン酸が挙げられる。
【0039】
(b3−2)不飽和スルホン酸
例えば、ビニルスルホン酸、スチレンスルホン酸等のスルホン酸基を有する不飽和炭化水素、2−(メタ)アクリロイルオキシエタンスルホン酸、2−(メタ)アクリロイルオキシプロパンスルホン酸、3−(メタ)アクリロイルオキシプロパンスルホン酸、2−(メタ)アクリロイルオキシブタンスルホン酸、4−(メタ)アクリロイルオキシブタンスルホン酸、2−(メタ)アクリロイルオキシ−2,2−ジメチルエタンスルホン酸、またはp−(メタ)アクリロイルオキシメチルベンゼンスルホン酸等の、スルホン酸基を有する(メタ)アクリレート;2−(メタ)アクリロイルアミノエタンスルホン酸、2−(メタ)アクリロイルアミノプロパンスルホン酸、3−(メタ)アクリロイルアミノプロパンスルホン酸、2−(メタ)アクリロイルアミノブタンスルホン酸、4−(メタ)アクリロイルアミノブタンスルホン酸、2−(メタ)アクリロイルアミノ−2,2−ジメチルエタンスルホン酸およびp−(メタ)アクリロイルアミノメチルベンゼンスルホン酸等のスルホン酸基を有する(メタ)アクリルアミド、炭素数5〜20の(メタ)アリルスルホコハク酸エステル等が挙げられる。
【0040】
上記(b)の中で好ましいのは、より高分子量にできる観点から(b1−1)、(b2−1)、(b2−2)、(b3−1)および(b3−2)の内のスルホン酸基含有(メタ)アクリレートおよびスルホン酸基含有(メタ)アクリルアミドであり、最も好ましいのは(b1−2)の内の(メタ)アクリルアミド、(b1−3)の内のアクリロニトリル、N−ビニルホルムアミド、(b2−1)の内のN,N−ジメチルアミノエチル(メタ)アクリレートおよびこれらの塩、(b3−1)の内の(メタ)アクリル酸、(無水)マレイン酸、イタコン酸およびこれらのアルカリ金属(リチウム、ナトリウム、カリウム等)塩、(b3−2)の内の2−(メタ)アクリロイルオキシエタンスルホン酸、2−(メタ)アクリロイルオキシプロパンスルホン酸、3−(メタ)アクリロイルオキシプロパンスルホン酸、2−(メタ)アクリロイルアミノ−2,2−ジメチルエタンスルホン酸およびこれらのアルカリ金属塩である。
また、これらの(b)は、単独で重合してもよく、任意に共重合してもよい。
【0041】
上記(b)は、必要によりその他のモノマー(x)を併用してもよく、その場合(x)の割合(モル%)は、モノマー(b)と(x)の全モル数に対して、通常0以上、好ましくは0.1以上、さらに好ましくは0.5以上であり、通常40以下、好ましくは20以下さらに好ましくは10以下である。
ここにおいてその他のモノマーとは、水(20℃)100gに対する溶解度が5g未満のモノマーを意味する。
【0042】
その他のモノマー(x)としては、例えば以下のものが挙げられる。
下記の(x1)〜(x5)、及びこれらの混合物
(x1)C4〜23の(メタ)アクリレート
例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、オクタデシル(メタ)アクリレートおよびシクロヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート等の炭素数6〜20のエポキシ基含有(メタ)アクリレートが挙げられる。
【0043】
(x2)ポリプロピレングリコール
例えば、不飽和カルボン酸モノエステルモノオールまたはジオールのプロピレンオキシド(以下、POと略記)の付加物が挙げられる。具体的には、モノオール(エタノール、プロパノール、ブタノール等)をPOに付加した(メタ)アクリル酸エステル[ω−メトキシプロピレンオキシド、エトキシプロピレンオキシド、プロポキシプロピレンオキシド、ブトキシプロピレンオキシドおよびシクロヘキソキシプロピレンオキシドおよびフェノキシポリプロピレングリコール(メタ)クリレート]等が考えられる。
【0044】
(x3)不飽和炭化水素
例えば、エチレン、ノネン、スチレン、1−メチルスチレン等炭素数2〜30の不飽和炭化水素が挙げられる。
【0045】
(x4)不飽和アルコール
例えば、ビニルアルコール、(メタ)アリルアルコール等の炭素数3〜20の不飽和アルコールや、酢酸ビニル等のこれらのアルコール由来のエステルが挙げられる。
【0046】
(x5)ハロゲン含有化合物
例えば塩化ビニル、臭化ビニル等が挙げられる。
【0047】
本発明における重合の方法としては、特に制限されることはないが、例えば、バルク重合、水溶液重合、沈殿重合、懸濁重合、乳化重合、さらにはマイクロエマルション重合等が挙げられる。このうち、最も簡易で安価に製造出来るという観点から、水溶液系での重合が好ましい。
【0048】
本発明の重合方法においては、まず、架橋性単量体(a)、水溶性不飽和単量体(b)を水中に溶解させる。次に、重合開始剤および必要に応じて連鎖移動剤などを加えた後、窒素ガスを吹き込んで反応性単量体溶液とする。この反応性単量体溶液について、加えた重合開始剤が熱重合開始剤であればウォーターバスによる熱重合を実施し、加えた重合開始剤が光重合開始剤であればUVやケミカルランプによる光重合を実施する。
【0049】
本発明の重合方法を行うことにより、簡便で安価に製造出来る。
【0050】
また、通常のラジカル開始剤による重合が使え、ラジカル開始剤としては一般的なアゾ系開始剤や過酸化物系開始剤、光増感剤を用いた光重合開始剤、レドックス開始剤等が例示される。アゾ系開始剤や過酸化物系開始剤、光増感剤を用いた光重合開始剤、レドックス開始剤等は単独でもよいしこれらを併用してもよい。
【0051】
アゾ系開始剤や過酸化物系開始剤としては、例えば、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス(2,4,4−トリメチルペンテン)、2−シアノ−2−プロピラゾホルムアミド、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシアセテート、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート、ジ−t−ブチルパーオキシアゼレート、t−ブチルパーオキシアリルカーボネート、t−ブチルパーオキシイソプロピルカーボネート、1,1−ジ−t−ブチルパーオキシシクロヘキサン、1,1−ジ−t−ブチルパ−オキシ−3,3,5−トリメチルシクロヘキサン、1,1−ジ−t−ヘキシルパ−オキシ−3,3,5−トリメチルシクロヘキサン、2,2’−アゾビス(2,4−ジメチル−4メトキシバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、アセチルシクロヘキシルスルホニルパーオキサイド、イソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ−イソプロピルパーオキシカーボネート、ジ−アリルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ−ミリスチルパーオキシジカーボネート、クミルパーオキシネオヘキサノエート、ジ(2−エトキシエチル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、t−ヘキシルパーオキシネオデカネート、ジ(3−メチル−3−メトキシブチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオヘキサノエート、t−ブチルパーオキシネオヘキサノエート、2,4−ジクロロベンゾイルパーオキサイド、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、クミルパーオキシオクトエート、アセチルパーオキサイドなどが挙げられる。これらは併用することも出来る。
【0052】
光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジル、ベンゾフェノン、p−メトキシベンゾフェノン、2,2−ジエトキシアセトフェノン、α,α−ジメトキシ−α−フェニルアセトフェノン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン等のカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等の硫黄化合物;2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、ベンゾイルジエトキシフォスフィンオキサイド等が挙げられる。これらは併用することも出来る。
【0053】
レドックス系の開始剤としては、例えば、過酸化水素/第一鉄塩、過硫酸塩/酸性亜硫酸ナトリウム、クメンヒドロペルオキシド/第一鉄塩、過酸化ベンゾイル/ジメチルアニリン、過酸化物(過酸化水素、ヒドロペルオキシド、など)/有機金属アルキル(トリエチルアンモニウム、トリエチル硼素、ジエチル亜鉛、など)、酸素/有機金属アルキルなどが挙げられる。
【0054】
重合開始剤の添加量は、本発明の凝集剤、紙力増強剤等として最適な分子量を得る観点から(a)、(b)、及び必要により(x)の合計重量に基づいて、0.0001質量%以上0.05質量%以下が好ましく、0.0005質量%以上0.02質量%以下がさらに好ましく、0.001質量%以上0.01質量%以下が特に好ましい。
【0055】
また、必要により連鎖移動剤を使用してもよい。連鎖移動剤としては、特に制限されることはないが、例えば、有機酸[4−ペンテン酸、5−ヘキセン酸、6−ヘプテン酸、7−オクテン酸、8−ノネン酸、9−デセン酸、10−ウンデセン酸、11−ドデセン酸、p−ビニルベンゾイック酸、p−アリルベンゾイック酸、3−ビニルフェニル酢酸、4−ビニルフェニル酢酸、4−アリルフェニル酢酸]、無機酸[硫酸、亜硫酸、硝酸、亜硝酸、リン酸、亜リン酸、ジ亜リン酸、ホスホン酸]、分子内に1つまたは2つ以上の水酸基を有する化合物[例えば、メタノール、エタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール、ポリエチレングリコールおよびポリオキシエチレン−ポリオキシプロピレン共重合体]、分子内に1つまたは2つ以上のアミノ基を有する化合物[例えば、アンモニア、アミン(例えば、メチルアミン、ジメチルアミン、トリエチルアミンおよびプロパノールアミン、エチレンジアミン、ポリエチレンイミン]、分子内に1つまたは2つ以上のチオール基を有する化合物、等が挙げられる。
【0056】
連鎖移動剤を使用する場合の使用量としては、本発明の高分子凝集剤、紙力増強剤等として最適な分子量を得る観点から、(a)、(b)及び(x)の合計重量に基づいて、0.0001質量%以上0.05質量%以下が好ましく、0.0005質量%以上0.02質量%以下がさらに好ましく、0.001質量%以上0.01質量%以下が特に好ましい。
【0057】
さらにリビングラジカル重合法と併用してもよい。リビングラジカル重合法としては、特に制限されないが、例えば、ニトロキシド化合物を用いた方法、遷移金属錯体を用いた方法、付加開裂型の連鎖移動剤を用いた方法などが挙げられる。
【0058】
重合する際のモノマー水溶液中のモノマー濃度としては、水溶液重合では前記モノマー水溶液の質量に基づいて、20質量%以上80質量%以下が好ましく、25質量%以上75質量%以下がさらに好ましく、30質量%以上70質量%以下が特に好ましい。
【0059】
得られた重合体は水溶液のまま、あるいはそれを希釈して使用に供してもよいし、得られた重合体を一度粉末化し、使用時に水溶液にすることもできる。
【0060】
本態様の重合体が水溶液の状態である場合、この重合体の25℃にて回転粘度計で測定される粘度は、5mPa・s以上10000mPa・s以下が好ましく、10mPa・s以上9000mPa・s以下がより好ましく、15mPa・s以上8000mPa・s以下が更に好ましい。
重合体の粘度が、5mPa・s以上10000mPa・s以下であると、例えば高分子凝集剤用途として使用した場合、汚泥との親和性が高く、粗大で強固なフロックを形成することが出来る。
【実施例】
【0061】
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、例中の「%」は、特に断らない限りは質量%を示す。
【0062】
まず、凝集剤用途として、本発明を実施例により具体的に説明する。
なお、実施例および比較例における、高分子凝集剤の0.5%粘度、0.5%塩粘度、0.5%不溶解分量の測定値は、粉末状の高分子凝集剤を対象に、以下に示す方法で測定することによって得られた。
【0063】
(0.5%粘度の測定)
サンプル2.5gを水に溶解し、0.5%ポリマー水溶液500gを調製した。このポリマー水溶液に対し、B型粘度計(東機産業社製)を用い、温度25℃、回転速度60rpmの条件で、5分後のポリマー水溶液の粘度を測定した。
【0064】
(0.5%塩粘度の測定)
サンプル2.5gを4%の塩化ナトリウム水溶液に溶解し、0.5%ポリマー水溶液500gを調製した。このポリマー水溶液に対し、B型粘度計(東機産業社製)を用い、温度25℃、回転速度60rpmの条件で、5分後のポリマー水溶液の塩粘度を測定した。
【0065】
(0.5%不溶解分量の測定)
先に得られた0.5%ポリマー水溶液の全量(500g)を、直径20cm、80メッシュの篩で濾過し、水分を拭き取り、篩の上に残った不溶解分を集め、その質量を電子天秤(新光電子社製)を用いて測定した。
【0066】
<合成例1>
臭化アリル10.0gおよびテトラヒドロフラン(THF)40.0gを100mLビーカーに投入し、臭化アリルのTHF溶液を得た。得られた臭化アリルのTHF溶液を100mLの滴下漏斗に移液した。次に、ジメチルアミノプロピルアクリルアミド(DMPAA)10.85gおよびテトラヒドロフラン(THF)40.0gを200mLナスフラスコに投入し、DMPAAのTHF溶液を得た。
さらに、DMPAAのTHF溶液をマグネティックスターラーで撹拌しながら、臭化アリルのTHF溶液を20分かけてDMPAAのTHF溶液中に滴下し、滴下終了後、2時間撹拌を続け、沈殿物を得た。撹拌終了後、12時間静置し、上澄みを除去した後、THF200mLでデカンテーションした。
その後、得られた沈殿物を減圧乾燥し、白色〜淡黄色の架橋性単量体(a)を得た。
【0067】
<合成例2>
ジメチルアミノプロピルアクリルアミド10.85gの代わりにジメチルアミノエチルアクリレート(DMEA)9.95gに変更した以外は、合成例1と同様の操作を行い、架橋性単量体(a)を得た。
【0068】
[試験1:高分子凝集剤の製造]
以下に示す方法によって、各実施例および各比較例の高分子凝集剤を製造した。また、表1および以下の記述における水溶性不飽和単量体および共重合可能な単量体成分の略語の内容は、次に示す通りである。
AAm:アクリルアミド(和光純薬社製)
DME:N’−N’−ジメチルアミノエチルアクリレートのメチルクロライド塩(大阪有機社製)
MBAAM:メチレンビスアクリルアミド(東京化成社製)
【0069】
<実施例1−1>
AAm250g、および架橋性単量体(III−1)0.025gを1000mL褐色瓶に投入し、全単量体濃度50%、総質量500gになるように蒸留水を加え、単量体反応液(AAm/架橋性単量体(III−1)=99.99/0.01(%))を調製した。
さらに、光開始剤としてDAROCUR−1173(以下、「D−1173」と略す。)(Ciba社製)、および連鎖移動剤として次亜リン酸(以下、「HPA」と略す。)(関東化学社製)を、単量体反応液の総質量に対して、それぞれ100ppmおよび50ppmとなるように投入し、これに窒素ガスを15分間吹き込みながら溶液温度を25℃に調節した。その後、単量体反応液をステンレス反応容器に移し、ケミカルランプを0.2W/m
2の照射強度で20分間照射し、重合を行った。これにより、含水ゲル状の重合体を得た。
この含水ゲル状の重合体を容器から取り出し、小型ミートチョッパーを使用して解砕した。これを温度70℃で16時間乾燥後、粉砕して粉末状の重合体(A−1)を得た。
【0070】
<実施例1−2>
HPA量を100ppmに変更した以外は、実施例1−1と同様の操作を行った。
【0071】
<実施例1−3>
HPA量を200ppmに変更した以外は、実施例1−1と同様の操作を行った。
【0072】
<実施例1−4>
HPA量を500ppmに、架橋性単量体(III−1)の投入量を0.050g(AAm/架橋性単量体(III−1)=99.985/0.02(%))に変更した以外は、実施例1−3と同様の操作を行った。
【0073】
<実施例1−5>
架橋性単量体(III−1)を架橋性単量体(III−5)に変更した以外は、実施例1−3と同様の操作を行った。
【0074】
<実施例1−6>
AAm55g、80wt%のDME水溶液387.5g、および架橋性単量体(III−1)0.01gを1000mL褐色瓶に投入し、全単量体濃度73%、総質量500gになるように蒸留水を加え、単量体反応液(AAm/DME/架橋性単量体(III−1)=15.067/84.930/0.003(%))を調製した。
さらに、光開始剤としてD−1173、および連鎖移動剤として次亜リン酸を、単量体反応液の総質量に対して、それぞれ20ppmおよび20ppmとなるように投入し、これに窒素ガスを15分間吹き込みながら溶液温度を25℃に調節した。
その後、単量体反応液をステンレス反応容器に移し、ケミカルランプを0.2W/m
2の照射強度で20分間照射し、重合を行った。これにより、含水ゲル状の重合体を得た。
この含水ゲル状の重合体を容器から取り出し、小型ミートチョッパーを使用して解砕した。これを温度70℃で16時間乾燥後、粉砕して粉末状の重合体(A−2)を得た。
【0075】
<実施例1−7>
AAm55g、80wt%のDME水溶液387.5g、および架橋性単量体(III−1)0.045gを1000mL褐色瓶に投入し、全単量体濃度73%、総質量500gになるように蒸留水を加え、単量体反応液(AAm/DME/架橋性単量体(III−1)=15.066/84.921/0.013(%))を調製した。
さらに、光開始剤としてD−1173、および連鎖移動剤としてHPAを、単量体反応液の総質量に対して、それぞれ130ppmおよび50ppmとなるように投入し、これに窒素ガスを15分間吹き込みながら溶液温度を25℃に調節した。
【0076】
<比較例1−1>
架橋性単量体(III−1)を用いない以外は、実施例1−1と同様の操作を行い、重合体(B−1)を得た。
【0077】
<比較例1−2>
架橋性単量体(III−1)をMBAAMに変更(AAm/MBAAM=99.99/0.01)した以外は、実施例1−1と同様の操作を行った。
【0078】
<比較例1−3>
HPA量を100ppmに変更した以外は、比較例1−2と同様の操作を行った。
【0079】
<比較例1−4>
HPA量を200ppmに変更した以外は、比較例1−2と同様の操作を行った。
【0080】
<比較例1−5>
架橋性単量体(III−1)を用いず、水溶性不飽和単量体をAAmおよび80wt%DME水溶液のみに変更し、HPA量を26ppmに変更した以外は、実施例1−6と同様の操作を行い、重合体(B−2)を得た。
【0081】
実施例1−1〜1−7並びに比較例1−1〜1−5で得られた各(共)重合体について、0.5%粘度、0.5%塩粘度および0.5%不溶解分量を測定した。結果を表1に示す。
【0082】
【表1】
【0083】
[試験2:汚泥処理]
汚泥のモデルサンプルとして、3%のカオリナイト水溶液を用意し、この消化汚泥300mLを500mLのビーカーに採取した。次いで、表2に示す種類の重合体を蒸留水にて0.3%ポリマー水溶液とし、このポリマー水溶液を表2に示す添加量にて消化汚泥に添加した。次いで、この消化汚泥を金属製のスパチュラで30秒間攪拌し、フロックを生成させ、前記フロックを2mm四方の目の篩にかけて、網目を通過したものは、フロック粒径が2mm未満、通過しなかったものは、フロック粒径が2mm以上であると判定した。また、フロックの沈降時間を判定した。フロックの粒径および沈降時間を表2に示す。
【0084】
【表2】
【0085】
さらに、汚泥のサンプルとして、ある下水処理場の消化汚泥を用意し、この消化汚泥300mLを500mLのビーカーに採取した。次いで、表3に示す種類の重合体を蒸留水にて0.5%ポリマー水溶液とし、このポリマー水溶液を表3に示す添加量にて消化汚泥に添加した。次いで、この消化汚泥を金属製のスパチュラで30秒間攪拌し、フロックを生成させ、前記フロックを15mm四方の目の篩にかけて、フロックが網目を通過したものは、フロック粒径が15mm未満、通過しなかったものは、フロック粒径が15m以上であると判定した。
【0086】
また、フロック強度を以下の通り判定した。フロックの粒径および強度を表3に示す。
(フロック強度)
A:フロックを手でつぶすと、跳ね返るような弾力を感じる。
B:フロックを手でつぶすと、跳ね返らず弾力を感じない。
【0087】
【表3】
【0088】
表1より、架橋性単量体(a)を用いることで0.5%不溶解分量が少ない重合体が得られることがわかった。一方で、MBAAMを用いると、0.5%不溶解分量が高い重合体となってしまうことがわかった。
さらに、表2から明らかなように、実施例1−1で得られた重合体を用いてモデル汚泥を凝集処理した場合(実施例2−1)は、得られるフロックの粒径が大きく、沈降時間が早く、水切れが良好であった。
また、表3からも明らかなように、実施例1−6で得られた重合体を用いて実際の汚泥を凝集処理した場合(実施例2−2)は、得られるフロックの粒径が大きく、強度も高かった。よって、実施例1−1および実施例1−6で得られた重合体は、凝集性能に優れていると確認された。
一方、比較例1−1で得られた重合体を用いた場合(比較例2−1)は、実施例に比べてフロックの粒径が小さく、沈降速度が遅く、水切れが悪かった。さらに、比較例1−5で得られた重合体を用いた場合(比較例2−2)は、実施例に比べてフロックの粒径が小さく、強度も低かった。よって、比較例1−1で得られた重合体は、実施例に比べて凝集性能に劣っていた。
【0089】
次に、紙力増強剤用途として、本発明を実施例により具体的に説明する。
なお、実施例および比較例における、15%粘度、分子量の測定値は、粉末状の紙力増強剤を対象に、以下に示す方法で測定することによって得られた。
【0090】
(15%粘度の測定)
サンプル15gを水に溶解し、15%ポリマー水溶液100gを調製した。このポリマー水溶液に対し、B型粘度計(東機産業社製)を用い、温度25℃、回転速度3rpmの条件で、5分後のポリマー水溶液の粘度を測定した。
【0091】
(重量平均分子量の測定)
サンプル0.05gを水に溶解し、0.5%ポリマー水溶液20gを調整した。次に、このポリマー水溶液を、塩化ナトリウムおよび酢酸がそれぞれ0.5mol/lとなっている水溶液に溶解し、0.1%ポリマー水溶液を調整した。
このポリマー水溶液を用いて、GPC(島津製作所製)にて重量平均分子量Mwを測定した。なお、標準物質としてプルランを用い、流速0.5ml/minで測定した。
【0092】
[試験3:高分子紙力増強剤の製造]
以下に示す方法によって、各実施例および各比較例の高分子紙力増強剤を製造した。また、表4および以下の記述における水溶性不飽和単量体および共重合可能な単量体成分の略語の内容は、次に示す通りである。
AAm:アクリルアミド(和光純薬社製)
DM:N’−N’−ジメチルアミノエチルメタクリレート(東京化成社製)
IA:イタコン酸(和光純薬社製)
【0093】
<実施例3−1>
AAm176.6g、DM16.6g、IA6.8gおよび架橋性単量体(III−1)0.5gを1000mL褐色瓶に投入し、全単量体濃度40%、総質量500gになるように蒸留水を加え、単量体反応液(AAm/DM/IA/架橋性単量体(III−1)=88.08/8.28/3.39/0.25(%))を調製した。
さらに、光開始剤としてD−1173、および連鎖移動剤として次亜リン酸を、単量体反応液の総質量に対して、それぞれ20ppmおよび1000ppmとなるように投入し、これに窒素ガスを15分間吹き込みながら溶液温度を25℃に調節した。
その後、単量体反応液をステンレス反応容器に移し、ケミカルランプを0.2W/m
2の照射強度で20分間照射し、重合を行った。これにより、含水ゲル状の重合体を得た。
この含水ゲル状の重合体を容器から取り出し、小型ミートチョッパーを使用して解砕した。これを温度70℃で16時間乾燥後、粉砕して粉末状の重合体(C−1)を得た。
【0094】
<比較例3−1>
架橋性単量体(III−1)をAAm、DM、IAのみに変更した以外は、実施例3−1と同様の操作を行い、重合体(C−2)を得た。
【0095】
実施例3−1並びに比較例3−1で得られた各(共)重合体について、15%粘度、重量分子量を測定した。結果を表4に示す。
【0096】
【表4】
【0097】
[試験3:紙力測定]
CSF480の段ボール古紙0.8%スラリー868.4gに、攪伴しながら、重合体C−1の0.5%水溶液を、対全量1000ppm添加し、さらに攪伴を20秒間続けた。その後、得られたパルプスラリーを用いて、角型シートマシーンによる抄紙を行った。抄紙したウェットシートは、ドラムドライヤーにて、110℃、3分間乾燥し、坪量125g/m
2の手抄き紙を得た。得られた乾紙を20℃、RH65%の恒温恒湿室にて、24時間以上調湿した後、比破裂強度(JIS−P8112)を測定した。重合体C−2についても同様の操作を行った。その結果を表5に示す。
【0098】
【表5】
【0099】
表4より、架橋性単量体(III−1)を用いることで重量平均分子量の値が同程度にも関わらず、15%粘度が低い重合体が得られることがわかった。さらに、表5から明らかなように、実施例3−1で得られた重合体C−1を抄紙時に添加して紙力測定した場合(実施例4−1)は、比破裂強度が高くなることがわかった。よって、実施例3−1で得られた重合体は、紙力向上性能に優れていると確認された。
一方、比較例3−1で得られた重合体C−2を用いた場合(比較例4−2)は、実施例に比べて比破裂強度が低くなった。よって、比較例3−1で得られた重合体は、実施例に比べて紙力向上性能に劣っていた。