【実施例】
【0038】
以下、実施例1〜17、比較例1〜5について説明する。
実施例1〜5、比較例1〜2は、(E)強化材の重量を比較したものである。実施例1〜5、比較例1〜2における(E)強化材、(F)無機充填材、(G)顔料の配合量は75重量%である。
実施例6〜7、比較例3はカップリング処理の有無、(E)強化材の有無について比較したものである。
実施例8〜12、比較例4は(E)強化材、(F)無機充填材、(G)顔料の配合量を比較したものである。また(E)強化材の有無について比較したものである。
実施例13〜17、比較例5は(E)強化材の種類、有無について比較したものである。
【0039】
<実施例1>
実施例1は、下記の材料を液温25℃以下の条件で20分間混練し、光反射用成形耐形成用樹脂組成物を作製する。
(A)エポキシ樹脂:3,4エポキシシクロヘキシルメチルカルボキシレート 100重量部
(B)硬化剤:4−メチルヘキサヒドロ無水フタル酸 113重量部
(C)硬化触媒:メチルトリブチルホスホニウムジメチルホスフェート 2重量部
(D)可撓性部材:エチレングリコール 5重量部
(E)強化材:ガラスフィラー(繊維長60μm、繊維径10μm、アスペクト比6) 90重量部(10重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 315重量部(35重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 270重量部(30重量%)
特に記載のない限り、強化材はカップリング処理を施している。実施例1〜5における(E)強化材、(F)無機充填材、(G)顔料の配合量は75重量%である。
これらを混合して第1樹脂組成物の前駆体を作成する。第1樹脂組成物の前駆体を加熱し、仮硬化を行う。ペレットを作成する。このペレットを加熱し、リードフレームが配置された金型内に第1樹脂組成物の中間体を流し込む。この第1樹脂組成物の中間体を金型温度180℃、キュア90秒にてトランスファーモールド成形を行い、165℃の温度で2.5時間エージングを行い、厚さ4mmの板状のテストピースを作製した。
【0040】
<実施例2>
実施例2は、(E)強化材、(F)無機充填材、(G)顔料の配合比を変えた以外は、実施例1と同条件にて第1樹脂組成物の硬化物を作成した。
(E)強化材:ガラスフィラー(繊維長60μm、繊維径10μm、アスペクト比6) 270重量部(30重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 135重量部(15重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 270重量部(30重量%)
【0041】
<実施例3>
実施例3は、(E)強化材の粒子径を変えた以外は、実施例1と同条件にて第1樹脂組成物の硬化物を作成した。
(E)強化材:ガラスフィラー(繊維長100μm、繊維径10μm、アスペクト比10) 90重量部(10重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 315重量部(35重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 270重量部(30重量%)
【0042】
<実施例4>
実施例4は、(E)強化材、(F)無機充填材、(G)顔料の配合比を変えた以外は、実施例3と同条件にて第1樹脂組成物の硬化物を作成した。
(E)強化材:ガラスフィラー(繊維長100μm、繊維径10μm、アスペクト比10) 270重量部(30重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 135重量部(15重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 270重量部(30重量%)
【0043】
<実施例5>
実施例5は、(E)強化材の粒子径を変えた以外は、実施例1と同条件にて第1樹脂組成物の硬化物を作成した。
(E)強化材:ガラスフィラー(繊維長200μm、繊維径10μm、アスペクト比20) 90重量部(10重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 315重量部(35重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 270重量部(30重量%)
【0044】
<実施例6>
実施例6は、(E)強化材、(F)無機充填材、(G)顔料の配合比、及び、(E)強化材の粒子径を変えた以外は、実施例1と同条件にて第1樹脂組成物の硬化物を作成した。実施例6〜7における(E)強化材、(F)無機充填材、(G)顔料の配合量は70重量%である。
(E)強化材:ガラスフィラー(繊維長50μm、繊維径11μm、アスペクト比4.5) 148重量部(20重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 148重量部(20重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 222重量部(30重量%)
【0045】
<実施例7>
実施例6の(E)強化材をカップリング処理しなかった以外は、実施例6と同条件にて第1樹脂組成物の硬化物を作成した。
【0046】
<実施例8>
実施例8は、(E)強化材、(F)無機充填材、(G)顔料の配合比、及び、(E)強化材の粒子径を変えた以外は、実施例1と同条件にて第1樹脂組成物の硬化物を作成した。(E)強化材、(F)無機充填材、(G)顔料の合計配合量は、第1樹脂組成物全体に対して60重量%である。(E)強化材、(F)無機充填材、(G)顔料の配合比は、2:7:6である。
(E)強化材:ガラスフィラー(繊維長50μm、繊維径11μm、アスペクト比4.5) 45重量部
(F)無機充填材:溶融シリカ(中心粒径30μm) 157重量部
(G)顔料:酸化チタン(中心粒径 0.25μm) 135重量部
【0047】
<実施例9>
実施例9は、(E)強化材、(F)無機充填材、(G)顔料の配合量を変えた以外は、実施例8と同条件にて第1樹脂組成物の硬化物を作成した。(E)強化材、(F)無機充填材、(G)顔料の合計配合量は、第1樹脂組成物全体に対して65重量%である。(E)強化材、(F)無機充填材、(G)顔料の配合比は、2:7:6である。
(E)強化材:ガラスフィラー(繊維長50μm、繊維径11μm、アスペクト比4.5) 56重量部
(F)無機充填材:溶融シリカ(中心粒径30μm) 194重量部
(G)顔料:酸化チタン(中心粒径 0.25μm) 167重量部
【0048】
<実施例10>
実施例10は、(E)強化材、(F)無機充填材、(G)顔料の配合量を変えた以外は、実施例8と同条件にて第1樹脂組成物の硬化物を作成した。(E)強化材、(F)無機充填材、(G)顔料の合計配合量は、第1樹脂組成物全体に対して75重量%である。(E)強化材、(F)無機充填材、(G)顔料の配合比は、2:7:6である。
(E)強化材:ガラスフィラー(繊維長50μm、繊維径11μm、アスペクト比4.5) 90重量部
(F)無機充填材:溶融シリカ(中心粒径30μm) 315重量部
(G)顔料:酸化チタン(中心粒径 0.25μm) 270重量部
【0049】
<実施例11>
実施例11は、(E)強化材、(F)無機充填材、(G)顔料の配合量を変えた以外は、実施例8と同条件にて第1樹脂組成物の硬化物を作成した。(E)強化材、(F)無機充填材、(G)顔料の合計配合量は、第1樹脂組成物全体に対して80重量%である。(E)強化材、(F)無機充填材、(G)顔料の配合比は、2:7:6である。
(E)強化材:ガラスフィラー(繊維長50μm、繊維径11μm、アスペクト比4.5) 120重量部
(F)無機充填材:溶融シリカ(中心粒径30μm) 419重量部
(G)顔料:酸化チタン(中心粒径 0.25μm) 359重量部
【0050】
<実施例12>
実施例12は、(E)強化材、(F)無機充填材、(G)顔料の配合量を変えた以外は、実施例8と同条件にて第1樹脂組成物の硬化物を作成した。(E)強化材、(F)無機充填材、(G)顔料の合計配合量は、第1樹脂組成物全体に対して85重量%である。(E)強化材、(F)無機充填材、(G)顔料の配合比は、2:7:6である。
(E)強化材:ガラスフィラー(繊維長50μm、繊維径11μm、アスペクト比4.5) 169重量部
(F)無機充填材:溶融シリカ(中心粒径30μm) 593重量部
(G)顔料:酸化チタン(中心粒径 0.25μm) 509重量部
【0051】
<実施例13>
実施例13は、(E)強化材、(F)無機充填材、(G)顔料の配合比、(E)強化材を変えた以外は、実施例1と同条件にて第1樹脂組成物の硬化物を作成した。(E)強化材は実施例1同様カップリング処理を施している。
(E)強化材:繊維状酸化亜鉛(繊維長50μm、繊維径5μm、アスペクト比10) 112重量部(10重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 671重量部(60重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 112重量部(10重量%)
【0052】
<実施例14>
実施例14は、(E)強化材、(F)無機充填材、(G)顔料の配合比を変えた以外は、実施例13と同条件にて第1樹脂組成物の硬化物を作成した。
(E)強化材:繊維状酸化亜鉛(繊維長50μm、繊維径5μm、アスペクト比10) 224重量部(20重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 559重量部(50重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 112重量部(10重量%)
【0053】
<実施例15>
実施例15は、(E)強化材、(F)無機充填材、(G)顔料の配合比を変えた以外は、実施例13と同条件にて第1樹脂組成物の硬化物を作成した。
(E)強化材:繊維状酸化亜鉛(繊維長50μm、繊維径5μm、アスペクト比10) 336重量部(30重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 447重量部(40重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 112重量部(10重量%)
【0054】
<実施例16>
実施例16は、(E)強化材、(F)無機充填材、(G)顔料の配合比、(E)強化材を変えた以外は、実施例13と同条件にて第1樹脂組成物の硬化物を作成した。(E)強化材はキンセイマテック社製SH1800(カップリング処理無し)を使用する。
(E)強化材:ワラストナイト(繊維長28μm、繊維径3.5μm、アスペクト比8) 112重量部(10重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 671重量部(60重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 112重量部(10重量%)
【0055】
<実施例17>
実施例17は、(E)強化材、(F)無機充填材、(G)顔料の配合比、(E)強化材を変えた以外は、実施例16と同条件にて第1樹脂組成物の硬化物を作成した。
(E)強化材:ワラストナイト(繊維長28μm、繊維径3.5μm、アスペクト比8) 224重量部(20重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 559重量部(50重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 112重量部(10重量%)
【0056】
<比較例1>
比較例1は、(E)強化材、(F)無機充填材、(G)顔料の配合比、(E)強化材を変えた以外は、実施例1と同条件にて第1樹脂組成物の硬化物を作成した。比較例1における(E)強化材、(F)無機充填材、(G)顔料の配合量は75重量%である。
(E)強化材:ガラスフィラー(繊維長60μm、繊維径10μm、アスペクト比6) 450重量部(50重量%)
(F)無機充填材:溶融シリカ(中心粒径30μm) 90重量部(10重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 135重量部(15重量%)
【0057】
<比較例2>
比較例2は、(E)強化材が入っておらず、(F)無機充填材、(G)顔料のみ配合されている。(E)強化材の重量を変えたり、(E)強化材を用いなかったりしたこと以外は、実施例1と同条件にて第1樹脂組成物の硬化物を作成した。比較例2における(F)無機充填材、(G)顔料の配合量は75重量%である。
(E)強化材:使用せず
(F)無機充填材:溶融シリカ(中心粒径30μm) 405重量部(45重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 270重量部(30重量%)
【0058】
<比較例3>
比較例3は、(E)強化材が入っておらず、(F)無機充填材、(G)顔料のみ配合されている。(F)無機充填材、(G)顔料の配合量を変えたり、(E)強化材を用いなかったりしたこと以外は、実施例6と同条件にて第1樹脂組成物の硬化物を作成した。比較例3における(F)無機充填材、(G)顔料の配合量は75重量%である。
(E)強化材:使用せず
(F)無機充填材:溶融シリカ(中心粒径30μm) 296重量部(40重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 222重量部(30重量%)
【0059】
<比較例4>
比較例4は、(E)強化材が入っておらず、(F)無機充填材、(G)顔料のみ配合されている。(F)無機充填材、(G)顔料の配合量を変えたり、(E)強化材を用いなかったりしたこと以外は、実施例8と同条件にて第1樹脂組成物の硬化物を作成した。(F)無機充填材、(G)顔料の合計配合量は、第1樹脂組成物全体に対して75重量%である。(F)無機充填材、(G)顔料の配合比は、9:6である。
(E)強化材:使用せず
(F)無機充填材:溶融シリカ(中心粒径30μm) 405重量部
(G)顔料:酸化チタン(中心粒径 0.25μm) 270重量部
【0060】
<比較例5>
比較例5は、(E)強化材が入っておらず、(F)無機充填材、(G)顔料のみ配合されている。(F)無機充填材、(G)顔料の配合量を変えたり、(E)強化材を用いなかったりしたこと以外は、実施例13と同条件にて第1樹脂組成物の硬化物を作成した。(F)無機充填材、(G)顔料の合計配合量は、第1樹脂組成物全体に対して80重量%である。
(E)強化材:使用せず
(F)無機充填材:溶融シリカ(中心粒径30μm) 783重量部(70重量%)
(G)顔料:酸化チタン(中心粒径 0.25μm) 112重量部(10重量%)
【0061】
<試験結果>
実施例1乃至5、比較例1及び2の波長430nm〜730nmにおける光反射率を、高速分光色彩計(CMS-35SP、村上色彩技術研究所製)を用いて測定した。光反射率は、同波長範囲において90%以上を○とした。また、実施例1乃至5、比較例1及び2の相対曲げ強度を測定するに際し、万能試験機(インストロン社製、5566型)を用いて三点曲げ強度を測定した。また、実施例1乃至5、比較例1及び2の成形性について成形可能なものを○とした。
得られた結果を表1に示す。
【0062】
【表1】
【0063】
この結果から、比較例1は成形できず、実施例1〜5、比較例2は成形可能であり、強度向上が認められた。これは比較例1において(E)強化材であるガラスフィラーの含有量が多く、成形金型における未充填が発生し、成形不可の判定となった。ただし、不完全ながら得られた比較例1の小片の光反射率は90%以上であり、〇判定であった。
また、比較例2に比べて、実施例1〜4は、相対曲げ強度(%)が大きく、大きく曲げられることが分かった。
【0064】
実施例6及び7、比較例3についても、上記同様、光反射率、相対曲げ強度、成形性について測定し、得られた結果を表2に示す。
【0065】
【表2】
【0066】
この結果から、比較例3に比べて、実施例6及び7は、相対曲げ強度(%)が大きく、大きく曲げられることが分かった。カップリング処理が施されている強化材を用いた実施例6の方が、カップリング処理が施されていない強化材を用いた実施例7よりも相対曲げ強度が大きい。これは実施例6の方が実施例7に比べてより(E)強化材と樹脂の密着性が高く、且つ均一に分散されていることによるものと思われる。
【0067】
実施例8乃至12、比較例4について、光反射率、相対曲げ強度、相対たわみ量、相対曲げ弾性率、成形性について測定し、得られた結果を表3に示す。
【0068】
【表3】
【0069】
この結果から、比較例4に比べて、実施例8乃至12は、強度向上が認められた。特に(E)強化材、(F)無機充填材、(G)顔料が60重量%〜80重量%の範囲である実施例8乃至11は、たわみが大きく、かつ、弾性率が低い結果となった。実装後の基板曲げ試験(JEITA ED−4702B 試験方法003)は、実装された基板に工程内で起こる単発の曲げストレスが加わったとき、発光素子とその接合部にかかるストレスに対する耐性を評価するために用いられ、発光装置の信頼性において重視される検査項目の一つである。実装後の基板曲げ試験は、高強度、低弾性率を有する樹脂組成物において非常に有効的である。
【0070】
実施例13乃至18、比較例5について、光反射率、相対曲げ強度、成形性について測定し、得られた結果を表4に示す。
【0071】
【表4】
【0072】
この結果から、比較例5に比べて、実施例13乃至17は、相対曲げ強度が大きく、大きく曲げられることが分かった。
以上より、本実施形態に係る第1樹脂組成物を用いることにより、相対曲げ強度の高い、かつ、反射率の高い発光装置及びその製造方法を提供することができる。