(58)【調査した分野】(Int.Cl.,DB名)
前記判定部は、前記第2の光を前記光電子増倍管に照射した後、前記光電子増倍管の出力信号と、前記目標値とを比較し、前記出力信号が前記目標値より大きいときは、前記光電子増倍管への前記第2の光の照射を継続し、前記出力信号が前記目標値以下である場合には、前記光電子増倍管への前記第2の光の照射を終了することを特徴とする、請求項2に記載の自動分析装置。
光源を含む第1チャンバと、前記第1チャンバと隣接し反応容器を配置可能に構成された第2チャンバと、前記第2チャンバと隣接し前記光電子増倍管を含む第3チャンバとを更に備え、
前記判定部は、前記第2チャンバから前記反応容器を退避させた後、前記第1チャンバ内の前記光源から前記第2チャンバを介して前記第3チャンバ内の前記光電子増倍管に前記第1の光を照射して判定を行うように構成された、請求項1に記載の自動分析装置。
前記第1の光を照射した後の光電子増倍管の感度が前記第1の光を照射する前の光電子増倍管の感度よりも大きいときに警告を発する警告部を更に備える、請求項1に記載の自動分析装置。
前記第2の光を前記光電子増倍管に照射した後、前記光電子増倍管の出力信号と、前記目標値とを比較し、前記出力信号が前記目標値より大きいときは、前記光電子増倍管への前記第2の光の照射を継続し、前記出力信号が前記目標値以下である場合には、前記光電子増倍管への前記第2の光の照射を終了することを特徴とする、請求項15に記載の自動分析装置の制御方法。
【発明を実施するための形態】
【0009】
以下、本発明の実施の形態を図面を参照して詳細に説明する。本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は可能な限り省略するようにしている。実施形態に記載するデバイス構造及び材料は、本発明の思想を具現化するための一例であり、材料及び寸法などを厳密に特定するものではなく、本発明の範囲を限定するために開示されているものではない。また実施形態に記載される具体的な電圧値、電流値、電圧印加時間、電圧パルス時間幅も、本発明の思想を具現化するための一例であり、それらを厳密に特定するものではなく、その範囲を制限する意図で開示されているものではないことに留意すべきである。
【0010】
[第1の実施の形態]
まず、
図1等を参照して本発明の第1の実施の形態に係る自動分析装置を説明する。
この第1の実施の形態では、光電子増倍管を検出器とし、発光標識としてアクリジニウムエステルを用いた化学発光法を検出部において用いる自動分析装置を例として説明するが、アクリジニウムエステルはあくまで一例であり、これに限定されるものではない。
【0011】
図1は、第1の実施の形態の自動分析装置の全体構成を示す概略図である。本装置は、
ラック111を備え、このラック111に検体容器112を架設可能に構成されている。また、本装置は、検体容器112内の検体をサンプリングチップ114を介して吸引するサンプリング機構113を備える。ラック111は順次サンプリング機構113で吸引するための位置に図示しない搬送機構により搬送される。サンプリング機構113によりサンプリングチップ114に吸引された検体は、反応容器131に注入される。検体を注入された反応容器131は、温度制御機能を有する反応容器搬送器CCの所定の位置に搬送される。
【0012】
また本装置は、試薬容器132〜134、試薬分注機構135、磁気分離装置136、酸性過酸化水素溶液容器137、水酸化ナトリウム溶液容器138、及び溶液注入機構139、140を備える。
試薬分注機構135は、試薬容器132〜134に格納された試薬を反応容器131に分注する機能を有する。反応容器131に、サンプリング機構113により検体を所定量分注し、さらに試薬分注機構135による吸引吐出動作を行うことにより、反応容器131内の試薬および検体を混合することができる。混合後、例えば9分程度の時間、反応容器131を反応容器搬送器CC上で保持することにより、反応を生じせしめることができる。さらに試薬分注機構135により、磁性粒子の懸濁液を試薬容器134から反応容器131に一定量分注し、さらに9分程度反応を進行させる。この反応容器131を磁気分離装置136にて、磁性粒子と上清に分離する。その後、反応容器131は検出部160に載置され、分析の対象とされる。
【0013】
検出部160は、
図1に示すように、その内部に光源としてのLED161と、光電子増倍管(PMT)162とを備える。検出部160は、一列に配置され互いに隣接する第1〜第3チャンバR1〜R3を備えている。LED161は第1チャンバR1内に、光電子増倍管162は第3チャンバR3にそれぞれ配置され、分析の対象とされる反応容器131は中間の第2チャンバR2に配置される。
また検出部160は、酸性過酸化水素溶液容器137及び水酸化ナトリウム溶液容器138に格納されている酸性過酸化水素溶液、及び水酸化ナトリウム溶液を溶液注入機構139、140により反応容器131に注入する。これにより、反応容器131内で化学発光を生じせしめる。反応容器131から出た化学発光が隣接する第3チャンバR3内の光電子増倍管162に受光・検知され、分析が行われる。第1〜第3チャンバR1〜R3は、外部からの光が侵入しないよう、それぞれを結ぶ開口部を除き遮光壁により覆われた構成とされている。
【0014】
本装置は、上述の検出部160を含む装置全体を制御するための構成として、主制御装置171、DA変換器172、高電圧発生装置173、対数変換器174、AD変換器175、発光条件変更部176、定電流源177、記憶部178、及びディスプレイ179を備えている。
主制御装置171は、装置全体の制御を司り、得られたデータに従った演算を行うとともに、その演算結果に従ったデータ記憶動作、命令などを行う。また、主制御装置171は、光電子増倍管162の出力信号に関する判定を行う判定部としても機能する。更に、主制御装置171は、所定の場合に光電子増倍管162に光(制御光)を照射してその感度を低下させる制御を司る。
DA変換器172は、主制御装置171から出力された制御データをアナログ信号に変換して高電圧発生装置173に供給する。高電圧発生装置173は、与えられたアナログ信号に応じた電圧値を有する電圧を発生させ、光電子増倍管162に供給する。
【0015】
対数変換器174は、光電子増倍管162において受光される光の光量に応じて出力される電流信号を対数変換して電圧信号として出力する。この電圧値(アナログ値)は、AD変換器175においてデジタル信号に変換されて、主制御装置171へと渡される。
また、発光条件変更部176は、主制御装置171からの制御信号に従い、LED161の発光条件を変化させる。定電流源177は、発光条件変更部176で設定された発光条件に従い、LED161に流す電流(定電流)の値を変化させることが可能に構成されている。
【0016】
記憶部178は、主制御装置171の動作を規定するコンピュータプログラムを格納する他、分析により得られた分析結果や、その他の制御データを記憶することが可能に構成されている。また、ディスプレイ179は、得られた分析結果を表示する他、オペレータに伝達すべき各種メッセージなどを表示することができる。
【0017】
図2は、検出部160の構成をより詳細に説明する構成図である。検出部160は、前述のように、一方向に沿って直列に接続された3つのチャンバ、第1〜第3チャンバR1、R2、R3を備える。第2チャンバR2は、第1チャンバR1と第3チャンバR3との間の位置に配置されている。
【0018】
第1〜第3チャンバR1〜R3は、全体を遮光壁で形成された中空容器とされており、外乱光の侵入や、各チャンバR1〜R3間での光の漏れを防げるような構成とされている。外部からの光が内部に到達しないようにされている。ただし、第1〜第3チャンバR1〜R3の間では光の送受信が可能となるよう、光の経路が設けられている。すなわち、LED161を格納する第1チャンバR1と反応容器131を格納する第2チャンバR2との間には、光の通路としての窓W1が設けられている。LED161の光出射面は、この窓W1に向かうよう、LED161が配置される。この窓W1を介して、LED161からの光は反応容器131に到達し得る。また、第2チャンバR2と光電子増倍管162を格納する第3チャンバR3との間には、窓W2が設けられている。この窓W2を介して、反応容器131から発する光は、光電子増倍管162に受光され得る。
また、第2チャンバR2には、反応容器131を挿入又は離脱させるための窓W3が設けられている。
【0019】
窓W1〜W3には、それぞれ窓W1〜W3を遮蔽するためのシャッタ26、27、29が設けられている。シャッタ26、27は、光電子増倍管162が検査される場合に窓W1及びW2を開口させ、LED161の光が光電子増倍管162に到達するようにされる。また、シャッタ29は、第2チャンバR2において反応容器131を搭載/退避させる場合、あるいは溶液注入機構139,140により溶液が反応容器131に注入される際に開けられ、検査等の開始時には閉じられる。各シャッタ26、27、29はステッピングモ−タ(図示せず)に接続されており、主制御装置171からの制御信号に従いそれぞれ独立に開閉する。
【0020】
また、窓W1には、シャッタ27の他に、NDフィルタ34が配置されている。このNDフィルタ34は、主制御装置171に接続されており、NDフィルタ34の光透過率は任意に変化させられる。これにより、LED161からの出射光量を、光電子増倍管162への過大光の入射による破損を防ぐように調整することができる。
【0021】
第3チャンバR3において、光電子増倍管162は光電子増倍管ホルダ163を介して第3チャンバR3の内部に固定されている。さらに、光電子増倍管162はその受光面を窓W2に向かうように配置されている。光電子増倍管162にはケ−ブル164が接続されており、ケ−ブル164は第3チャンバR3の外部に導出されている。そして、光電子増倍管162はケ−ブル164を介して、前述の高電圧発生装置173及び対数変換器174に接続されている。さらに、高電圧発生装置173には定電圧電源(図示せず)が接続されている。なお、ケ−ブル164と第3チャンバR3との間には外乱光の侵入を防ぐためのシ−ル(図示せず)が施されている。また、第2チャンバR2には、反応容器131を着脱自在に保持するための反応容器ホルダ165が設けられている。なお、反応容器ホルダ165には、反応容器131の有無を検知するための反応容器センサ(図示せず)を備えることができる。反応容器ホルダ165の形状や構造は、免疫測定に用いられる反応容器131に基づいて決められる。そして、反応容器131としては、試験管、角セル、スライド板、マイクロプレ−ト、フローセル等の一般的な種々のものを採用することが可能である。
【0022】
なお、LED161の端子は第1チャンバR1の外部へと導出されており、第1チャンバR1の壁面によって保持されている。このLED161は前出の定電流源177を介して外部電源(図示せず)に接続されており、定電流源177によってLED161の発光量が調節される。なお、このLED161の端子と第1チャンバR1との間にも、外乱光の侵入を防ぐためのシ−ル(図示せず)が施されている。LED161として、一般的な種々のものを採用することが可能である。LED161は、反応容器131内に試料との発光反応に供する発光物質の発光波長と近似する発光波長を少なくとも有しているのが好ましいが、LED161とは別のフィルタ(図示せず)により波長選択する構成にしてもよい。また、発光物質による発光波長とLED161による発光成分との光学的条件を予め関連付けるように構成すれば、測定項目、発光物質等の毎にLED161を取り替える必要は無い。
【0023】
反応容器131は、反応容器移送部(図示せず)により第2チャンバR2に移送され、反応容器ホルダ165に装着される。反応容器131の搬出の際にも、同様に反応容器移送部によって、反応容器131が第2チャンバR2の外に移送される。ここで、反応容器移送部として、一般的なセルロ−ダや移送ア−ム等を利用することが可能である。
なお、図示しないが、第2チャンバR2内には、反応容器ホルダ165に保持された反応容器131に対して、発光反応を起こすための基質溶液等を適宜のタイミングで注入するよう構成された注入部を組み込むことができる。
【0024】
次に、上記の構成を有する自動分析装置において、光電子増倍管162の検査を行い、必要に応じてその感度を制御する手順(制御方法)を、
図3のフローチャートを参照して説明する。
まず、
図3のフローチャートのステップS1〜S9に従って、光電子増倍管162の検査が行われる。具体的には、LED161からの基準光(第1の光)を光電子増倍管162に照射し、その光電子増倍管162の出力信号から光電子増倍管162の感度が基準値(判定上限値)を超えて増大しているかを判定する。基準値を超えている場合には、ステップS10〜S21に従って、光電子増倍管162の感度を適正な範囲に制御する手順が実行される。具体的には、LED161からの制御光(第2の光)を一定時間光電子増倍管162に照射することで、光電子増倍管162の感度を低減させ、適切な値(判定下限以下の値)となった段階で、制御光の照射を停止する。このような方法をとることにより、駆動回路又は暗電流の発生原因に由来する調整範囲の制約を受けることなく(高電圧値の調整を用いることなく)、光電子増倍管162の感度を適正な範囲に制御することができる。
【0025】
このフローチャートの各手順を実施順序に従って説明する。
まず、ステップS1において、主制御装置171は、第2チャンバR2の反応容器ホルダ165に反応容器131が設置されていないことを反応容器センサ(図示せず)の出力に基づいて検知する(ステップS1)。設置されている場合には、図示しない反応容器搬送機構を用いて、反応容器131を第2チャンバR2から退避させる(ステップS2)。
【0026】
反応容器131の退避が完了したら、主制御装置171は、シャッタ29を閉じる(ステップS3)。そして、シャッタ26を開け、光電子増倍管162に所定の高電圧を印加して光電子増倍管162の動作が可能な状態にする(ステップS4)。
発光条件変更部176は、LED161から基準光を出射するための電流値を設定し、LED161を点灯する(ステップS5)。ここで基準光とは、光電子増倍管162の感度変動を評価するための基準となる一定強度の光である。基準光の強さは、発光条件変更部176において決定される発光条件に従って、所定のLED電流を設定することによって得られる。LED161の電流量の設定のために、定電流源177に複数の抵抗値を切換え可能に構成したディップスイッチを設けること等が考えられる。本実施の形態では、基準光を出射するための電流値をx[A]とする。xは例えば0.1[mA]から100[mA]程度の値である。ここでは、一例としてx=3[mA]とする。
【0027】
この第1の実施の形態の自動分析装置では、光電子増倍管162がこの基準光を検出する。検出により光電子増倍管162に流れる電流、すなわち検出電流を予め定められた一定時間(例えば0.4[s]〜1.0[s])で積分し、その積分値に比例する量が、光電子増倍管162での検出光量となる。検出光量の次元は光子の個数に相当する。以下では、検出光量の単位を「カウント」とする。
【0028】
基準光の検出光量の初期値はX[カウント]とする。本実施の形態では、例えばX=10万[カウント]とする。初期値とは、任意に決められるある時点での検出光量の値を意味する。例えば、装置を製造した直後、光電子増倍管162を新規に取付けた直後、又は、その他のタイミングで、基準光の光量を測定することができる。主制御装置171は、記憶部178等においてこの基準光の検出光量の初期値Xを記憶している。
【0029】
ステップS5でLED161の発光が開始されると、主制御装置171は、シャッタ27を開けて、LED161から発する基準光を光電子増倍管162に導く(ステップS6)。そして、LED161からの基準光を光電子増倍管162により検知させ、その検出光量Z[カウント]を取得する(ステップS7)。
主制御装置171は、この検出光量Z[カウント]と、あらかじめ定めた光電子増倍管162の感度増大の基準値すなわち判定上限値(U[カウント])とを比較し、Z>Uであるか否かを判定する(ステップS8)。判定上限値Uは、前述した初期値Xを定数倍した値に設定し得る。一例として、判定上限値Uは、初期値Xよりも3%大きい10万3000[カウント]とすることができる。
【0030】
基準光の検出光量(Z[カウント])が判定上限値U以下の場合(Z≦U)、例えば10万1500[カウント]の場合、光電子増倍管162の感度増大はゼロではないものの、許容可能、又は実験誤差の範囲内であるとみなし、光電子増倍管162の感度の低減動作(ステップS10以降)は実行せず、本フローを終了する(ステップS9)。
一方で、基準光の検出光量(Z[カウント])が、判定上限値Uよりも大きい場合(Z>U)、例えば、Z=10万4000[カウント]の場合、光電子増倍管162の増大した感度を低減するために、ステップS10以降の手順を実行する。
【0031】
ここで、制御光の照射による、光電子増倍管の感度の低減の原理について
図4を用いて説明する。このときの光電子増倍管の陽極電流は70[uA]とする。
図4は、光電子増倍管における典型的な光照射時間と感度の関係の例を示す図である。
図4に示すように、光電子増倍管の感度は、個体差はあるものの、一般的に合計の光照射時間が増すにつれて低下する。これは、一般的にライフ特性とも称される。
本実施の形態では、このような光電子増倍管の性質を利用して、光照射を行うことにより光電子増倍管162の感度を低減させる。感度の低減量は、光電子増倍管の出力電流(陽極電流)の関数であり、光電子増倍管の種類により変化する。
【0032】
図4の例では、初期の状態から1時間の光照射による光電子増倍管の感度の低下率は−2[%/hrs.]である。このときの光電子増倍管の陽極電流は70[uA]であることから、時間と電流の単位の関係から、感度低下率は−7.9[%/C]とも表現することもできる。すなわち、光電子増倍管の出力(陽極)電流量が、所定の入射光に対し一定となるように、LED161からの制御光の強度を定め、一定時間の照射を行うことにより、所望の感度低下を実現することできる。
【0033】
ステップS8でZ>Uと判定された場合、ステップS10に移行し、光電子増倍管162の増大した感度を低減するための動作を開始する。
まず、ステップS10では、主制御装置171が、基準光の検出光量Zに従い、LED161からの制御光の目標光量を定める(ステップS10)。制御光の目標光量は、光電子増倍管162の出力電流(陽極電流)Ip[A]を、目標照射時間ty[s]で積分したときの目標電荷量Y[C](=Ip×ty)で定義され得る。例えば、
図4のような特性を有する光電子増倍管162の感度を4%だけ低減させたい場合には、7200[s]、すなわち2時間の間、光電子増倍管162の陽極電流が70[uA]となるような制御光を光電子増倍管162に照射すればよい。これにより、目標電荷量Yは0.504[C]となる。すなわち、0.504[C]の目標電荷量に相当する目標光量の制御光を光電子増倍管162に照射することにより、目標とする感度の低減が得られる。
【0034】
LED161の陽極電流を所定値にするには、LED161に流す電流値y[A]、NDフィルタ34の透過率、LED161と光電子増倍管162との距離などを適宜設定すればよい。LED161に流す電流値は、発光条件変更部176により調整が可能である。NDフィルタ34の透過率は、主制御装置171により調整が可能である。本実施の形態では、LED161に流す電流値y=30[mA]、NDフィルタの透過率T=1%と設定し、約70[uA]の陽極電流値を得られたとする。なお、この陽極電流値に相当する検出光量はおよそ100万[カウント]であるとする。
【0035】
主制御装置171は、定められた制御光の目標光量となるように目標照射時間を設定する。発光条件変更部176は、LED161から制御光を出射するための電流値y[A]を設定し、主制御装置171が定める時間の間、LED161を点灯する(ステップS11)。このとき、主制御装置171は、設定された目標電荷量Y[C]にむけて、そのときまでに制御光を照射した合計時間t’[sec]を適宜記憶する。
制御光の照射は、反応容器131の分析を行うタイミング以外であれば、どのタイミングで行ってもよい。例えば、装置の起動動作時、装置の終了動作時さらには化学発光分析の準備動作(例えば試薬分注あるいは、試薬のインキュベーション)を行っている時間を活用することが出来る。
【0036】
この
図3の例では、制御光の照射による光電子増倍管162の感度制御中に、ユーザの指示(中断命令(ステップS12))により、制御光の照射を止めることができる。例えば、自動分析装置をシャットダウンする、あるいは、電源をオフにする指示があったとき、あるいは検体容器が本自動分析装置に導入され、化学発光分析を行う指示が出たときなどである。このとき、主制御装置171は、LED161をOFFにして、制御光の照射を中断するとともに、光電子増倍管162への高電圧の印加を停止して光電子増倍管162をOFFにし、また、光電子増倍管162への不要な外光入射を避けるために、シャッタ26及び27を閉じる(ステップS13)。
【0037】
その後、主制御装置171は、制御光の照射の再開命令が出るのを待つ。制御光を照射できない状態が解除されたとき、すなわち、装置の電源が再投入され、装置の起動動作が始まった時、あるいは化学発光分析の準備動作(例えば試薬分注あるいは、試薬のインキュベーション)が始まった時などにおいて、主制御装置171に対して再開命令が出される(ステップS14)。その後、主制御装置171は、光電子増倍管162への高電圧の印加を再開し、またシャッタ26、27を開く(ステップS15)。そして、再び、主制御装置171は、LED161の光を、定められた制御光の光量となるように調整し、発光条件変更部176は、LED161から制御光を出射するための電流値を設定し、LED161を点灯する(ステップS11)。
【0038】
光電子増倍管162の感度の低減のための制御光を照射した合計時間t’[sec]が目標値ty[sec]に到達したとき(ステップS16)、主制御装置171はLED161からの制御光の照射を停止する(ステップS17)。その後、主制御装置171は、光電子増倍管162の感度の確認を行うため、前述の基準光の照射を再度実行する。すなわち、ステップS5と同様に、発光条件変更部176は、LED161から基準光を出射するための電流値を設定し、LED161を点灯する(ステップS18)。
【0039】
次に、主制御装置171は、LED161から基準光が照射された場合における光電子増倍管162の検出光量を取得する(ステップS19)。この検出光量の値を光子の個数によりZ’[カウント]と定義する。主制御装置171は、この検出光量Z’と、光電子増倍管162の感度低減の基準値(目標値)である判定下限値(L[カウント])とを比較する(ステップS20)。図示の例では、例えばL=X=10万[カウント]とする。すなわち、前述の初期値Xが判定下限値Lに設定される。
【0040】
基準光の検出光量Z’[カウント]が判定下限値L以下の場合(Z’≦L)、例えば、Z’=9万9000[カウント]の場合、光電子増倍管162の感度は初期値を下回ったものの、許容可能な、実験誤差の範囲内に戻ったとみなし、本フローを終了する(ステップS21)。
一方、基準光の検出光量(Z’[カウント])が、判定下限値Lより大きい場合、例えばZ’=10万2000[カウント]の場合、光電子増倍管162の増大した感度を低減するために、ステップS10に戻り、改めて必要な制御光の光量を定め、制御光の照射を行う。Z’=10万2000カウントで、L=10万カウントである場合、あと2%感度を低減する必要があると判断し、制御光の光量及び合計の照射時間が定められる。
【0041】
このように、上記の実施の形態では、一定量の制御光の照射を終えた後、再び基準光により光電子増倍管162の感度の確認を行い、感度が目標値まで低減されていない場合には、再度の制御光の照射を行う。このような動作は、以下に述べるような場合にも感度を適切な範囲に戻すことが可能となるため好適である。すなわち、光電子増倍管162の感度の光照射に対する低減率は個体差があるばかりでなく、同一個体内でも光照射量に応じて変化することが知られている。また、制御光の照射を行っている最中でも、他の何らかの要因により、逆に感度の増大が進行する可能性もある。そのため、想定していた制御光の照射量の照射では、感度が想定したように低減されない場合があり得る。
【0042】
図5は、制御光のon/offに伴う、光電子増倍管162の感度の増大と低減の関係の例を示したグラフである。グラフ中の黒丸のドットは、基準光を照射した場合の光電子増倍管162の検出光量を示す。制御光が照射されていない期間(制御光off)においては、光電子増倍管162の感度は増大傾向となり、感度は判定上限値Uを超えることもある。光電子増倍管162の感度が判定上限値Uを超えた場合には、
図3のステップS8で説明したように、制御光の照射が開始され(on)、その照射期間の間、光電子増倍管162の感度は徐々に低下する。この照射期間においても、所定光量の制御光が照射された後、基準光を用いた光電子増倍管162の感度の確認が行われ(ステップS20)、光電子増倍管162の出力信号が判定下限値L以下となれば制御光の照射は終了し、出力信号が判定下限値Lよりも大きければ、制御光の照射は継続される。
【0043】
なお、上述の第1の実施の形態では、発光標識としてアクリジニウムエステルを用いた化学発光法を検出部において用いる装置を例として説明したが、アクリジニウムエステルはあくまで一例であり、他の公知の方法例えば、ルミノールを用いた化学発光酵素免疫測定法、ルテニウム錯体を用いた電気化学発光法、あるいはルシフェリンを用いた生物発光酵素免疫測定法などを用いてもよく、これらも本発明の範囲に包含され得る。
【0044】
ここで、第1の実施の形態では、
図3で示したように、制御光の照射により、光電子増倍管162の感度が判定下限値U以下となるよう制御されるよう、制御光の光量を設定している。このように、光電子増倍管162の感度が判定下限値U近傍に維持する制御がなされることで、光電子増倍管162の感度(の絶対値)が初期値と同等に維持される。これにより、もともと自動分析装置が装置内部にデータテーブルとして保持している、信号量と濃度の関係、すなわち検量線の精度を維持したまま用いることができる。すなわち、光電子増倍管162の出力信号に基づき、試料中の分析対象物質の濃度を正しく算出することができる。この意味において、第1の実施の形態における制御光の光照射による光電子増倍管162の感度の制御は、測定前に事前光照射を行うことで、受光面のエイジング効果によって、受光センサの感度を一定に保ち、測定のウォームアップ時間を短縮するという技術とは異なる。具体的には、基準光を照射した場合の光電子増倍管の検出光量に応じて、光電子増倍管への制御光照射の実施有無を適宜判定するという点で異なる。このようにすることで、光電子増倍管の感度を基準値に基づいて定められる一定の範囲に制御し、測定系の定量性を維持することが可能である。また同様に、第1の実施の形態における制御光の光照射による光電子増倍管162の感度の制御は、使用前に数時間から数十時間連続動作を行うことにより、光電子増倍管の出力の「変化量」を低減する技術とは異なる。具体的には、本発明は光電子増倍管の感度を基準値に基づいて定められる一定の範囲に制御するという点で異なる。このようにすることで、測定系の定量性を維持することが可能である。
【0045】
ステップS5で照射する基準光と、ステップS10で照射する制御光の光量の関係について、以下に説明する。この実施の形態では、一例として、基準光を照射する場合の光電子増倍管162の出力(陽極)電流を1[uA]とし、一方で、制御光を照射する場合の光電子増倍管162の出力(陽極)電流を50[uA]とすることができる。このように基準光(第1の光)と制御光(第2の光)とで出力電流ひいてはLED161の発光光量を異ならせることにより、それぞれの目的に合わせた光量を選定できる。例えば、基準光の光量は、通常の血液試料の分析で用いる平均的な値とする一方で、制御光の光量は、感度低下を促進するために、より大きな値とすることが出来る。特に検出光量が高い領域では、光量と感度の関係が直線的ではなくなる場合がある。このような領域であっても、感度低下の促進には問題がないが、基準光として用いる場合、感度の変化を適切に検出することが困難になる。第1の光量と第2の光量を分けることにより、このような問題を避けることが出来る。
【0046】
制御光の単位時間当たりの光量(出力電流又は陽極電流)は、基準光の単位時間当たりの光量(出力電流又は陽極電流)の10倍以上であることが望ましい。上記の例のように、制御光の出射時のLED161の出力電流が50μAで、基準光の出射時のLED161の出力電流が1μAの場合、制御光の単位時間当たりの光量は、基準光の単位時間当たりの光量の50倍となる。このようにすることで、基準光の安定性と、制御光による感度低減の促進を両立することが出来る。
【0047】
なお、第1の実施の形態では、基準光と制御光の両方を、1つのLED161で発生させ、LED161が基準光の光源と制御光の光源を兼ねている。これにより、光源の数・制御回路用素子の数を節約するとともに、省スペース化を図ることが出来る。ただし、基準光の出射用の光源と、制御光の出射用の光源とを別々に設ける変形例も実施可能であり、そのような変形例も本発明の範囲に含まれる。基準光と制御光とで光源を別々に設けることで、それぞれの光源から出射する光量の調整が容易になる。例えば、基準光を出射するLEDを3[mA]程度の定格電流を有するLEDとする一方で、制御光を出射するLEDを、定格電流が30[mA]程度の高出力LEDとすることができる。これにより、電流値が定格から離れることによる出力の不安定性、素子の温度上昇によるリスクを低減できる。
ただし、第1の実施の形態のように、基準光と制御光とで1つのLED161を兼用したとしても、出力電流を一定に維持することができれば、出射光の光量は実用上問題の無い、無視できる程度の変動量とすることができる。
【0048】
[第2の実施の形態]
次に、第2の実施の形態に係る自動分析装置を、
図6及び
図7を参照して説明する。装置の構成の外観は、第1の実施の形態(
図1)と同一であるので、重複する説明は省略する。ただし、この第2の実施の形態は、光電子増倍管162の感度の制御の動作が、第1の実施の形態と異なっている。具体的には、この第2の実施の形態では、制御光の照射による光電子増倍管162の感度の制御に加え、電気信号の補正による光電子増倍管162の感度の制御も実行する点において、第1の実施の形態と異なっている。
【0049】
図6は、第2の実施の形態の自動分析装置において、光電子増倍管162の検査を行い、必要に応じてその感度を制御する手順を示すフローチャートである。また、
図7は、その制御を行う場合の光電子増倍管162の感度の時間的変化の例を示す概念図(グラフ)である。
図6において、第1の実施の形態の手順(
図3)と同一の手順については、同じ参照番号(S1、S2、S3・・・)を付しているので、以下において重複する説明は省略し、異なる点のみを説明する。また、
図7のグラフの白丸のドットは、基準光を照射した場合の光電子増倍管162の検出光量を示しており、黒丸のドットは、電気信号の補正後の光電子増倍管162の検出光量を示している。
【0050】
この第2の実施の形態の自動分析装置における光電子増倍管162の感度の制御の手順は、S1〜S9については第1の実施の形態と略同一である。ただし、ステップS8においてZ≦ULと判断された場合(No)には、本フローを終了する前に、Zの値に応じて、光電子増倍管162の検出光量が判定下限値Lに近づくように電気信号の補正が行われる(ステップS22)。
【0051】
光電子増倍管162への制御光の照射の手順も、S10〜S19については略同一である。ただし、この第2の実施の形態では、ステップS20において、光電子増倍管162の検出光量Z’が判定下限値Lよりも大きいと判定される場合(Z’>L)、再度の制御光の照射を行うことに加え(又はそれに代えて)、得られた検出光量Z’を電気信号として補正する(ステップS23)。これにより、光電子増倍管162の感度は、判定下限値Lに相当する感度となるよう電気的に補正がなされる。このような補正がなされると、自動分析装置が内部に保持している、信号量と濃度の関係、すなわち検量線(マスターカーブ)の精度をより高い状態で維持したまま用いることができる。なお、ステップS20で、Z’≦Lと判定される場合、すなわち光電子増倍管162の感度が判定下限値を下回ったと判定される場合には、逆に感度を上昇させるような補正が実行された後(ステップS24)、本フローを終了する。
【0052】
この動作を、
図7を参照して説明する。
図7は、制御光のon/offに伴う、光電子増倍管162の感度の増大と低減の関係、及び装置内部における電気的な補正を示した模式図である。
図7中、白丸のドットは、基準光を照射した場合の光電子増倍管162の検出光量を示している。
また、黒丸のドットは、この検出光量にもとづき、検出光量を初期値と同等となるように電気信号を補正した値、すなわち補正後の検出光量である。このように初期値と同等となるような補正値を得ることにより、検量線(マスターカーブ)の精度を維持したまま用いることができ、反応容器131中の試料の分析対象物質の濃度を正しく算出することができる。
【0053】
なお、ステップS22、S23、S24での数値的な(電気信号の)補正は、光電子増倍管162の検出光量が、判定上限値Uよりも更に大きい数値補正上限値CU(>U)を超えた場合には、信号が飽和し、飽和後の信号を正しく補正することが難しい場合がある。このため、
図6及び
図7での図示は省略しているが、光電子増倍管162の検出光量Zが数値補正上限値CUを超えている場合には、ステップS22の補正は行わず、第1の実施の形態と同様の、制御光による感度の低減動作のみを実行することが好ましい。
【0054】
[第3の実施の形態]
続いて、第3の実施の形態に係る自動分析装置を、
図8を参照して説明する。装置の構成の外観は、第1の実施の形態(
図1)と同一であるので、重複する説明は省略する。ただし、この第3の実施の形態は、光電子増倍管162の感度の制御の動作が、第1の実施の形態と異なっている。具体的には、この第3の実施の形態では、所定の試薬からの光を、光電子増倍管162の感度を判定するための基準光として用いるよう構成されており、この点、基準光をLED161から発光させるように構成されている第1の実施の形態と異なっている。具体的に、この第3の実施の形態では、
図8に示すように、基準光を発する試薬を反応容器131Tに注入し、この反応容器131Tを第2チャンバR2に載置して、光電子増倍管162への基準光の発光を行わせる。なお、制御光は、第1の実施の形態と同様に、LED161から発せられる。
【0055】
図9は、第3の実施の形態の自動分析装置において、光電子増倍管162の検査を行い、必要に応じてその感度を制御する手順を示すフローチャートである。第1の実施の形態と同一のステップについては、
図3と同一の参照符号を付しているので、以下では重複する説明は省略する。
図3との相違点の1つは、ステップS1’において、主制御装置171が、反応容器ホルダ165に、基準光の発光用の試薬を含んだ反応容器131Tが設置されているか否かを任意のセンサ(図示せず)により確認する点である。設置されていなければ、反応容器131Tを反応容器ホルダ165に設置する(ステップS2’)。反応容器131T’の設置が確認された場合は、次の工程(ステップS3)に進む。ステップS5’,S6,S7’では、LED161からの発光に代えて、反応容器131Tに含まれる試薬からの光を光電子増倍管162に向けて照射する。また、制御光の照射後の検出光量の確認も、同様に反応容器131T内の試薬からの光を用いて行う(ステップS18’、S19’)。なお、この反応容器131Tの試薬からの基準光に加え、LED161の基準光も併せて光電子増倍管162に向けて照射することも可能である。
【0056】
反応容器131Tに格納する基準光の発光のための試薬としては、自動分析装置の外部で重量や容量を用いてあらかじめ調製された校正用試料である標準試料や精度管理試料と呼ばれるものを用いることが望ましい。標準試料や精度管理試料は、たとえば血中甲状腺刺激ホルモンといった、当該システムで実際に測定するための分析対象に対して用意されたものであって、臨床検査を目的とした使用者が日常的に用いる試料である。標準試料および精度管理試料は、一般的に信号量と濃度の関係が設定されている。一般的には、標準試料の場合は、臨床検査薬を提供する業者が、臨床検査薬と一体として提供するものである。特に、高感度で試薬のロット間差が存在する高感度免疫分析法では、臨床検査薬を当該システムに対して提供する業者が提供する。従って、その製造段階で、たとえば2つの点、低濃度側と高濃度側の標準液を提供するにあたっては、それぞれの標準試料がどの程度の信号をもたらすかは、あらかじめ知っていなければならない。また、精度管理試料はあらかじめ許容される濃度が示されている試料であって、適切な標準試料によって校正された装置であれば、出力される信号量は予測することができる。以上、この第3の実施の形態によれば、自動分析装置のユーザが日常的に用いる校正用試料の分析結果から、光電子増倍管の感度に関する情報を得ることができる。また、検量線の校正に用いた試料の測定結果をそのまま用いることで、追加の試薬を用いることなく情報を取得でき、経済的な効率がよい。
【0057】
ここで、上述の実施の形態では、基準光として所定の試薬からの光を用いたが、この試薬からの光を用いた光電子増倍管の感度の判定に加え、LED161から基準光を照射して光電子増倍管の感度を判定することを併せて実行することも可能である。
例えば、
図10に示すように、LED161からの基準光を用いた光電子増倍管162の感度の判定を実行して検出光量Z1を得た後(ステップS31)、反応容器131Tに格納された試薬からの基準光を用いた光電子増倍管162の感度の判定を実行して検出光量Z2を得る(ステップS32)。その後、ステップS31で得られた検出光量Z1、及びステップS32で得られた検出光量Z2のそれぞれについて判定上限値Uとの比較判定を行い、2つの判定結果が異なっているか否かを判定する(ステップS33)。
2つの判定結果が一致していれば(いずれの判定でも判定上限値を超えている(又は超えていない))、ステップS34に移行し、Z1、Z2がともに判定上限値Uよりも大きいか否かを判定する。Z1、Z2がともに判定上限値U以下であれば、本フローを終了する。一方、Z1、Z2がともに判定上限値Uよりも大きければ、
図9のステップS10に移行して、前述の実施の形態と同様の制御光の照射による光電子増倍管162の感度の制御を行う。
これに対し、S31とS32の2つの比較結果が異なっている場合には、警告情報をディスプレイ179などを介して出力する(ステップS35)。例えば、LED161からの基準光に大きな変動が認められないにもかかわらず、反応容器131T内の試薬からの基準光を用いて測定された検出光量が何らかの異常値を出力した場合、光電子増倍管162の感度の変動ではなく、反応容器131、試薬、又は試薬の混合プロセスなどにおける異常を疑うことが出来る。この場合に、当該自動分析装置のディスプレイ179やその他の表示手段において、当該異常に関する情報を表示してもよい。
【0058】
[その他]
制御光の照射工程は、反応容器131の発光量測定を行っていない、任意のタイミングにおいて開始することが出来る。特に、制御光の照射工程は、例えば自動分析装置を起動した後のウォーミングアップ動作の実行時、自動分析装置のシャットダウン指示があった後の終了処理動作の実行時、又は分析対象の検体容器が装置に投入されるのを待っているスタンバイ状態において行うのが好適である。これにより、反応容器131の発光量測定の工程と、制御光の照射工程との間に一定の時間差を与えることが出来る。時間差を与えることで、特に敏感な光電子増倍管において、比較的陽極電流量が大きくなる可能性がある制御光の照射を行った後に、一時的に光電子増倍管の光電面が活性化し、化学発光の発光量測定に影響を及ぼすことを防止できる。
【0059】
また、上述したような光電子増倍管の感度の制御が行われた際には、当該自動分析装置のディスプレイ179やその他の表示手段に、感度の制御に関する情報を表示することが望ましい。感度の制御に関する情報とは、例えば
(1)光電子増倍管162の感度が適正な範囲内に収まっていることが確認されたこと、
(2)光電子増倍管162の感度の制御を行っている際に異常が検知されたこと、
(3)光電子増倍管162の感度の制御に伴い適宜設定される上限値を超えたこと
などである。
なお、「(2)光電子増倍管162の感度の制御を行っている際に異常が検知されたこと」とは、例えば、基準光を照射した場合の光電子増倍管162の検出光量を確認した時点で、異常な値、例えば初期値の3倍以上の検出光量を検知したなど、通常想定されるより大きな変動を検知した場合が挙げられる。あるいは、別の例として、光電子増倍管162の検出光量の精度を高めるために複数回の測定が行われたときに、その標準偏差が異常な値、例えば検出光量の平均値に対する割合が10%を超える値など、通常想定されるより大きな変動を検知した場合である。また別の例としては、制御光の照射後に、検出光量が大幅に増大する場合が上げられる。このような場合は、制御光の照射や、数値的な補正のみでの感度の適正化は難しいと判断し、装置保守担当者によるメンテナンス、または適宜の部品交換を、ユーザに促すことができる。
【0060】
また、「(3)光電子増倍管162の感度の制御に伴い適宜設定される上限値を超えたこと」とは、例えば光電子増倍管162を自動分析装置へ設置した後の全期間に亘る総検出光量(検出光量の合計値)が、定められた上限値を超える場合が挙げられる。この実施の形態の自動分析装置は、制御光により光電子増倍管162の感度の増大を抑制して適正化するものである。このため、総検出光量がある上限値を超えることは、それだけ、光電子増倍管162の感度の増大が継続的に発生していることを意味する。このような自動分析装置については、総検出光量が一定の上限値を超えた段階で、装置保守担当者によるメンテナンスを行い、装置の状態を確認するとともに、適宜部品交換を行うことが、将来的なトラブルを予防保全的に防ぐ観点では望ましい。
【0061】
図11は実施の形態の自動分析装置における感度の制御処理後のディスプレイ179の表示画面の一例である。この例では、検出部の状態が適切であることを示す情報(Appropriate detection condition.)を表示している。これにより、本実施の形態の自動分析装置のユーザは、検出部の状態が適切であることを認識した上で分析作業を行うことが可能となる。
【0062】
図12は、本実施の形態の自動分析装置において、光電子増倍管162の感度の制御処理後のディスプレイ179の表示画面の別の例である。この例は、光電子増倍管162の感度の制御時に検出部に異常を検知したこと、及び自動分析装置の保守を行うことをユーザに報知する表示(Abnormal detection condition.Please check status of instrument.)の例である。これにより、装置のユーザは自動分析装置の検出部の異常発生及び、状態の確認が必要であることを認識できる。
【0063】
以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。