(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
一般に、イオンビーム幅以上の加工幅(観察幅)や複数の加工点について加工を必要とする場合、試料室を大気開放し、加工位置を変更、再度試料室を真空排気後、追加工を行う必要がある。このような追加工を行うと、スループットが低下する。また、1回目の加工面にリデポジションが発生する可能性が高くなる。
【0015】
そこで、本実施形態は、スループットを向上させながら、イオンミリングによるリデポジションを極力発生させることなく、試料上に所望の幅(イオンビーム幅よりも広い幅)の加工面を生成し、及び/又は当該試料上に複数の加工点(加工箇所)を生成することを実現するものである。本明細書は、1回の加工処理で所望の幅の加工面を生成し、複数の加工点を生成することを可能にする、機構及び処理手順について少なくとも開示する。
【0016】
以下、図を参照して本実施形態について説明する。本実施形態ではアルゴンイオンビームを照射するためのイオン源を搭載したイオンミリング装置を例に採って説明するが、イオンビームはアルゴンイオンビームに限られることはなく、種々のイオンビームの適用が可能である。
【0017】
<イオンミリング装置の構成例>
(i)装置構成例1
図1は、本実施形態によるイオンミリング装置100の構成例1を示す図である。
図1によるイオンミリング装置100は、真空チャンバ15と、真空チャンバの上面に取り付けられたイオン源1と、真空チャンバ15の前面に設けられた試料ステージ8と、試料ステージ8から延設された試料ユニットベース5と、試料ユニットベース5の上に載置される試料マスクユニット微動機構4と、試料マスクユニット微動機構4の上に載置される試料マスクユニット21と、真空排気系6と、真空チャンバ15の前面に設けられたリニアガイド11と、を備えている。試料マスクユニットの上には試料3及びマスク2が載置される。
【0018】
試料ユニットベース5には、試料マスクユニット微動機構4が搭載される。搭載は、試料マスクユニット微動機構4の下面(イオンビームが照射されるマスク面の対面側)と試料ユニットベース5の上面を接触させて、ねじで固定してなされる。試料ユニットベース5がイオンビームの光軸に対して任意の角度に回転傾斜できるように構成されており、回転傾斜させる方向と傾斜角度は、試料ステージ8により制御される。試料ステージ8を回転傾斜させることにより、試料マスクユニット微動機構4上に設置する試料3をイオンビームの光軸に対して所定の角度に設定することができる。更に、試料ステージ8の回転傾斜軸と試料上面(マスク下面)の位置を一致させて、効率良く平滑な加工面を作製している。また、試料マスクユニット微動機構4は、イオンビームの光軸に対して垂直方向の前後左右、すなわち、X方向とY方向に移動できるように構成される。
【0019】
試料ユニットベース5は、真空チャンバ15の容器壁の一部を兼ねるフランジ10に搭載されている試料ステージ8(回転機構)を介して配置されており、フランジ10をリニアガイド11に沿って引き出して真空チャンバ15を大気状態に開放した時に、試料ユニットベース5が真空チャンバ15の外部へ引き出されるように構成されている。このようにして、試料ステージ引出機構が構成される。
【0020】
図2は、試料マスクユニット21本体の構成例を示す図である。
図2の(a)は平面図、(b)は側面図である。本実施形態では、少なくとも試料ホルダ23とその回転機構、マスク2とその微調整機構とを一体に構成したものを試料マスクユニット(本体)21と称する。
図2では、試料ホルダ23の回転機構として試料ホルダ回転リング22と試料ホルダ回転ねじ28が備えられている。この試料ホルダ回転ねじ28を回転させることにより、イオンビームの光軸に対して垂直に試料ホルダ23を回転できるようになっている。また、試料ホルダ回転リング22は、試料ホルダ回転ねじ28を回すことによって回転するように構成されており、逆回転ばね29のばね圧で戻るようになっている。
【0021】
試料マスクユニット21は、マスクの位置と回転角を微調整できる機構を持ち、試料マスクユニット微動機構4に取り付け、取り外しができる。本実施形態では、試料マスクユニット21と試料マスクユニット微動機構4は2部品となっているが、1部品で構成されても良い(実施形態では判り易くするために、試料マスクユニットと試料マスクユニット微動機構を分けて説明する)。
【0022】
マスク2は、マスクホルダ25にマスク固定ねじ27により固定される。マスクホルダ25はマスク微調整機構(すなわちマスク位置調整部)26を操作することによってリニアガイド24に沿って移動し、これにより試料3とマスク2の位置が微調整される。試料ホルダ23は、下部側より試料ホルダ回転リング22に挿入され固定される。試料3は試料ホルダ23に接着固定される(例えば、カーボンペースト、ホワイトワックス、両面テープ等によって接着固定)。試料ホルダ位置制御機構30により試料ホルダ23の高さ方向の位置を調整し、試料ホルダ23をマスク2に密着させる。
【0023】
図3は、試料マスクユニット21の他の構成例を示す図である。当該構成例にあっては、試料ホルダ23を抑えるための試料ホルダ固定金具35を使用しており、他の構成は
図2に示す構成例と基本的に同一である。
図3(a)は、試料3を固定した試料ホルダ23を試料マスクユニット21内に装着した状態を示し、
図3(b)は試料3を固定した試料ホルダ23を試料マスクユニット21から取り外した状態を示す。
【0024】
図4は、試料の断面とマスクを平行にする方法を説明するための図である。試料ホルダ回転ねじ28を回してX1方向の位置調整を行い、試料3の断面とマスク2の稜線が平行になるよう後述するようにして顕微鏡下で微調整する。このとき、試料3の断面がマスクより僅かに突出、例えば50μm程度突出するようにマスク微調整機構26を回して設定する。
【0025】
図5は、試料ステージ引出機構60の構成を示す図である。試料ステージ引出機構60は、リニアガイド11とこれに固着されたフランジ10からなり、フランジ10に搭載された試料ステージに固着された試料ユニットベース5は、リニアガイド11に沿って真空チャンバ15から引き出される。この操作に伴って、試料ユニットベース5に試料マスクユニット21を設置した試料マスクユニット微動機構4、すなわちマスク2、試料ホルダ23、試料3が真空チャンバ15から一体的に引き出される。
【0026】
本実施形態において、試料マスクユニット21を設置した試料マスクユニット微動機構4は試料ユニットベース5に着脱自在に固定される構造を有する。従って、試料マスクユニット21を設置した試料マスクユニット微動機構4が真空チャンバ15の外部に引き出されると、試料マスクユニット21を設置した試料マスクユニット微動機構4は試料ユニットベース5から着脱可能な状態となる(試料マスクユニット21の着脱スタンバイ)。
【0027】
図5は、このような着脱自在の状態から、試料マスクユニット21を設置した試料マスクユニット微動機構4が着脱された状態を示す図である。この着脱は人手によって行うこともでき、また適当な器具によっても行うこともできる。
【0028】
図6は、マスク2と試料3との遮蔽位置関係を観測する光学顕微鏡40の構成例を示す図である。
図6に示すように、真空チャンバ15から別体に構成され、任意の場所に配置することが可能とされる。そして、光学顕微鏡40は、周知のルーペ12、ルーペ微動機構13を備える。更に、光学顕微鏡40は、観測台41上に取り外された試料マスクユニット21を設置した試料マスクユニット微動機構4を装置するための固定台42を備えている。そして、試料マスクユニット21を設置した試料マスクユニット微動機構4は、固定台42上の、位置決め用の軸と穴によって再現性のある決まった位置に設置される。
【0029】
図7は、試料マスクユニット21を設置した試料マスクユニット微動機構4を固定台42上に固定した状態を示す図である。このように、試料マスクユニット21を設置した試料マスクユニット微動機構4を固定台42上に固定した状態としてから、
図8を用いて説明する方法によって試料の断面研磨したい部位をイオンビーム中心(
図8における「+」)に合わせる。
【0030】
図8は、試料3の断面研磨したい部位をイオンビーム中心に合わせる方法を説明するための図である。感光紙や銅箔等を試料ホルダ23に取り付け、イオンビームを照射することによりできた痕、すなわちイオンビーム中心とルーペの中心をルーペ微動機構13でX2、Y2を駆動して合わせておく。これによりイオンビーム中心と光学顕微鏡の中心が1対1に対応する関係となる。なお、当該位置調整は、クリーニング処理のタイミングで行われるものである。そして位置合わせに用いた感光紙や銅箔等を試料ホルダ23から取り外し、試料3を搭載した後の試料マスクユニット21を設置した試料マスクユニット微動機構4を固定台42に設置する。試料マスクユニット微動機構4のX3、Y3方向の位置を調整して断面研磨したい部位をルーペ中心に合わせることで、イオンビーム中心と断面研磨したい部位を合わせることができる。このように、マスク2と試料3との遮蔽位置関係の調整時に、試料マスクユニット21を設置した試料マスクユニット微動機構4は、試料ユニットベース5から取り外されて光学顕微鏡40の固定台42に装着され、マスク2は試料3に対する遮蔽位置関係がマスク位置調整部(マスク微調整機構)によって調整される。
【0031】
図9は、イオンビームで試料3の断面を鏡面研磨する方法を説明するための図である。アルゴンイオンビームを照射すると、マスク2で覆われていない試料3をマスク2に沿って、深さ方向に取り除くことができ、且つ、試料3の断面の表面を鏡面研磨することができる。
【0032】
このように、イオンミリング時に試料に対する遮蔽位置関係が調整されたマスク2を備えた試料マスクユニット21を設置した試料マスクユニット微動機構4が試料ユニットベース5に戻され、装着されることになる。
【0033】
以上のように、マスク2と試料3との遮蔽位置関係の調整時に、試料マスクユニット21を設置した試料マスクユニット微動機構4を試料ユニットベース5から取り外して光学顕微鏡40の固定台42に装着し、マスクの試料3に対する遮蔽位置関係を調整し、イオンミリング時に、試料に対する遮蔽位置関係が調整されたマスク2を備えた試料マスクユニット21を設置した試料マスクユニット微動機構4を真空チャンバ15内に戻し、試料ユニットベース5に装着するようにしたイオンミリング方法が構成される。
【0034】
(ii)装置構成例2
図10は、構成例1とは異なる構成を有し、断面ミリングと平面ミリングの両方を可能とする、本実施形態によるイオンミリング装置100の構成例2を示す図である。
【0035】
当該イオンミリング装置100は、真空チャンバ15と、真空チャンバ15の上面に設けられた加工観察窓7と、真空チャンバ15の左側面(右側面でも良い)に設けられたイオン源1と、イオン源1が設けられた側面と異なる側面に設けられたフランジ10と、フランジ10に設けられた試料ステージ8と、試料ステージ8から延設された試料ユニットベース5と、試料ユニットベース5に搭載された試料マスクユニット微動機構4及び試料マスクユニット21と、真空チャンバ15の前面に設けられた試料ステージ8と、試料と加工観察窓7の間に設けられたシャッター101と、真空排気系6と、を備えている。試料マスクユニット21はマスク2を有し、試料3が載置される。
【0036】
シャッター101は、スパッタされた粒子が加工観察窓7に堆積することを防ぐために設置される。真空チャンバ15は、通常真空雰囲気を形成するための空間を形成する箱型形状、或いはそれに準ずる形状を為しているが、加工観察窓7は箱の上方(重力のある環境で、重力場の向かう方向と反対の方向)に設けられ、イオン源1は箱の側方壁面(箱の上方面に隣接する面であって、重力場の向かう方向と垂直な方向)に設けられる。即ち、加工観察窓7は、真空チャンバの壁面に設けられる。なお、加工観察窓用の開口には、真空封止が可能な窓を設ける以外にも、光学顕微鏡(観察窓含む)や電子顕微鏡を設置することができる。
【0037】
図11(a)は、
図10に示すイオンミリング装置に搭載する試料マスクユニット21を設置した試料マスクユニット微動機構4の構成例を示す図である。基本的な構成は
図2及び
図3に示された構成と同様であるが、試料マスクユニット21を搭載した試料マスクユニット微動機構4にはマスクユニット固定部52が設けられている点が異なっている。また、試料ホルダ23の固定方法が
図2の構成とは異なる。つまり、試料ホルダ23は、下部側より試料ホルダ回転リング22(リングを半分に分割した形状)に試料ホルダ23のキー部231を挿入して、ねじにて固定するようになっている(
図11(b)参照)。このような固定方法を採用することにより、試料3の加工面が加工観察窓7から観察できるようになる。
【0038】
図12は、試料ユニットベース5に設けられた、マスクユニット固定部52を回転させる回転機構を説明するための図である。試料ユニットベース5には、試料保持部材(試料マスクユニット微動機構4を含む試料を保持する部材)を載置可能な回転体9が設けられている。回転体9は、試料保持部材を支持する支持台として機能する。試料ユニットベース5は、回転体9と歯車50とベアリング51により構成されている。試料マスクユニット微動機構4は、試料マスクユニット微動機構4の固定面(後面)と試料ユニットベース5の回転体9上面を接触させて、マスクユニット固定部52からねじ固定することにより搭載される。試料ユニットベース5は回転傾斜せず、試料ユニットベース5に搭載されている回転体9により、真空チャンバ15側面方向より照射されるイオンビームの光軸に対して任意の角度に回転傾斜できるように構成されており、回転傾斜させる方向と傾斜角度は、試料ステージ8により制御される。
【0039】
ここで、試料ユニットベース5の回転体9を回転傾斜させる方法としては、
図12に示されるように試料ステージ8を回転させる方法や、
図13に示されるように軸継手53を回転させる方法があるが、どちらを用いても良い。試料ユニットベース5の回転体9を回転傾斜させることにより、試料マスクユニット微動機構4上に設置する試料3をイオンビームの光軸に対して所定の角度に設定することができる。更に、試料ユニットベース5の回転体9の回転軸と試料上面(マスク下面)の位置を一致させて、効率良い平滑な加工面を作製している。
【0040】
図14は、加工位置調整のために試料マスクユニット微動機構4を光学顕微鏡40に設置する様子を示す図である。なお、装置と別体の光学顕微鏡40への設置は、マスクユニット固定部52を使用せず、試料マスクユニット微動機構4の下面を使用する方法でも良い。
図14が
図6と異なる点は、ビーム中心とルーペ中心を調整するルーペ微動機構13を固定台42側で行う点である。このルーペ微動機構13は、本例或いは
図6の例のどちらを採用しても良い。それ以外については、
図6の例と同様の作業を行う。
【0041】
図15は、回転傾斜機構の構成例を示す図であり、より具体的には
図12の点線で囲んだ部分Aの分の構成を示す図である。構成例2(
図10)によるイオンミリング装置には、
図15に例示するように試料の回転傾斜機構に回転機能が設けられ、且つイオンビーム軸に垂直方向の回転傾斜軸を持つ傾斜機構が設けられている。当該回転傾斜機構は、モータ55の回転力を軸及び歯車50を介して回転体9(
図15には図示せず)を回転させるものである。このようにすることにより、傾斜角を90度とした際のイオンビーム軸と試料マスクユニット微動機構4の回転軸をずらす偏心機構を実現することができる。なお、
図16に示されるように、軸継手を使用する方式でも良い。但し、軸継手を使用する場合には、
図16のように回転傾斜部内に設置し、偏心機構(Y軸方向の移動)は試料ユニットベース5の回転体9の下部に設置することが望ましい。
【0042】
図15及び16のように、イオンミリング装置に試料の回転機能を持たせ、イオンビーム入射角、偏心量を任意に決めることにより、断面ミリング(マスクを介して、試料をミリングし平滑な面を作製する)でありながら、平面ミリング(イオンビーム軸に対し垂直な面(試料ステージの傾斜角度90度時)を平滑に加工する)が可能になる。
【0043】
<広域ミリング及び多点ミリングを実現するためのスライド移動機構>
以下、
図1及び
図10(
図12、
図13、
図15、
図16のいずれかを含む)の構成にかかるイオンミリング装置100において、広領域ミリング及び多点ミリングを実現するためのスライド移動機構を説明する。ここで、広領域ミリングは、イオンビーム幅よりも広い幅の試料上の領域に加工を施すことを意味する。また、多点ミリングは、試料上の複数の箇所に加工を施すこと(特に、本実施形態では自動で複数の箇所を加工する)を意味する。
【0044】
広領域ミリング及び多点ミリングの両方が可能なイオンミリング装置100は、イオンビームの光軸に対し垂直方向に移動(スライド)できるスライド移動機構(スライド駆動機構と称することも可能)を備え、真空チャンバ内で試料マスクユニット21をスライド移動させる必要がある。スライド移動の方向と、マスク2のエッジは、平行の関係とすることが望ましい。更に、当該スライド移動を行っても回転傾斜軸の位置は移動しない構造であることが望ましい(理由については
図25乃至27を参照して後述する)。このようなイオンミリング装置を実現させるためには、以下の構成が望ましい。なお、本実施形態では、X軸方向の駆動源であるモータを真空チャンバ内に設置(モータ駆動時)する場合について説明するが、チャンバ外に設置しても良い。
【0045】
広領域ミリング及び多点ミリングを行うためには、
図10の構成に加え、試料マスクユニット微動機構4のX軸方向(
図10参照)の駆動を真空チャンバ15内で行えるようにすることが望ましい。具体的には、試料マスクユニット微動機構4のX方向の駆動源をモータとすることで、真空チャンバ15内でのX方向の駆動を可能とする。
【0046】
図17は、試料マスクユニット微動機構4をX軸方向にスライド移動させるためのスライドミリングホルダ(スライド移動機構)70の構成例を示す図である。スライドミリングホルダ70には、試料マスクユニット微動機構4のX軸方向の駆動軸にXギア71が設けられている。また、試料マスクユニット微動機構4の下面側にモータユニット72が設置される。モータユニット72は、モータとMギア73及び、カバー等で構成されており、モータの回転軸にMギア73(モータの回転軸に直接取り付いていなくても良い。複数段のギアを介した最終段(Xギア71に接触する)ギア)が組み付けられている。試料マスクユニット微動機構4とモータユニット72は一体型、分離型のどちらでもよいが、ここでは分離型として説明している。分離型においては、モータユニット72を取り外しても、通常の断面ミリングが可能(手動による調整方法)である。
【0047】
試料マスクユニット微動機構4とモータユニット72の組立は、位置決め用の軸と穴によって再現性のある位置関係が保たれ、ねじで固定される。このようにすることにより、試料マスクユニット微動機構4のXギア71とモータユニット72のMギア73が接触する。よって、モータが回転を開始するとMギア73を介して、Xギア71が回転し、試料マスクユニット微動機構4のX軸方向の駆動軸が回転する。従って、試料3(試料マスクユニット21に固定された試料3)がX軸方向に移動(スライド)し始める。以上の構成とすることで、スライドを行いながらの回転傾斜軸の移動なしのイオンミリング装置を実現できる。なお、当該スライドミリングホルダ70は、
図10や
図12等に示されるイオンミリング装置において、回転体9の上部に配置されることになる。また、スライドミリングホルダ70は、
図1に示されるイオンミリング装置においては、試料ユニットベース5の上に載置されることになる。
【0048】
<加工目的位置設定から加工開始までの処理内容>
図18は、イオンミリングの加工位置を設定する際の装置間の接続関係を示す図である。
図19は、加工位置設定処理の手順を説明するためのフローチャートである。
図18及び
図19を参照して、試料マスクユニット21を設置した試料マスクユニット微動機構4とモータユニット72を組み合わせたスライドミリングホルダ70を使用したイオンミリングの操作方法(試料3が試料マスクユニット21に設置された状態からの操作)について説明する。なお、モータ駆動用の電源は、イオンミリング装置100の本体制御ユニット103からモータ用ケーブル(外)74、モータ用ケーブル(内)75を介して供給される。
【0049】
(i)ステップ1901
ユーザ(オペレータ)は、スライドミリングホルダ70を光学顕微鏡40の固定台42(
図14参照)に搭載し、制御ユニット103から光学顕微鏡側ドライバ102を介して延びるモータ用ケーブル(外)74をスライドミリングホルダ70のモータユニットに接続する。
【0050】
(ii)ステップ1902
ステップ1901の工程が終わり、加工位置設定処理を開始すると、制御ユニット103は、スライドミリングホルダ70のイニシャライズ動作を実行する。具体的には光学顕微鏡40に搭載したスライドミリングホルダ70の基準位置(例えば原点)へ移動させる。
【0051】
(iii)ステップ1903
イニシャライズ動作が完了後、ユーザは、操作部(例えばタッチパネル)81上、或いはコントロールBOX(例えば制御ユニット103から分離され、光学顕微鏡40近傍に設置される)80上に設けられた矢印ボタンを押下し、試料3を搭載したスライドミリングホルダ70を目的の位置(加工したい位置)へ移動(X軸方向:
図8のX3)させ、コントロールBOX80等上に設けられた決定ボタンを押下する。当該X軸方向への移動は、モータ駆動で行われる。なお、X軸移動以外の調整は、
図8の説明による操作方法と同様である。X軸方向への移動がなされると、制御ユニット103は、目的の位置の情報(スライドミリングホルダ70を目的の位置まで移動させるのに矢印ボタンを押下した回数に対応するパルス数の情報)を取得する。目的の位置を数値(例えば距離)で設定することもできる。この場合、例えば、設定された数値(距離)はパルス数に換算される。
【0052】
(iv)ステップ1904
制御ユニット103は、ステップ1903で取得した目的の位置の情報(原点からの距離:目的位置までの移動の際に発生したパルス数)を取得し、それを制御ユニット103内のメモリ(図示せず)に記憶する。
【0053】
(v)ステップ1905
ユーザは、光学顕微鏡40を用いた目的位置の設定が完了すると、スライドミリングホルダ70に接続されているモータ用ケーブル(外)74をモータユニット72から取り外し、当該スライドミリングホルダ70を光学顕微鏡40の固定台42から取り外す。制御ユニット103は、モータ用ケーブル(外)74が取り外されたことを検知する。
【0054】
(vi)ステップ1906
次に、ユーザは、光学顕微鏡40から取り外したスライドミリングホルダ70を真空チャンバ15に設置されたイオンミリング装置の回転体9(
図12のイオンミリング装置構成の場合)の上、或いは試料ユニットベース5(
図1のイオンミリング装置構成の場合)の上に載置する。そして、ユーザは、制御ユニット103から延びるモータ用ケーブル(内)75を、真空チャンバ側ドライバ104を介してスライドミリングホルダ70のモータユニット72に接続する。制御ユニット103は、モータ用ケーブル(内)75にスライドミリングホルダ70のモータユニット72が接続されたことを検知する。
そして、ユーザは、試料ステージ引出機構60を閉じ、真空チャンバ15内を真空排気系6で排気し、真空状態とする。
【0055】
(vii)ステップ1907
制御ユニット103は、スライドミリングホルダ70のイニシャライズ動作を実行する。具体的には、イオンミリング装置に搭載したスライドミリングホルダ70の基準位置(例えば原点)を移動させる。
【0056】
ユーザは、イオン源1内の電極間にアルゴンガスを注入、高電圧を印加し、放電を開始させる。その状態で加速電圧を印加し、イオンビームを射出させ、加工を開始する。
【0057】
(viii)ステップ1908
制御ユニット103は、メモリ内に記憶している目的の位置の情報を読み出し、目的の位置に試料上の加工位置が設定されるように真空チャンバ側ドライバ104を制御し、モータユニット72のモータを駆動させる。
【0058】
イオンミリング装置では、回転体9(
図10のイオンミリング装置の構成例の場合)、或いは試料ステージ8(
図1のイオンミリング装置の構成例の場合)を任意の角度に往復傾斜させ、且つ、スライドミリングホルダ70のスライド往復駆動(
図24参照)を行うことにより、広領域の加工面を得ることが可能なる。(スライド往復駆動の範囲は、光学顕微鏡40下で設定した位置の間である。)なお、スライド往復駆動は、連続、断続のどちらでもよい。なお、断続駆動の例として、10秒加工後、0.1mmスライド→・・・→10秒加工後、0.1mmスライドとし、停止(加工)時間とスライド距離を入力させるようにする等が考えられる。
【0059】
<加工目的位置設定から加工開始までの処理内容(変形例)>
図35は、変形例による、イオンミリングの加工位置を設定する際の装置間の接続関係を示す図である。
図36は、変形例による加工位置設定処理の手順を説明するためのフローチャートである。
図35及び
図36を参照して、試料マスクユニット21を設置した試料マスクユニット微動機構4を使用したイオンミリングの操作方法(試料3が試料マスクユニット21に設置された状態からの操作)について説明する。
【0060】
上述の
図18では、モータユニット72を有するスライドミリングホルダ70を真空チャンバ15と光学顕微鏡40との間で移動させている(同一のモータを用いている)が、変形例では、真空チャンバ15側と光学顕微鏡40側とにおいてそれぞれ駆動ユニット(モータを含む)を設けている。このため、スライドミリングホルダ70そのものを真空チャンバ15と光学顕微鏡40との間で移動させる必要がない。従って、この場合、試料マスクユニット21を設置した試料マスクユニット微動機構4を真空チャンバ15及び光学顕微鏡40の間で行き来させればよく、このときケーブルの抜き差しが不要となる。
図36に示される加工位置設定処理手順では、
図19のステップ1901、ステップ1905、及びステップ1906の代わりに、ステップ3601、ステップ3602、及びステップ3603が実行される。以下では、
図19とは異なるステップ3601乃至3603のみ説明する。
【0061】
(i)ステップ3601
ユーザ(オペレータ)は、試料マスクユニット微動機構4を、駆動ユニットを有する光学顕微鏡40に搭載する。光学顕微鏡40側のモータユニット3502には制御ユニット103から光学顕微鏡側ドライバ102を介して延びるモータ用ケーブル(外)74が接続されている。このため、
図19のステップ1901とは異なり、モータケーブル(外)の接続工程は不要(試料マスクユニット微動機構4の光学顕微鏡40への搭載のみで済む)となる。
【0062】
(ii)ステップ3602
ユーザは、光学顕微鏡40を用いた目的位置の設定が完了すると、試料マスクユニット微動機構4を、駆動ユニットを有する光学顕微鏡40から取外す。このとき、制御ユニット103は、光学顕微鏡40から試料マスクユニット微動機構4が取り外されたことを検知し、光学顕微鏡40における位置合わせが完了する。
【0063】
(vi)ステップ3603
光学顕微鏡40側の位置合わせが完了すると、ユーザは、光学顕微鏡40から取り外した試料マスクユニット微動機構4を、駆動ユニットを有する真空チャンバ15に搭載する。真空チャンバ15側のモータユニット3501には制御ユニット103から真空チャンバ側ドライバ104を介して延びるモータ用ケーブル(内)75が接続されている。このため、
図19のステップ1906とは異なり、モータケーブル(内)の接続工程は不要(試料マスクユニット微動機構4の真空チャンバ15への搭載のみで済む)となる。このとき、制御ユニット103は、真空チャンバ15の駆動ユニットに試料マスクユニット微動機構4が搭載されたことを検知する。
そして、ユーザは、試料ステージ引出機構60を閉じ、真空チャンバ15内を真空排気系6で排気し、真空状態とする。
【0064】
<広領域ミリング実行時の具体的加工領域設定方法>
ここでは、より具体的に、広領域ミリングを行う場合の加工領域の設定方法について説明する。
図20は、コントロールBOX80における目的位置設定用のボタンの配置例を示す図である。
図21及び22は、広領域ミリングの加工領域設定方法の具体例を示す図である。
【0065】
広領域ミリングを実行する場合、ユーザは、光学顕微鏡40を覗きながら(又は、適時覗き)、コントロールBOX80(又は操作パネル部80)で試料3(試料マスクユニット21)を移動(
図20におけるLボタン76(左方向)、Rボタン77(右方向)を押下)させ、
図21のように加工を行いたい領域(加工範囲2101)の両端E1及びE2を設定(
図20におけるSETボタン78を押下)する。
【0066】
広領域ミリングの加工領域の設定方法は、
図21に示すように、加工を行いたい領域の両端を設定させるようにしても良いが、
図22に示すように、加工を行いたい領域の中心C1を設定するようにしても良い(加工範囲2101)。設定後、操作部81(又は、コントロールBOX80(この場合、
図20のボタンに加え、加工領域を数値入力できる機能が追加される)上で加工領域を数値入力、例えば中心から±2mmの範囲を設定させ、設定範囲を加工(スライド往復駆動)できるようにする(
図24参照)。広領域ミリングの加工領域は、
図23の操作画面のように加工の両端位置、加工の中心位置のいずれかを選択できるようにすることで、操作性の向上を図れる。加工領域の設定を「両端位置の設定」を用いて行っても「中心位置の設定」を用いて行っても、加工処理(ミリング)動作は同一である。
【0067】
なお、
図20に示されるように、コントロールBOX80には、多点ミリング選択ボタンと広領域ミリング選択ボタンが設けられ、何れか一方、或いは両方を選択できるようになっている。
【0068】
<広領域ミリングによる加工手順>
図24は、広領域ミリングによる試料3の加工手順を説明するための図である。
広領域ミリング加工を実行する際にはイオンビーム2401の照射絶対位置は固定となっており、スライド移動機構(スライドミリングホルダ70)によって試料3をスライド範囲2403内でスライド往復運動させることにより、広領域の加工面2402を作製することになる(
図24(a)参照)。
【0069】
このために、イオンビーム2401を照射させた状態で、スライド移動機構は、試料3を中心から加工面2402の右端に移動させ(
図24(b)参照)、さらに加工面2402の右端から左端にスライド移動させる。試料3が加工面2402の右端から左端に移動する間、イオンビーム2401は試料3に照射される。
【0070】
続いて、スライド移動機構は、試料3を加工面2402の左端から右端にスライド移動させる(
図24(c)参照)。試料3が加工面2402の左端から右端に移動する間、イオンビーム2401は試料3に照射される。
以上のスライド移動動作は加工終了まで繰り返される(
図24(d)及び(c)参照)。
【0071】
<回転体の上にスライド移動機構が設けられている理由>
以上説明した装置構成は、回転体9(
図1のイオンミリング装置構成を採用した場合には試料ステージ8)の上にスライド移動機構(スライドミリングホルダ70)が設けられている。つまり、往復傾斜軸と試料上面の加工位置は常に同じである。このため、試料3を往復傾斜させながら、スライド駆動させても、試料室内の機構部(イオン源1、イオンビーム測定子等)への干渉が発生しにくい。よって、スライド範囲の制限も少ない。
【0072】
図25は、通常の断面ミリング(スライド移動機構が設けられていない構成)の際の試料の往復傾斜動作の範囲を示す図である。
図26は、回転体9の下にスライド移動機構(スライドミリングホルダ70)が設置される場合のスライド移動動作及び往復傾斜動作の範囲を示す図である。
図27は、回転体9の上にスライド移動機構(スライドミリングホルダ70)が設置される場合のスライド移動動作及び往復傾斜動作の範囲を示す図である。
【0073】
通常断面ミリングの場合(
図25)、試料マスクユニット21はスライド移動しないため、回転傾斜軸(回転体9の回転軸)2502の位置は固定であり、往復傾斜動作2503は固定範囲内で行われる。従って、当然、往復傾斜動作2503する試料マスクユニット21はイオンビーム測定子2501及びイオン源1とは干渉しない。
【0074】
一方、
図26に示されるように、スライド移動機構(スライドミリングホルダ70)が回転体9の下に設置される構成を採る場合、試料マスクユニット21がスライド移動すると回転傾斜軸2502の位置もスライド移動する。また、試料マスクユニット21は、回転傾斜軸2502がスライド移動(スライド方向2601は一定)しながら往復傾斜動作2503することになる。従って、回転傾斜軸2502の位置によっては、試料マスクユニット21がイオンビーム測定子2501やイオン源1に干渉する(干渉箇所2602)ことになり、十分広い加工幅が得られない可能性が高い。
【0075】
そこで、
図27に示されるように、スライド移動機構(スライドミリングホルダ70)が回転体9の上に設置される構成を採る。この場合、試料マスクユニット21がスライド移動しても回転傾斜軸2502の位置は固定となる。よって、往復傾斜動作2503の傾斜角度によってスライド方向2701は変化するものの、試料マスクユニット21は、スライド移動動作及び往復傾斜動作によりイオンビーム測定子2501やイオン源1とは干渉しない。このため、スライド移動時のスライド幅を大きく取ることが可能となり、広い加工幅を得ることが可能となる。なお、
図26の構成で多点ミリングを行うと、イオンビーム軸から離れた位置を加工する場合、回転傾斜軸2502の位置が上述のように変化するため、ミリングプロファイルが正常でなくなる(ミリングプロファイルが左右非対称となる)という課題もある。
【0076】
<多点ミリング実行時の具体的加工箇所設定方法>
ここでは、より具体的に、多点ミリングを行う場合の加工箇所の設定方法について説明する。
図28は、多点ミリングの加工領域設定方法の具体例を示す図である。
【0077】
多点ミリング(複数ヶ所の自動加工)を行う場合も、広領域ミリングの場合と同様に、光学顕微鏡40を覗きながら(又は、適時覗き)、コントロールBOX80、或いは操作部81で試料3(試料マスクユニット21)を移動(Lボタン76(左方向)、Rボタン77(右方向)を押下)させる。より具体的には、
図28に示されるように(加工箇所が2箇所の場合)、加工を行いたい複数の位置P1及びP2を設定(SETボタン78を押下)する。なお、多点ミリングを行う場合も、マスク2のエッジがスライド移動の方向と平行の関係となるように、固定しておくことが望ましい。
【0078】
加工位置の設定後、スライドミリングホルダ70からモータ用ケーブル(外)74を取外し、スライドミリングホルダ70を固定台42から取外す。そして、スライドミリングホルダ70を回転体9或いは試料ユニットベース5に搭載し、モータ用ケーブル(内)75をスライドミリングホルダ70に接続する。
【0079】
試料ステージ引出機構60を閉じ、真空チャンバ15内を真空排気系6で排気し、真空状態とする。また、イオン源1内の電極間にアルゴンガスを注入、高電圧を印加し、放電を開始させる。その状態で加速電圧を印加し、イオンビームを射出させ、加工を開始する(同時に往復傾斜を行う)。
【0080】
<多点ミリングによる加工手順>
図29は、多点ミリングによる試料3の加工手順1を説明するための図である。
図30は、多点ミリングによるリデポジション発生を抑えるための加工手順2を説明するための図である。
【0081】
図29(加工箇所が2箇所の場合)に示されるように、1箇所目の加工位置2901での加工(加工面2902)が完了すると、スライドミリングホルダ70のスライド駆動(X3方向)により自動で2箇所目の加工位置2904に移動(スライド駆動方向2903)し、加工を開始する。3箇所目以降の選択がされている場合は、上記と同様の処理を行う。以上の加工方法を採用することにより、多点ミリング(複数ヶ所の自動加工)が可能となる。
【0082】
但し、当該方法で加工を行った場合、
図30(a)に示されるように、第1の加工面3001の表面にリデポジション3003が発生する場合がある。その対策として、例えば、それぞれの加工位置において加工3時間を設定した場合、1箇所目の加工位置2901(第1の加工面3001)で加工1時間(1回目)→2箇所目の加工位置2904(第2の加工面3002)へ移動し、加工1時間(1回目)→再び、1箇所目の加工位置2901(第1の加工面3001)へ移動し、加工1時間(2回目)→2箇所目の加工位置2904(第2の加工面3002)へ移動し、加工1時間(2回目)→再度、1箇所目の加工位置2901(第1の加工面3001)へ移動し、加工1時間(3回目)→2箇所目の加工位置2904(第2の加工面3002)へ移動し、加工1時間(3回目)を行い、加工処理を完了させる(
図30(b)の場合)。なお、
図30(c)や
図30(d)の場合でも同様である。上記加工方法の場合、1回の加工時間が短いため加工面のリデポジション量が大幅に低減する。また、加工面に発生したリデポジションが次の加工の際に削れるため、良好な断面が得られる。上記加工方法の設定は、1箇所の加工時間を何回に分割するか、或いは分割する時間を入力することで行う。
【0083】
また、
図30(e)で示されるような加工方法を採用しても良い。つまり、1箇所目の加工位置2901(第1の加工面3001)で例えば95%程度加工を完了させ(1回目)、2箇所目の加工位置2904(第2の加工面3002)に移動し、1回の加工(例えば、加工時間3時間)で2箇所目の加工位置2904(第2の加工面3002)における加工を完了する。そして、再度1箇所目の加工位置2901(第1の加工面3001)に移動し、1箇所目の加工位置2901(第1の加工面3001)における加工を完了させる。このようにすれば、1箇所目の加工位置2901(第1の加工面3001)における加工時間を非常に短くすることができるので、2箇所目の加工位置2904(第2の加工面3002)におけるリデポジション3003の発生を非常に少なくすることができる。
【0084】
さらに、
図30(f)で示されるような加工方法を採用しても良い。つまり、1箇所目の加工位置2901(第1の加工面3001)における加工を1回(例えば、加工時間3時間)で完了させ、2箇所目の加工位置2904(第2の加工面3002)に移動し、1回の加工(例えば、加工時間3時間)で完了させる。そして、再度1箇所目の加工位置2901(第1の加工面3001)に移動し、加工時よりも弱い加速電圧で1箇所目の加工位置2901(第1の加工面3001)において仕上げ加工を行う。さらに、再度2箇所目の加工位置2904(第2の加工面3002)に移動し、同様に仕上げ加工を行う。このように最後に仕上げ加工を行うことにより、リデポジションが加工位置で発生していたとしても取り除くことができ、所望の加工を実現することが可能となる。
【0085】
なお、以上のような多点ミリングを実行する際(
図30(b)乃至(f)の場合)には、各加工位置を設定すると共に、各加工箇所における加工回数、及び各加工における加工時間が設定される。
【0086】
以上のような多点ミリングについてまとめると、複数の加工位置、及び当該複数の加工位置のそれぞれにおけるミリング動作の回数が設定され、各加工位置の情報と各加工位置におけるミリング動作の回数に従って、試料における各加工位置が加工される。その際、複数の加工位置の少なくとも一部における少なくとも1回のミリング動作は交互に行われる。つまり、例えば、
図30(b)乃至(f)に示されるように、各加工位置において、必ず1回は交互にミリング動作が実行されている。また、複数の加工位置の少なくとも1つの加工位置においては時間を空けて複数回のミリング動作が行われる。つまり、例えば、
図30(b)においては、第1の加工位置3001において1回目のミリングの実行後、2回目のミリングの実行前に、第2の加工位置3002における1回目のミリングが行われる。また、各加工位置における最終段階の加工は順番に行われる(
図30(b)乃至(d)、及び(f)参照)。
【0087】
従来のイオンミリング装置では、1箇所の加工が完了すると、一度真空チャンバを大気開放し、加工位置を変更後、再度真空チャンバを真空状態にする必要があった。これに対し、本実施形態によるイオンミリング装置では、複数ヶ所(例えば、3箇所)の加工が自動で行われるため、1回の処理で複数個所の加工を完了させることができる。よって、加工する試料の最適な加工条件を容易に得ることが可能となる。より具体的には、多点ミリングはそれぞれの加工位置において、それぞれの加工条件(放電電圧、加速電圧、流量、往復傾斜角度、冷却温度等)を設定できる。このため、最適条件へのアプローチが容易となる。例えば、1箇所目の加速電圧を2kV、2箇所目の加速電圧を4kV、3箇所目の加速電圧を6kVと設定し、ある試料を加工する。
また、多点ミリングのそれぞれの加工位置において、広領域ミリングを選択できるようにすることで、多くの用途に適用することも可能である。
【0088】
<広領域ミリングの活用例>
図31は、広領域ミリングの一活用例を示す図である。ここでは、加工を行う場所が正確に分からない場合の加工方法について説明する。この加工方法は、短時間で加工を行う際に有効である。
【0089】
従来であれば、
図31(a)に示すように、加工したい物(例えば、欠陥)の位置が分からない場合、当たりを付けて加工面3102をイオンビーム3101で加工するしかない。しかしながら、このような方法だと時間が掛かり過ぎてしまう可能性がある。
【0090】
そこで、広領域ミリングによる加工を活用し、効率よく加工したい物を発見し、加工できるようにする。具体的には、
図31(b)に示されるように、広領域ミリング(試料3を往復傾斜及び、スライド駆動させながらビームを照射する)を行う。加工したい物(位置)3103が確認(加工観察用の光学顕微鏡(加工観察窓7の上部へ設置)、肉眼)できたら、加工を停止する。次に、
図31(c)に示されるように、加工したい位置にイオンビーム軸が合うように試料ホルダを移動(スライド)させ、通常のミリング加工を行う。
【0091】
加工位置を探すことに適した広領域ミリングとミリングレートが高い通常のミリングを組み合わせた当該方法により、最後まで広領域ミリングした場合に比べて加工時間が大幅に短縮することが可能となる。
【0092】
<多点ミリングの活用例>
図32乃至34は、多点ミリングの一活用例を説明するための図である。
図32は、厚さの異なる複数の試料を固定する方法を説明するための図である。
図33は、厚みの異なる試料を複数個並べてマスクに固定した状態を示す図である。
図34は、厚みの異なる試料を加工後に観察装置に移して観察する様子を示す図である。
【0093】
ここでは、多点ミリングの活用例として、複数の試料の断面ミリングを1回の処理で行う方法について説明する。通常の断面ミリングでは、試料3を接着させた試料ホルダ23を試料マスクユニット21に設置する。当該試料固定方法を採用すると、異なる試料を試料ホルダ23に接着させた場合、厚みの異なる試料を設置させるとマスク2と試料(厚みの薄い方)に隙間ができ、平滑な断面が得られない。
【0094】
そこで、
図32(a)乃至(c)で示されるように、突出量調整治具90を用いて試料を固定する。まず、突出量調整治具90のベース91上にマスク2の上面(イオンビーム照射側)を接触させ、固定ねじ92でマスク2を固定させる。マスク2を固定させる際には、ベース91右側の壁を利用し、マスク2と位置調整台93の接触面が平行となるようにする。マスク2と位置調整台93(リニアガイドに沿って動く)の隙間3201の調整にはマイクロメータ94を用いて行い、隙間3201を大きくするときには、マイクロメータ94を反時計回りに回して、ばね95圧で押す構造となっている。マスク2をベース91に固定後、マイクロメータ94を回し、位置調整台93をマスク2に接触させる。その時のマイクロメータの値(初期値)を記憶しておく。
【0095】
次に、マイクロメータ94を反時計回りに回し、マスク2と位置調整台93の隙間3201を調整する。隙間3201の距離(後述するが、突出量とイコール)は、マイクロメータ94の現在値と初期値を引いた値となるので、任意の値に調整することができる。隙間3201の距離が確定した後、試料3を
図32(c)のように位置調整台に接触させながら、固定位置を決め、試料3をマスク2に直接接着させる(試料3のイオンビーム照射側の面をマスク2に接触させる。)。このように試料を接着させると、隙間3201の距離は突出量3301とイコールとなる。更に、試料3を直接マスクに固定できるため、厚みの異なる試料を複数個並べて固定することが可能となる。図示はしていないが、試料3の突出量3301はそれぞれ異ならせることができる(
図33参照)。
【0096】
全ての試料のマスク2への固定(接着)が完了した後、固定ねじを緩め、突出量調整治具から試料を固定したマスク2を取り外す。マスク2は、マスク固定ねじ27を使用し、マスクホルダ25(試料マスクユニット21)に固定する。以上の固定方法と多点ミリング(試料マスクユニット微動機構4のX、Y(
図8のX3、Y3(但しX3はモータ駆動))の調整については前述しているので割愛)を採用することにより、複数の試料を1回のミリング処理にて行うことが可能となる。
【0097】
マスク2に固定された複数の試料を加工した後、マスク2をイオンミリング装置から取り外し、それを観察装置(SEM)の試料設置台105に取り付ける(
図34参照)。試料設置台105は、マスク2を固定ねじ106で固定できる構造となっており、試料3を固定したマスク2を試料設置台105に容易に固定できる。
【0098】
また、試料設置台105の底面にはめねじ部(観察装置の試料固定台107側におねじ部3402が設けられている場合)3401が設けてあり、観察装置の試料固定台107のおねじ部3402に固定することが可能となっている。よって、試料3を固定したマスク2を容易に観察装置に設置し、観察することが可能となる。試料設置台105のめねじ部3401の位置は、観察時に加工面が探し易いように、おねじ部3402の中心軸上に加工面が配置されるようにすることが望ましい。
【0099】
<変形例>
(i)
図1や
図10に示したイオンミリング装置では、試料ユニットベース5から試料マスクユニット21を搭載した試料マスクユニット微動機構4が着脱可能となっている。しかし、試料ユニットベース5と試料マスクユニット21を搭載した試料マスクユニット微動機構4を一体型とした場合でも、光学顕微鏡40を装置側に搭載することにより、同様の加工が可能である。なお、この場合、モータ用ケーブル(外)74及び、モータ用ケーブル(内)75とスライドミリングホルダ70の抜き差し作業がなくなるが、位置の調整等の作業を行うスペースは限られてしまう可能性はある。
【0100】
(ii)本実施形態ではイオンミリング装置と観察装置(SEM)とは別々の装置構成をなすことを前提として説明してきたが、これらを一体として構成しても良い。この場合、例えば、試料ユニットベース5や試料マスクユニット21等を共通とし、イオンミリング加工のときに用いるイオン源と、加工面を観察するときに用いる電子銃とを切り替える機構を設けることになる。イオンミリング加工の際に加工箇所の情報(位置情報)は制御ユニット103に保持されているため、当該情報は観察装置でも利用することができ、観察の際の位置合わせ等の制御が容易になるという利点がある。また、加工後の試料をイオンミリング装置から取り出し、さらに観察装置に設置するという手間を省くことができるため、加工から観察までのスループットを向上させることが可能となる。
【0101】
<まとめ>
(i)広領域ミリング加工は、イオンビーム照射中に往復傾斜動作とスライド動作を同時に行うことにより、イオンビーム径によらない広い加工幅が得られる。このため、広範囲の観察、分析が必要な試料に有効である。また、多点ミリング加工は、断面ミリング(イオンビーム照射中に往復傾斜動作)完了後、予め設定した加工位置(複数可)にスライドさせ、その位置で更に断面ミリング処理を行うことが可能となる。よって、複数の位置での加工が自動で行えるようになり、スループットの向上を図ることが可能となる。
【0102】
本実施形態によるイオンミリング装置は、イオンビームの軸の法線方向成分を含む方向に試料保持部をスライド移動させる試料スライド移動機構を有している。また、当該イオンミリング装置は、さらに、試料スライド移動機構によるスライド移動の方向と垂直な軸の回りに試料保持部を回転傾斜させる回転機構を有しても良い。この場合、回転機構の上部にスライド移動機構(モータ駆動)を配置(スライド動作を行った場合でも往復傾斜(回転)軸が移動しない機構)し、回転機構の回転軸の位置が動かないことが望ましい。また、回転機構の回転軸は、イオンビームの軌道上に存在ことが好ましい。さらに、スライド移動機構は、回転機構の回転軸と垂直な平面内で試料をスライド移動させることが望ましい。これにより、イオンビームの照射を行いながら、試料を往復傾斜動作させること(通常の断面ミリング)に加え、往復のスライド動作(イオンビーム幅よりも広い幅でスライド動作)を行えるようになる。当該加工方法により、一回の処理にて所望の加工幅が得られるようにする(広領域ミリング)。広領域ミリングの加工幅はイオンビーム幅に制限されないため、広範囲の加工面(観察面)を得ることが可能となる。
【0103】
また、スライド移動機構を使用し、断面ミリング完了後、自動にて次の加工位置へ移動(スライド)させ、移動した位置で再び断面ミリングを行う。当該加工方法により、自動にて複数ヶ所の断面ミリングを行うことが可能となる(多点ミリング)。多点ミリングは、複数ヶ所の断面ミリングを1回の処理にて行うことができるため、スループットの向上を図ることができる。
【0104】
(ii)本実施形態によるイオンミリング装置は、イオンビームを発するイオン源と、試料を保持する試料保持部と、イオンビームの軸の法線方向成分を含む方向に試料保持部をスライド移動させる試料スライド移動機構と、制御部と、を有する。当該制御部は、試料の加工内容に関して入力される加工情報に基づいて、試料スライド移動機構を制御し、試料をイオンビームの幅よりの広領域に加工する広領域ミリング、及び/又は試料の複数の箇所を加工する多点ミリングを可能とする。このようにすることにより、1つのイオンミリング装置によって、広領域ミリングと多点ミリングとを自動的に実行することが可能となる。また、広領域ミリングと多点ミリングとを組み合わせて実行することも可能となる。
【0105】
(iii)本実施形態によるイオンミリング装置は、試料をイオンビームの幅よりの広領域に加工する広領域ミリング、及び試料の複数の箇所を加工する多点ミリングのうち少なくとも1つを選択可能にするユーザインタフェース部と、ユーザインタフェース部に対する選択入力に基づいて、試料に対するミリング動作を制御する制御部と、を有している。これにより、ユーザは、広領域ミリングと多点ミリングのうち1つを選択することにより、或いは2つを組み合わせることにより、所望のミリング動作を効率よく実行することができるようになる。
【0106】
なお、広領域ミリングと多点ミリングの両方が選択された場合、制御部は、広領域ミリングと多点ミリングとの間で動作を切り替えながらミリング動作を制御する。これにより、1度の処理で効率よく広領域ミリングと多点ミリングとを実行することができるようになる。
【0107】
(iv)本実施形態では、イオンミリングを実行する際には、まず、光学顕微鏡に試料を設置し、当該光学顕微鏡を用いて、試料において、イオンビームの幅よりの広領域に加工する広領域ミリングの加工位置及び加工幅、及び試料の複数の箇所を加工する多点ミリングの複数の加工位置を設定する。次に、広領域ミリングの加工位置及び加工幅の情報、及び多点ミリングの複数の加工位置の情報が、ミリング動作を制御する制御部に送信される。そして、光学顕微鏡から試料を取り外し、当該試料をイオンミリング装置に設置する。制御部は、広領域ミリングの加工位置及び加工幅の情報、及び多点ミリングの複数の加工位置の情報に基づいて、イオンミリング装置におけるミリング動作を制御する。以上の動作により、広領域ミリングと多点ミリリングが実行される。このようにすることにより、自動で、かつ1度の処理で、広領域ミリングと多点ミリングを効率よく実行することが可能となる。なお、広領域ミリング、或いは多点ミリングのみを実行する場合にも同様の手順となる。
【0108】
(v)多点ミリングを次のような手順で実行しても良い。まず、多点ミリングを実行する際の複数の加工位置と、当該複数の加工位置におけるミリング動作の回数を設定する。次に、設定された複数の加工位置の情報と設定されたミリング動作の回数に従って、試料の前記複数の加工位置を加工する。その際、複数の加工位置の少なくとも一部における少なくとも1回のミリング動作は交互に行われ、かつ、複数の加工位置の少なくとも1つの加工位置においては時間を空けて複数回のミリング動作が行われるようにする。時間を空けてミリング動作を行う場合、その空き時間には、他の加工位置におけるミリング動作が行われる。これにより、各加工位置において発生する可能性のあるリデポジションを非常に少なくすることができるようになる。
【0109】
また、複数の加工位置における最終段階の加工(最後のミリング動作)を順番に行うようにしても良い。このように各加工位置における最後のわずかな加工を順番に行うことにより、各加工位置におけるリデポジションの発生を非常に少なく抑えることができるようになる。
【0110】
さらに、複数の加工位置において、交互に加工する際に用いられる加速電圧よりも弱い加速電圧で仕上げ加工を行うようにしても良い。このようにしても同様にリデポジションの発生を抑えることができるようになる。
【0111】
(vi)本実施形態によれば、次のようなミリング加工を実行することができるようになる。まず、試料に対して、イオンビームの幅よりの広領域に加工する広領域ミリングを実行し、加工箇所を探索する。そして、広領域ミリングによって発見された加工箇所を試料の深さ方向にミリングする。このようにすることにより、見つけづらい箇所を広領域ミリングで効率よく見つけ、その後その箇所を重点的にミリングすることが可能となる。よって、スループットを向上させることが可能となる。
【0112】
(vii)本実施形態によれば、次のような手順でミリング加工を実行しても良い。まず、試料マスクに複数の試料が当該試料マスクから所定量突出するように取り付ける。次に、複数の試料におけるそれぞれの加工位置を設定する。そして、試料マスクの側から試料に対してイオンビームを照射し、試料の複数の箇所を加工する多点ミリングを実行し、複数の試料をそれぞれ加工する。この場合、複数の試料には、試料の厚さが他の試料とは異なる試料が含まれていても良い。このようにすることにより、厚さの異なる試料を1度の処理でミリング加工することが可能となる。また、試料の厚さが異なることによって試料とマスクとの間に隙間が生じ、隙間にイオンビームが回り込むことによってリデポジションが発生してしまうという危険性を回避することができるようになる。