特許第6842416号(P6842416)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社クラレの特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6842416
(24)【登録日】2021年2月24日
(45)【発行日】2021年3月17日
(54)【発明の名称】(メタ)アクリル系ブロック共重合体
(51)【国際特許分類】
   C08F 297/02 20060101AFI20210308BHJP
   C08F 299/00 20060101ALI20210308BHJP
【FI】
   C08F297/02
   C08F299/00
【請求項の数】1
【全頁数】33
(21)【出願番号】特願2017-529859(P2017-529859)
(86)(22)【出願日】2016年7月14日
(86)【国際出願番号】JP2016070869
(87)【国際公開番号】WO2017014154
(87)【国際公開日】20170126
【審査請求日】2019年3月8日
(31)【優先権主張番号】特願2015-144813(P2015-144813)
(32)【優先日】2015年7月22日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000001085
【氏名又は名称】株式会社クラレ
(74)【代理人】
【識別番号】110001070
【氏名又は名称】特許業務法人SSINPAT
(72)【発明者】
【氏名】清水 星哉
(72)【発明者】
【氏名】高井 順矢
(72)【発明者】
【氏名】松浦 幹也
(72)【発明者】
【氏名】社地 賢治
【審査官】 佐藤 のぞみ
(56)【参考文献】
【文献】 特開2016−050290(JP,A)
【文献】 国際公開第2015/060224(WO,A1)
【文献】 国際公開第2014/148251(WO,A1)
【文献】 国際公開第2016/027767(WO,A1)
【文献】 特開2011−184678(JP,A)
【文献】 国際公開第2014/208500(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 293/00−297/08
C08F 290/00−290/14
C08F 299/00−299/08
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記一般式(2)で示される部分構造(2)を含む活性エネルギー線硬化性基をそれぞれが有するメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)、並びに前記メタクリル系重合体ブロック(a1)と前記メタクリル系重合体ブロック(a2)との間に位置する活性エネルギー線硬化性基を有さないアクリル系重合体ブロック(B)からなり、
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対する、メタクリル酸メチルに由来する単量体単位の含有量が30質量%以上であり、
アクリル系重合体ブロック(B)の全単量体単位に対する、炭素数6以上のアルキル基を有するアクリル酸アルキルエステルに由来する単量体単位の含有量が80質量%以上であり、
下記部分構造(2)が、下記一般式(3)で示される2官能メタクリル酸エステルに由来する単量体単位として含まれる(メタ)アクリル系ブロック共重合体。
【化1】
(式(2)中、R1メチル基を表し、R2およびR3はそれぞれ独立して炭素数1〜6の炭化水素基を表し、XはOを表し、nは1〜20の整数を表す)
【化2】
(式(3)中、R2およびR3はそれぞれ独立して炭素数1〜6の炭化水素基を表し、nは1〜20の整数を表す)
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、活性エネルギー線を照射した際の硬化速度が速く、かつ粘度が低い(メタ)アクリル系ブロック共重合体に関する。
【背景技術】
【0002】
紫外線や電子線などの活性エネルギー線を照射することで硬化する活性エネルギー線硬化性材料が知られており、接着剤、粘着剤、塗料、インク、コーティング剤、光造形材などの用途に用いられている。
【0003】
中でも、活性エネルギー線硬化性基を有する(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物は、光学用途への有用性が期待でき、検討が進められている。
【0004】
例えば、アクリル酸n−ブチルを重合してアクリル系重合体ブロックを形成した後、メタクリル酸メチルとメタクリル酸2−ヒドロキシエチルを共重合して水酸基含有メタクリル系重合体ブロックを形成し、得られたブロック共重合体が有する水酸基に塩化アクリロイルを反応させて活性エネルギー線硬化性基となるアクリロイル基を導入することで得られる、(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物が知られている(特許文献1参照)。
【0005】
また、メタクリル酸メチルと1,1−ジメチルプロパン−1,3−ジオールジメタクリレートとを共重合して活性エネルギー線硬化性基となるメタクリロイル基を導入したメタクリル系重合体ブロックを形成した後、アクリル酸n−ブチルを重合してアクリル系重合体ブロックを形成することで得られる(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物が知られている(特許文献2参照)。
【0006】
これら(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物において、さらに硬化速度を向上させたいという要望がある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2011/184678号公報
【特許文献2】国際公開第2014/148251号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、活性エネルギー線を照射した際の硬化速度が速い活性エネルギー線硬化性組成物に有用な、(メタ)アクリル系ブロック共重合体を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明によれば、上記目的は、
[1]下記一般式(1)で示される部分構造(1)を含む活性エネルギー線硬化性基をそれぞれが有するメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)、並びに前記メタクリル系重合体ブロック(a1)と前記メタクリル系重合体ブロック(a2)との間に位置する活性エネルギー線硬化性基を有さないアクリル系重合体ブロック(B)からなり、
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対する、メタクリル酸メチルに由来する単量体単位の含有量が30質量%以上であり、
アクリル系重合体ブロック(B)の全単量体単位に対する、炭素数6以上のアルキル基を有するアクリル酸アルキルエステルに由来する単量体単位の含有量が40質量%以上である(メタ)アクリル系ブロック共重合体;を提供することにより達成される。
【0010】
【化1】
(式(1)中、R1は水素原子または炭素数1〜20の炭化水素基を表す。)
【発明の効果】
【0011】
本発明の(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物は活性エネルギー線を照射した際の硬化速度が速い。
【発明を実施するための形態】
【0012】
以下、本発明について、詳細に説明する。
本発明の(メタ)アクリル系ブロック共重合体は、メタクリル系重合体ブロック(a1)とメタクリル系重合体ブロック(a2)との間にアクリル系重合体ブロック(B)が位置する構造を有し、該メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)は、それぞれ部分構造(1)を有する。
【0013】
なお、本明細書において「(メタ)アクリル」とは「メタクリル」と「アクリル」との総称を意味し、後述する「(メタ)アクリロイル」は「メタクリロイル」と「アクリロイル」との総称を意味し、後述する「(メタ)アクリレート」は「メタクリレート」と「アクリレート」との総称を意味する。
【0014】
部分構造(1)は、活性エネルギー線の照射によって重合性を示す。この結果、本発明の(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物は活性エネルギー線の照射によって硬化して硬化物となる。なお、本明細書において活性エネルギー線とは、光線、電磁波、粒子線およびこれらの組み合わせを意味する。光線としては遠紫外線、紫外線(UV)、近紫外線、可視光線、赤外線などが挙げられ、電磁波としてはX線、γ線などが挙げられ、粒子線としては電子線(EB)、プロトン線(α線)、中性子線などが挙げられる。硬化速度、照射装置の入手性、価格等の観点から、これら活性エネルギー線の中でも紫外線、電子線が好ましく、紫外線がより好ましい。
部分構造(1)は、下記一般式(1)で示される。
【0015】
【化2】
(式(1)中、R1は水素原子または炭素数1〜20の炭化水素基を表す。)
【0016】
上記一般式(1)中、R1が表す炭素数1〜20の炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、2−メチルブチル基、3−メチルブチル基、2−エチルブチル基、3−エチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、n−デシル等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基などのアラルキル基が挙げられる。中でも、活性エネルギー線硬化性の観点から水素原子、メチル基、およびエチル基が好ましく、メチル基が最も好ましい。
【0017】
本発明の(メタ)アクリル系ブロック共重合体を、例えば該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物として使用する場合、基材に塗工して、活性エネルギー線を照射することにより硬化させて硬化物として用いた後に、例えば廃棄等の必要が生じる場合がある。その際に、かかる硬化物が基材から容易に剥離、例えば湿熱分解法により容易に剥離できることが望ましい。硬化後に優れた湿熱分解性を有する観点から、上記部分構造(1)は、下記一般式(2)で示される部分構造(以下「部分構造(2)」と称する)の一部であることが好ましい。
【0018】
【化3】
(式(2)中、R1は水素原子または炭素数1〜20の炭化水素基を表し、R2およびR3はそれぞれ独立して炭素数1〜6の炭化水素基を表し、XはO、S、またはN(R4)(R4は水素原子または炭素数1〜6の炭化水素基を表す)を表し、nは1〜20の整数を表す)
【0019】
上記一般式(2)中、R1が表す炭素数1〜20の炭化水素基の具体例および好適例としては、上記一般式(1)のR1と同様の炭化水素基が挙げられる。
上記一般式(2)中、R2およびR3がそれぞれ独立して表す炭素数1〜6の炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、2−メチルブチル基、3−メチルブチル基、2−エチルブチル基、3−エチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基などが挙げられる。中でも、活性エネルギー線硬化性および湿熱分解性の観点から、メチル基およびエチル基が好ましく、メチル基が最も好ましい。
【0020】
上記一般式(2)中、XはO、SまたはN(R4)(R4は水素原子または炭素数1〜6の炭化水素基を表す)を表し、重合制御のしやすさからOが好ましい。XがN(R4)である場合、R4が表す炭素数1〜6の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、2−メチルブチル基、3−メチルブチル基、2−エチルブチル基、3−エチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基などが挙げられる。
【0021】
上記一般式(2)中、nが表す1〜20の整数は、(メタ)アクリル系ブロック共重合体の流動性と硬化速度の観点から2〜5であることが好ましい。
本発明の(メタ)アクリル系ブロック共重合体1分子に含まれる部分構造(1)の数は、2個以上であることが硬化速度の点から好ましく、3個以上であることがより好ましく、4個以上であることがさらに好ましく、5個以上であることが特に好ましい。
【0022】
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)に含まれる部分構造(1)の数は、それぞれ1個以上であることが好ましく、2個以上であることがより好ましい。
【0023】
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を構成する全単量体単位に対する部分構造(1)の含有量は、0.2〜70モル%の範囲が好ましく、10〜50モル%の範囲がより好ましく、25〜40モル%の範囲がさらに好ましい。
【0024】
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)に含まれる部分構造(1)は、各メタクリル系重合体ブロックの末端にあっても、側鎖にあってもよいが、好ましい含有量の部分構造(1)を導入する観点から、少なくとも側鎖にあることが好ましい。
【0025】
メタクリル系重合体ブロック(a1)における部分構造(1)の含有量(すなわち、メタクリル系重合体ブロック(a1)を構成する全単量体単位に対する部分構造(1)のモル分率)およびメタクリル系重合体ブロック(a2)における部分構造(1)の含有量(すなわち、メタクリル系重合体ブロック(a2)を構成する全単量体単位に対する部分構造(1)のモル分率)は、特に限定されないが、それぞれ0.2〜70モル%の範囲が好ましく、10〜50モル%の範囲がより好ましく、25〜40モル%の範囲がさらに好ましい。
【0026】
本発明の(メタ)アクリル系ブロック共重合体は、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対する、メタクリル酸メチルに由来する単量体単位の含有量は30質量%以上であり、35質量%以上であることがこのましく、40質量%以上であることがより好ましい。本発明の(メタ)アクリル系ブロック共重合体は、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対する、メタクリル酸メチルに由来する単量体単位の含有量が30質量%以上であることにより、これらメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の極性が高まり、活性エネルギー線硬化性が高まる。
【0027】
また、活性エネルギー線硬化性の観点から、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対する、メタクリル酸メチルに由来する単量体単位の含有量は、95質量%以下であることが好ましく、85質量%以下であることがより好ましい。
【0028】
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)は、例えば、メタクリル酸メチルを含む単量体を重合することにより形成される。
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)のそれぞれにおいて、メタクリル酸メチルに由来する単量体単位の含有量が30質量%以上であることが好ましい一態様である。かかる単量体単位は、例えば、メタクリル酸メチルを30質量%以上含有する単量体を重合することにより形成される。メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)それぞれにおいて、メタクリル酸メチルに由来する単量体単位の含有量が30質量%以上であることにより、(メタ)アクリル系ブロック共重合体の活性エネルギー線硬化性がより高まる傾向にある。活性エネルギー線硬化性の観点からは、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)それぞれにおけるメタクリル酸メチルに由来する単量体単位の含有量は、30質量%以上であることが好ましく、35質量%以上であることがより好ましい。また、同じく活性エネルギー線硬化性の観点から、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)それぞれにおけるメタクリル酸メチルに由来する単量体単位の含有量は、95質量%以下であることが好ましく、85質量%以下であることがより好ましい。
【0029】
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)は、それぞれメタクリル酸エステルを含有する単量体に由来する単量体単位を含む。かかるメタクリル酸エステルは、1個のメタクリロイル基を有する単官能メタクリル酸エステルおよび2個以上のメタクリロイル基を有する多官能メタクリル酸エステルに大別される。
【0030】
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)となる単官能メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸t−ブチル、メタクリル酸シクロヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸イソボルニル、メタクリル酸ドデシル、メタクリル酸2−メトキシエチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシブチル、メタクリル酸トリメトキシシリルプロピル、メタクリル酸2−アミノエチル、メタクリル酸N,N−ジメチルアミノエチル、メタクリル酸N,N−ジエチルアミノエチル、メタクリル酸フェニル、メタクリル酸ナフチル、メタクリル酸2−(トリメチルシリルオキシ)エチル、メタクリル酸3−(トリメチルシリルオキシ)プロピル、メタクリル酸グリシジル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、メタクリル酸のエチレンオキサイド付加物、メタクリル酸トリフルオロメチルメチル、メタクリル酸2−トリフルオロメチルエチル、メタクリル酸2−パーフルオロエチルエチル、メタクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、メタクリル酸2−パーフルオロエチル、メタクリル酸パーフルオロメチル、メタクリル酸ジパーフルオロメチルメチル、メタクリル酸2−パーフルオロメチル−2−パーフルオロエチルメチル、メタクリル酸2−パーフルオロヘキシルエチル、メタクリル酸2−パーフルオロデシルエチル、メタクリル酸2−パーフルオロヘキサデシルエチルなどが挙げられる。これらの中でも、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸t−ブチル等の、炭素数1〜5のアルキル基を有するメタクリル酸アルキルエステルが好ましい。
【0031】
また、上記多官能メタクリル酸エステルとして、下記一般式(3)で示される2官能メタクリル酸エステル(以下、「ジメタクリレート(3)」と称する)を用いると、後述する条件下でリビングアニオン重合することで、一方のメタクリロイル基(下記一般式(3)中「(CH2n」が直結するメタクリロイル基)が選択的に重合して、部分構造(2)を有するメタクリル系重合体ブロック(a1)および/またはメタクリル系重合体ブロック(a2)が得られることから好ましい。
【0032】
【化4】
(式(3)中、R2およびR3はそれぞれ独立して炭素数1〜6の炭化水素基を表し、nは1〜20の整数を表す)
【0033】
上記一般式(3)中、R2およびR3が表す炭素数1〜6の炭化水素基の例としては上記一般式(2)のR2およびR3と同様の炭化水素基が挙げられる。上記一般式(3)中、nが表す1〜20の整数は、(メタ)アクリル系ブロック共重合体の流動性と硬化速度の観点から2〜5であることが好ましい。
【0034】
ジメタクリレート(3)の具体例としては、例えば1,1−ジメチルプロパン−1,3−ジオールジメタクリレート、1,1−ジメチルブタン−1,4−ジオールジメタクリレート、1,1−ジメチルペンタン−1,5−ジオールジメタクリレート、1,1−ジメチルヘキサン−1,6−ジオールジメタクリレート、1,1−ジエチルプロパン−1,3−ジオールジメタクリレート、1,1−ジエチルブタン−1,4−ジオールジメタクリレート、1,1−ジエチルペンタン−1,5−ジオールジメタクリレート、1,1−ジエチルヘキサン−1,6−ジオールジメタクリレートなどが挙げられ、1,1−ジメチルプロパン−1,3−ジオールジメタクリレート、1,1−ジメチルブタン−1,4−ジオールジメタクリレート、1,1−ジメチルペンタン−1,5−ジオールジメタクリレート、1,1−ジメチルヘキサン−1,6−ジオールジメタクリレート、1,1−ジエチルプロパン−1,3−ジオールジメタクリレート、1,1−ジエチルブタン−1,4−ジオールジメタクリレート、1,1−ジエチルペンタン−1,5−ジオールジメタクリレート、および1,1−ジエチルヘキサン−1,6−ジオールジメタクリレートが好ましく、1,1−ジメチルプロパン−1,3−ジオールジメタクリレート、1,1−ジメチルブタン−1,4−ジオールジメタクリレート、1,1−ジメチルペンタン−1,5−ジオールジメタクリレート、および1,1−ジメチルヘキサン−1,6−ジオールジメタクリレートがより好ましい。
【0035】
これらメタクリル酸エステルは1種を単独で使用しても、2種以上を併用してもよい。
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対する、メタクリル酸エステル(メタクリル酸メチルを含む)に由来する単量体単位の含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%であってもよい。また、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)がジメタクリレート(3)を含有する単量体から形成されている場合、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対する、ジメタクリレート(3)に由来する単量体単位の含有量は、0.5〜70質量%の範囲が好ましく、20〜65質量%の範囲がより好ましく、45〜60質量%の範囲がさらに好ましい。さらに、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)が、メタクリル酸メチルとジメタクリレート(3)を含有する単量体から形成されている場合、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対する、メタクリル酸メチルに由来する単量体単位の含有量とジメタクリレート(3)に由来する単量体単位の合計量は、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対して、80〜100質量%の範囲が好ましく、90〜100質量%の範囲がより好ましく、95〜100質量%の範囲がさらに好ましく、100質量%であってもよい。
【0036】
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)それぞれにおいて、メタクリル酸エステル(メタクリル酸メチルを含む)に由来する単量体単位の含有量が、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは100質量%であることが望ましい一態様である。また、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)がジメタクリレート(3)を含有する単量体から形成されている場合、各メタクリル系重合体ブロックにおいて、ジメタクリレート(3)から形成される単量体単位の含有量が、好ましくは0.5〜70質量%の範囲、より好ましくは20〜65質量%の範囲、さらに好ましくは45〜60質量%の範囲であることが望ましい一態様である。さらに、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)が、メタクリル酸メチルとジメタクリレート(3)を含有する単量体から形成されている場合、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)それぞれにおいて、メタクリル酸メチルから形成される単量体単位とジメタクリレート(3)から形成される単量体単位との合計量が、好ましくは80〜100質量%の範囲、より好ましくは90〜100質量%の範囲、さらに好ましくは95〜100質量%の範囲、特に好ましくは100質量%であることが望ましい一態様である。
【0037】
メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)は、上記メタクリル酸エステル以外の他の単量体に由来する単量体単位を有していてもよい。該他の単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸t−ブチル、アクリル酸シクロヘキシル、アクリル酸2−エチルヘキシル、アクリル酸イソボルニル、アクリル酸ドデシル、アクリル酸2−メトキシエチル、アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシブチル、アクリル酸トリメトキシシリルプロピル、アクリル酸2−アミノエチル、アクリル酸N,N−ジメチルアミノエチル、アクリル酸N,N−ジエチルアミノエチル、アクリル酸フェニル、アクリル酸ナフチル、アクリル酸2−(トリメチルシリルオキシ)エチル、アクリル酸3−(トリメチルシリルオキシ)プロピル、アクリル酸グリシジル、γ−(アクリロイルオキシプロピル)トリメトキシシラン、アクリル酸のエチレンオキサイド付加物、アクリル酸トリフルオロメチルメチル、アクリル酸2−トリフルオロメチルエチル、アクリル酸2−パーフルオロエチルエチル、アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、アクリル酸2−パーフルオロエチル、アクリル酸パーフルオロメチル、アクリル酸ジパーフルオロメチルメチル、アクリル酸2−パーフルオロメチル−2−パーフルオロエチルメチル、アクリル酸2−パーフルオロヘキシルエチル、アクリル酸2−パーフルオロデシルエチル、アクリル酸2−パーフルオロヘキサデシルエチルなどのアクリル酸エステル;α−メトキシアクリル酸メチル、α−エトキシアクリル酸メチルなどのα−アルコキシアクリル酸エステル;クロトン酸メチル、クロトン酸エチルなどのクロトン酸エステル;3−メトキシアクリル酸エステルなどの3−アルコキシアクリル酸エステル;N−イソプロピル(メタ)アクリルアミド、N−t−ブチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミドなどの(メタ)アクリルアミド;2−フェニルアクリル酸メチル、2−フェニルアクリル酸エチル、2−ブロモアクリル酸n−ブチル、2−ブロモメチルアクリル酸メチル、2−ブロモメチルアクリル酸エチル、メチルビニルケトン、エチルビニルケトン、メチルイソプロペニルケトン、エチルイソプロペニルケトンなどが挙げられる。これら他の単量体は1種を単独で使用しても、2種以上を併用してもよい。上記他の単量体により形成される単量体単位の含有量は、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の全単量体単位に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、上記他の単量体により形成される単量体単位の含有量は、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)それぞれにおいて、好ましくは10質量%以下、より好ましくは5質量%以下であることが望ましい一態様である。
【0038】
メタクリル系重合体ブロック(a1)の数平均分子量(Mna1)およびメタクリル系重合体ブロック(a2)の数平均分子量(Mna2)は、特に制限されないが、得られるブロック共重合体の取り扱い性、流動性、力学特性等の点から、それぞれ、500〜100,000の範囲内であることが好ましく、1,000〜10,000の範囲内であることがより好ましい。なお、本明細書において数平均分子量および後述する分子量分布はゲルパーミエーションクロマトグラフィー(GPC)法(標準ポリスチレン換算)により測定される値である。
【0039】
前記メタクリル系重合体ブロック(a1)の数平均分子量(Mna1)と、前記メタクリル系重合体ブロック(a2)の数平均分子量(Mna2)との比率(Mna1:Mna2)は、本発明の(メタ)アクリル系ブロック共重合体に活性エネルギー線を照射して得られる硬化物の柔軟性を高める観点から、20:80〜80:20が好ましく、30:70〜70:30であることがより好ましい。
【0040】
本発明の(メタ)アクリル系ブロック共重合体は、活性エネルギー線硬化性基を有さないアクリル系重合体ブロック(B)を含んでいる。
なお本明細書において、活性エネルギー線硬化性基とは、上記活性エネルギー線の照射により重合性を示す官能基を意味する。活性エネルギー線硬化性基としては、例えば、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基、ビニルオキシ基、1,3−ジエニル基、スチリル基等のエチレン性二重結合(特に一般式CH2=CR−(式中、Rはアルキル基または水素原子)で示されるエチレン性二重結合)を有する官能基;エポキシ基、オキセタニル基、チオール基、マレイミド基等が挙げられる。
【0041】
本発明の(メタ)アクリル系ブロック共重合体は、アクリル系重合体ブロック(B)の全単量体単位に対する、炭素数6以上のアルキル基を有するアクリル酸アルキルエステルに由来する単量体単位の含有量が40質量%以上であり、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。
【0042】
アクリル系重合体ブロック(B)は、例えば、炭素数6以上のアルキル基を有するアクリル酸アルキルエステルを含む単量体を重合することにより形成される。アクリル系重合体ブロック(B)の全単量体単位に対する、炭素数6以上のアルキル基を有するアクリル酸アルキルエステルに由来する単量体単位の含有量が40質量%以上であることにより、(メタ)アクリル系ブロック共重合体の活性エネルギー線硬化性が高まる。これは、アクリル系重合体ブロック(B)の極性が、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)に対して、相対的に低いことで、(メタ)アクリル系ブロック共重合体中のメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)とアクリル系重合体ブロック(B)とがより明瞭に相分離し、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)中に含まれる活性エネルギー線硬化性基が凝集することによると推定される。
【0043】
アクリル系重合体ブロック(B)を形成できる炭素数6以上のアルキル基を有するアクリル酸アルキルエステルとしては、例えば、アクリル酸n−ヘキシル、アクリル酸n−ヘプチル、アクリル酸2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸イソオクチル、アクリル酸n−ノニル、アクリル酸n−デシル、アクリル酸イソデシル、アクリル酸n−ウンデシル、アクリル酸n−ドデシル、アクリル酸n−ステアリル、アクリル酸イソステアリルなどが挙げられる。活性エネルギー線硬化性の観点からは、これらの中でも、アクリル酸2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸イソオクチルが好ましい。なお、これらアクリル酸エステルは1種を単独で用いても、2種以上を併用してもよい。
【0044】
アクリル系重合体ブロック(B)は、炭素数6以上のアルキル基を有するアクリル酸アルキルエステル以外のアクリル酸エステルに由来する単量体単位を含んでもよい。
かかるアクリル酸エステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸t−ブチル等の炭素数5以下のアルキル基を有するアクリル酸アルキルエステル;アクリル酸シクロヘキシル、アクリル酸イソボルニル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸ナフチル、アクリル酸トリメトキシシリルプロピル、アクリル酸N,N−ジメチルアミノエチル、アクリル酸N,N−ジエチルアミノエチル、アクリル酸2−メトキシエチル、アクリル酸2−(トリメチルシリルオキシ)エチル、アクリル酸3−(トリメチルシリルオキシ)プロピル等のアクリル酸アルキルエステル以外のアクリル酸エステル;などが挙げられる。なお、これらアクリル酸エステルは1種を単独で用いても、2種以上を併用してもよい。
【0045】
アクリル系重合体ブロック(B)中の炭素数6以上のアルキル基を有するアクリル酸アルキルエステルを含むアクリル酸エステルに由来する単量体単位の含有量は、アクリル系重合体ブロック(B)の全単量体単位に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%であってもよい。
【0046】
アクリル系重合体ブロック(B)は、アクリル酸エステル以外の他の単量体に由来する単量体単位を有していてもよい。該他の単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸t−ブチル、メタクリル酸シクロヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸イソボルニル、メタクリル酸ドデシル、メタクリル酸2−メトキシエチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシブチル、メタクリル酸トリメトキシシリルプロピル、メタクリル酸2−アミノエチル、メタクリル酸N,N−ジメチルアミノエチル、メタクリル酸N,N−ジエチルアミノエチル、メタクリル酸フェニル、メタクリル酸ナフチル、メタクリル酸2−(トリメチルシリルオキシ)エチル、メタクリル酸3−(トリメチルシリルオキシ)プロピル、メタクリル酸グリシジル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、メタクリル酸のエチレンオキサイド付加物、メタクリル酸トリフルオロメチルメチル、メタクリル酸2−トリフルオロメチルエチル、メタクリル酸2−パーフルオロエチルエチル、メタクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、メタクリル酸2−パーフルオロエチル、メタクリル酸パーフルオロメチル、メタクリル酸ジパーフルオロメチルメチル、メタクリル酸2−パーフルオロメチル−2−パーフルオロエチルメチル、メタクリル酸2−パーフルオロヘキシルエチル、メタクリル酸2−パーフルオロデシルエチル、メタクリル酸2−パーフルオロヘキサデシルエチルなどのメタクリル酸エステル;α−メトキシアクリル酸メチル、α−エトキシアクリル酸メチル等のα−アルコキシアクリル酸エステル;クロトン酸メチル、クロトン酸エチル等のクロトン酸エステル;3−メトキシアクリル酸エステル等の3−アルコキシアクリル酸エステル;N−イソプロピル(メタ)アクリルアミド、N−t−ブチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド等の(メタ)アクリルアミド;メチルビニルケトン、エチルビニルケトン、メチルイソプロペニルケトン、エチルイソプロペニルケトンなどが挙げられる。これらの他の単量体は1種を単独で使用しても、2種以上を併用してもよい。上記他の単量体により形成される単量体単位の含有量は、アクリル系重合体ブロック(B)の全単量体単位に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
【0047】
アクリル系重合体ブロック(B)の数平均分子量(Mnb)は、特に制限されないが、得られるブロック共重合体の取り扱い性、流動性、力学特性等の点から、3,000〜300,000の範囲内であることが好ましく、5,000〜200,000の範囲内であることがより好ましい。
【0048】
本発明の(メタ)アクリル系ブロック共重合体におけるアクリル系重合体ブロック(B)の含有量は、特に制限されないが、10〜98質量%であることが好ましく、50〜90質量%であることがより好ましい。かかる含有量が10質量%以上であると、本発明の(メタ)アクリル系ブロック共重合体を硬化して得られる硬化物は柔軟性に優れる傾向となり、98質量%以下であると、本発明の(メタ)アクリル系ブロック共重合体に活性エネルギー線を照射した場合の硬化速度に優れる傾向となる。
【0049】
本発明の(メタ)アクリル系ブロック共重合体の数平均分子量は、特に制限されないが、取り扱い性、流動性、力学特性等の観点から、4,000〜400,000であることが好ましく、7,000〜200,000であることがより好ましい。本発明の(メタ)アクリル系ブロック共重合体の分子量分布、すなわち重量平均分子量/数平均分子量は2.00以下が好ましく、1.02〜2.00の範囲がより好ましく、1.05〜1.80の範囲がさらに好ましく、1.10〜1.50の範囲が最も好ましい。
【0050】
本発明の(メタ)アクリル系ブロック共重合体は、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)がそれぞれ末端に位置することが好ましい。また、本発明の(メタ)アクリル系ブロック共重合体は、メタクリル系重合体ブロック(a1)、メタクリル系重合体ブロック(a2)、アクリル系重合体ブロック(B)以外の他の重合体ブロック(例えば(メタ)アクリル酸エステルに由来する単量体単位を有さない重合体ブロック)を有していてもよいが、該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物から得られる硬化物の柔軟性を阻害しない観点から、これら他の重合体ブロックは、いずれも活性エネルギー線硬化性基を有さないことが好ましい。アクリル系重合体ブロック(B)は、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)の間に位置すれば複数あってもよいが、製造容易性の観点から、1つのアクリル系重合体ブロック(B)の両端に、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)がそれぞれ結合したトリブロック共重合体が好ましい。
【0051】
本発明における(メタ)アクリル系ブロック共重合体の製造方法は特に限定されないが、アニオン重合法またはラジカル重合法が好ましく、重合制御の観点からリビングアニオン重合法またはリビングラジカル重合法がより好ましく、リビングアニオン重合法がさらに好ましい。
【0052】
リビングラジカル重合法としては、ポリスルフィドなどの連鎖移動剤を用いる重合法、コバルトポルフィリン錯体を用いる重合法、ニトロキシドを用いる重合法(国際公開第2004/014926号参照)、有機テルル化合物などの高周期ヘテロ元素化合物を用いる重合法(特許第3839829号公報参照)、可逆的付加脱離連鎖移動重合法(RAFT)(特許第3639859号公報参照)、原子移動ラジカル重合法(ATRP)(特許第3040172号公報、国際公開第2004/013192号参照)などが挙げられる。これらリビングラジカル重合法の中でも、原子移動ラジカル重合法が好ましく、有機ハロゲン化物またはハロゲン化スルホニル化合物を開始剤とし、Fe、Ru、Ni、Cuから選ばれる少なくとも1種類を中心金属とする金属錯体を触媒とする原子移動ラジカル重合法がより好ましい。
【0053】
リビングアニオン重合法としては、有機希土類金属錯体を重合開始剤としてリビング重合する方法(特開平06−93060号公報参照)、有機アルカリ金属化合物を重合開始剤としアルカリ金属またはアルカリ土類金属の塩などの鉱酸塩の存在下でリビングアニオン重合する方法(特表平05−507737号公報参照)、有機アルミニウム化合物の存在下で、有機アルカリ金属化合物を重合開始剤としリビングアニオン重合する方法(特開平11−335432号公報、国際公開2013/141105号参照)などが挙げられる。これらリビングアニオン重合法の中でも、本発明の(メタ)アクリル系ブロック共重合体を直接、効率よく重合できる点からは、有機アルミニウム化合物の存在下で、有機アルカリ金属化合物を重合開始剤としリビングアニオン重合する方法が好ましく、有機アルミニウム化合物およびルイス塩基の存在下で、有機リチウム化合物を重合開始剤としリビングアニオン重合する方法がより好ましい。
【0054】
上記有機リチウム化合物としては、例えばt−ブチルリチウム、1,1−ジメチルプロピルリチウム、1,1−ジフェニルヘキシルリチウム、1,1−ジフェニル−3−メチルペンチルリチウム、エチルα−リチオイソブチレート、ブチルα−リチオイソブチレート、メチルα−リチオイソブチレート、イソプロピルリチウム、sec−ブチルリチウム、1−メチルブチルリチウム、2−エチルプロピルリチウム、1−メチルペンチルリチウム、シクロヘキシルリチウム、ジフェニルメチルリチウム、α−メチルベンジルリチウム、メチルリチウム、n−プロピルリチウム、n−ブチルリチウム、n−ペンチルリチウム等が挙げられる。中でも、入手容易性およびアニオン重合開始能の観点から、イソプロピルリチウム、sec−ブチルリチウム、1−メチルブチルリチウム、1−メチルペンチルリチウム、シクロヘキシルリチウム、ジフェニルメチルリチウム、α−メチルベンジルリチウム等の二級炭素原子を陰イオン中心とする化学構造を有する炭素数3〜40の有機リチウム化合物が好ましく、sec−ブチルリチウムが特に好ましい。これら有機リチウム化合物は1種を単独で使用しても、2種以上を併用してもよい。
【0055】
有機リチウム化合物の使用量は、目的とするブロック共重合体の数平均分子量に応じて、用いる単量体の使用量との比率によって決定できる。
上記有機アルミニウム化合物としては、下記一般式(A−1)または(A−2)で示される有機アルミニウム化合物が挙げられる。
AlR5(R6)(R7) (A−1)
(式中、R5は一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基、アリールオキシ基またはN,N−二置換アミノ基を表し、R6およびR7はそれぞれ独立してアリールオキシ基を表すか、あるいはR6およびR7は互いに結合してアリーレンジオキシ基を形成している)
AlR8(R9)(R10) (A−2)
(式中、R8はアリールオキシ基を表し、R9およびR10はそれぞれ独立して一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基またはN,N−二置換アミノ基を表す)
【0056】
上記一般式(A−1)および(A−2)中、R5、R6、R7およびR8がそれぞれ独立して表すアリールオキシ基としては、例えばフェノキシ基、2−メチルフェノキシ基、4−メチルフェノキシ基、2,6−ジメチルフェノキシ基、2,4−ジ−t−ブチルフェノキシ基、2,6−ジ−t−ブチルフェノキシ基、2,6−ジ−t−ブチル−4−メチルフェノキシ基、2,6−ジ−t−ブチル−4−エチルフェノキシ基、2,6−ジフェニルフェノキシ基、1−ナフトキシ基、2−ナフトキシ基、9−フェナントリルオキシ基、1−ピレニルオキシ基、7−メトキシ−2−ナフトキシ基等が挙げられる。
【0057】
上記一般式(A−1)中、R6とR7が互いに結合して形成されるアリーレンジオキシ基としては、例えば2,2’−ビフェノール、2,2’−メチレンビスフェノール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、(R)−(+)−1,1’−ビ−2−ナフトール、(S)−(−)−1,1’−ビ−2−ナフトール等の2個のフェノール性水酸基を有する化合物中の該2個のフェノール性水酸基の水素原子を除いた官能基が挙げられる。
【0058】
なお、上記のアリールオキシ基およびアリーレンジオキシ基において含まれる1個以上の水素原子が、置換基により置換されていてもよく、該置換基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子等が挙げられる。
【0059】
上記一般式(A−1)および(A−2)中、R5、R9およびR10がそれぞれ独立して表す一価の飽和炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、2−メチルブチル基、3−メチルブチル基、n−オクチル基、2−エチルヘキシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基等が挙げられ、一価の芳香族炭化水素基としては、例えばフェニル基等のアリール基;ベンジル基等のアラルキル基等が挙げられ、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基等が挙げられ、N,N−二置換アミノ基としては、例えばジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等のジアルキルアミノ基;ビス(トリメチルシリル)アミノ基等が挙げられる。上述した一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基およびN,N−二置換アミノ基において含まれる1個以上の水素原子は、置換基により置換されていてもよく、該置換基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子等が挙げられる。
【0060】
上記有機アルミニウム化合物(A−1)としては、例えばエチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、エチルビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、エチル[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、イソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、イソブチル[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、n−オクチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、n−オクチルビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、n−オクチル[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、メトキシビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、メトキシビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、メトキシ[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、エトキシビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、エトキシビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、エトキシ[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、イソプロポキシビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、イソプロポキシビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、イソプロポキシ[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、t−ブトキシビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、t−ブトキシビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、t−ブトキシ[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、トリス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、トリス(2,6−ジフェニルフェノキシ)アルミニウム等が挙げられる。中でも、重合開始効率、重合末端アニオンのリビング性、入手および取り扱いの容易さ等の観点から、イソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、イソブチル[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム等が好ましい。
【0061】
上記有機アルミニウム化合物(A−2)としては、例えばジエチル(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、ジエチル(2,6−ジ−t−ブチルフェノキシ)アルミニウム、ジイソブチル(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、ジイソブチル(2,6−ジ−t−ブチルフェノキシ)アルミニウム、ジn−オクチル(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、ジn−オクチル(2,6−ジ−t−ブチルフェノキシ)アルミニウム等が挙げられる。これら有機アルミニウム化合物は1種を単独で使用しても、2種以上を併用してもよい。
【0062】
有機アルミニウム化合物の使用量は、溶媒の種類、その他種々の重合条件等に応じて適宜好適な量を選択できるが、重合速度の観点から有機リチウム化合物1モルに対して通常、1.0〜10.0モルの範囲で用いることが好ましく、1.1〜5.0モルの範囲で用いることがより好ましく、1.2〜4.0モルの範囲で用いることがさらに好ましい。有機アルミニウム化合物の使用量が有機リチウム化合物1モルに対して10.0モルを超えると、経済性において不利となる傾向となり、1.0モルを下回ると、重合開始効率が低下する傾向となる。
【0063】
上記ルイス塩基としては、分子内にエーテル結合および/または三級アミン構造を有する化合物が挙げられる。
上記ルイス塩基として用いられる、分子内にエーテル結合を有する化合物としてはエーテルが挙げられる。上記エーテルとしては、重合開始効率の高さ、重合末端アニオンのリビング性の観点から、2個以上のエーテル結合を分子内に有する環状エーテルまたは1個以上のエーテル結合を分子内に有する非環状エーテルが好ましい。2個以上のエーテル結合を分子内に有する環状エーテルとしては、例えば12−クラウン−4、15−クラウン−5、18−クラウン−6等のクラウンエーテルが挙げられる。1個以上のエーテル結合を分子中に有する非環状エーテルとしては、例えばジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール等の非環状モノエーテル;1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジイソプロポキシエタン、1,2−ジブトキシエタン、1,2−ジフェノキシエタン、1,2−ジメトキシプロパン、1,2−ジエトキシプロパン、1,2−ジイソプロポキシプロパン、1,2−ジブトキシプロパン、1,2−ジフェノキシプロパン、1,3−ジメトキシプロパン、1,3−ジエトキシプロパン、1,3−ジイソプロポキシプロパン、1,3−ジブトキシプロパン、1,3−ジフェノキシプロパン、1,4−ジメトキシブタン、1,4−ジエトキシブタン、1,4−ジイソプロポキシブタン、1,4−ジブトキシブタン、1,4−ジフェノキシブタン等の非環状ジエーテル;ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジブチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、ジブチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、トリブチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジエチルエーテル、トリブチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラプロピレングリコールジメチルエーテル、テトラブチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラブチレングリコールジエチルエーテル等の非環状ポリエーテルが挙げられる。中でも、副反応の抑制、入手容易性等の観点から、1〜2個のエーテル結合を分子内に有する非環状エーテルが好ましく、ジエチルエーテルまたは1,2−ジメトキシエタンがより好ましい。
【0064】
上記ルイス塩基として用いられる、分子内に三級アミン構造を有する化合物としては、三級ポリアミンが挙げられる。三級ポリアミンとは、三級アミン構造を分子中に2個以上有する化合物を意味する。該三級ポリアミンとしては、例えばN,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラエチルエチレンジアミン、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラアミン、トリス[2−(ジメチルアミノ)エチル]アミン等の鎖状ポリアミン;1,3,5−トリメチルヘキサヒドロ−1,3,5−トリアジン、1,4,7−トリメチル−1,4,7−トリアザシクロノナン、1,4,7,10,13,16−ヘキサメチル−1,4,7,10,13,16−ヘキサアザシクロオクタデカン等の非芳香族性複素環式化合物;2,2’−ビピリジル、2,2’:6’,2”−ターピリジン等の芳香族性複素環式化合物等が挙げられる。
【0065】
また、分子内に1個以上のエーテル結合と1個以上の三級アミン構造を有する化合物をルイス塩基として使用してもよい。このような化合物としては、例えばトリス[2−(2−メトキシエトキシ)エチル]アミン等が挙げられる。
【0066】
これらルイス塩基は1種を単独で使用しても、2種以上を併用してもよい。
ルイス塩基の使用量は、重合開始効率、重合末端アニオンの安定性等の観点から、有機リチウム化合物1モルに対して0.3〜5.0モルの範囲であることが好ましく、0.5〜3.0モルの範囲であることがより好ましく、1.0〜2.0モルの範囲であることがさらに好ましい。ルイス塩基の使用量が有機リチウム化合物1モルに対して、5.0モルを超えると経済性において不利となる傾向となり、0.3モルを下回ると重合開始効率が低下する傾向となる。
【0067】
また、ルイス塩基の使用量は、有機アルミニウム化合物1モルに対して、0.2〜1.2モルの範囲であることが好ましく、0.3〜1.0モルの範囲であることがより好ましい。
【0068】
上記リビングアニオン重合は、温度制御および系内を均一化して重合を円滑に進行させる観点から、有機溶媒の存在下に行うことが好ましい。有機溶媒としては、安全性、重合後の反応液の水洗における水との分離性、回収・再使用の容易性等の観点から、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素;クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化炭化水素;フタル酸ジメチル等のエステル等が好ましい。これら有機溶媒は1種を単独で使用しても、2種以上を併用してもよい。なお、有機溶媒は、重合を円滑に進行させる観点から、乾燥処理を施すとともに、不活性ガス存在下であらかじめ脱気しておくことが好ましい。
【0069】
また、上記リビングアニオン重合では、必要に応じ、反応系に他の添加剤を存在させてもよい。該他の添加剤としては、例えば塩化リチウム等の無機塩類;リチウムメトキシエトキシエトキシド、カリウムt−ブトキシド等の金属アルコキシド;テトラエチルアンモニウムクロリド、テトラエチルホスホニウムブロミド等が挙げられる。
【0070】
上記リビングアニオン重合は−30〜25℃で行うのが好ましい。−30℃よりも低いと重合速度が低下し、生産性が低下する傾向がある。一方、25℃より高いと、上記ジメタクリレート(3)を含有する単量体の重合をリビング性よく行うことが困難となる傾向となる。
【0071】
上記リビングアニオン重合は、窒素、アルゴン、ヘリウム等の不活性ガスの雰囲気下で行うことが好ましい。さらに、反応系が均一になるように十分な攪拌条件下にて行うことが好ましい。
【0072】
上記リビングアニオン重合において、有機リチウム化合物、有機アルミニウム化合物、ルイス塩基および単量体を反応系に添加する方法としては、ルイス塩基が、有機リチウム化合物との接触前に有機アルミニウム化合物と接触するように添加することが好ましい。また、有機アルミニウム化合物は、単量体より先に反応系に添加しても、同時に添加してもよい。有機アルミニウム化合物を単量体と同時に反応系に添加する場合、有機アルミニウム化合物を単量体と別途混合したのちに添加してもよい。
【0073】
上記リビングアニオン重合は、メタノール;酢酸または塩酸のメタノール溶液;酢酸、塩酸の水溶液等のプロトン性化合物などの重合停止剤を反応液に添加して停止できる。重合停止剤の使用量は、通常、用いる有機リチウム化合物1モルに対して1〜1000モルの範囲が好ましい。
【0074】
リビングアニオン重合停止後の反応液からブロック共重合体を分離取得する方法としては、公知の方法を採用できる。例えば、反応液をブロック共重合体の貧溶媒に注いで沈殿させる方法、反応液から有機溶媒を留去してブロック共重合体を取得する方法等が挙げられる。
【0075】
なお、分離取得したブロック共重合体中に有機リチウム化合物および有機アルミニウム化合物に由来する金属成分が残存していると、ブロック共重合体の物性の低下、透明性不良等を生じる場合がある。よって、有機リチウム化合物および有機アルミニウム化合物に由来する金属成分をアニオン重合停止後に除去することが好ましい。該金属成分の除去方法としては、酸性水溶液を用いた洗浄処理、イオン交換樹脂、セライト、活性炭等の吸着剤を用いた吸着処理等が有効である。ここで、酸性水溶液としては、例えば、塩酸、硫酸水溶液、硝酸水溶液、酢酸水溶液、プロピオン酸水溶液、クエン酸水溶液等を使用することができる。
【0076】
本発明の(メタ)アクリル系ブロック共重合体の製造において、上記部分構造(1)を導入する方法としては、上記したジメタクリレート(3)を含有する単量体を重合してメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成する方法の他に、活性エネルギー線硬化性基(1)の前駆体となる部分構造(以下、「前駆体構造」と称する)を含む重合体ブロックを形成した後に、該前駆体構造を部分構造(1)に変換する方法も挙げられる。前駆体構造を含む重合体ブロックは重合性官能基と前駆体構造を含む化合物(以下「重合性前駆体」と称する)を含有する単量体を重合することで得られる。該重合性官能基としては、スチリル基、1,3−ジエニル基、ビニルオキシ基、(メタ)アクリロイル基などが挙げられ、(メタ)アクリロイル基が好ましい。前駆体構造としては、水酸基および保護基(シリルオキシ基、アシルオキシ基、アルコキシ基など)によって保護された水酸基、アミノ基および保護基によって保護されたアミノ基、チオール基および保護基によって保護されたチオール基、ならびにイソシアネート基などが挙げられる。
【0077】
前駆体構造として水酸基を含む重合体ブロックは、部分構造(1)および水酸基と反応しうる部分構造(カルボン酸、エステル、カルボニルハライドなど)を有する化合物と反応させることでメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成できる。また、前駆体構造として保護基によって保護された水酸基を含む重合体ブロックは、該保護基を外して水酸基とした後、同様にメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成できる。
【0078】
前駆体構造としてアミノ基を含む重合体ブロックは、部分構造(1)およびアミノ基と反応しうる部分構造(カルボン酸、カルボン酸無水物、エステル、カルボニルハライド、アルデヒド基、イソシアネート基など)を有する化合物と反応させることでメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成できる。また、前駆体構造として保護基によって保護されたアミノ基を含む重合体ブロックは、該保護基を外してアミノ基とした後で同様にメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成できる。
【0079】
前駆体構造としてチオール基を含む重合体ブロックは、部分構造(1)およびチオール基と反応しうる部分構造(カルボン酸、カルボン酸無水物、エステル、カルボニルハライド、イソシアネート基、炭素−炭素二重結合など)を有する化合物と反応させることでメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成できる。また、前駆体構造として保護基によって保護されたチオール基を含む重合体ブロックは、該保護基を外してチオール基とした後で同様にメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成できる。
【0080】
前駆体構造としてイソシアネート基を含む重合体ブロックは、部分構造(1)およびイソシアネート基と反応しうる部分構造(水酸基など)を有する化合物と反応させることでメタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成できる。
【0081】
本発明の(メタ)アクリル系ブロック共重合体の製造において、メタクリル系重合体ブロック(a1)およびメタクリル系重合体ブロック(a2)を形成する方法としては、部分構造(2)を容易に直接導入できる観点から、ジメタクリレート(3)を含有する単量体を重合する方法、典型的にはリビングアニオン重合する方法が好ましい。
【0082】
本発明の(メタ)アクリル系ブロック共重合体は、活性エネルギー線硬化性組成物の材料として用いることができる。かかる活性エネルギー線硬化性組成物中の、本発明の(メタ)アクリル系ブロック共重合体の含有量は10質量%以上であることが好ましく、20質量%以上であることがより好ましい。
【0083】
上記活性エネルギー線硬化性組成物には、さらに光重合開始剤が含まれていてもよい。光重合開始剤としては、例えば、アセトフェノン類(例えば、1−ヒドロキシシクロヘキシルフェニルケトン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−1−ブタノン等)、ベンゾフェノン類(例えば、ベンゾフェノン、ベンゾイル安息香酸、ヒドロキシベンゾフェノン、3,3’−ジメチル−4−メトキシベンゾフェノン、アクリル化ベンゾフェノン等)、ミヒラーケトン類(例えば、ミヒラーケトン等)およびベンゾイン類(例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等)等のカルボニル化合物;テトラメチルチウラムモノスルフィド、チオキサンソン類(例えば、チオキサンソン、2−クロルチオキサンソン等)等の硫黄化合物;アシルフォスフィンオキサイド類(例えば2,4,6−トリメチルベンゾイル−ジフェニルフォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド等)等のリン化合物;チタノセン類(例えばビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム等)等のチタン化合物;アゾ化合物(例えば、アゾビスイソブチルニトリル等)等が挙げられる。また、光重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、アセトフェノン類およびベンゾフェノン類が好ましい。
【0084】
光重合開始剤を含有する場合、その含有量は、本発明の(メタ)アクリル系ブロック共重合体100質量部に対して、0.01〜10質量部が好ましく、0.05〜8質量部がより好ましい。0.01質量部以上であると活性エネルギー線硬化性組成物の硬化性が良好となり、また10質量部以下であると得られる硬化物の耐熱性が良好となる傾向がある。
【0085】
また、上記活性エネルギー線硬化性組成物には、必要に応じて増感剤が含まれていてもよい。増感剤としては、n−ブチルアミン、ジ−n−ブチルアミン、トリ−n−ブチルホスフィン、アリルチオ尿酸、トリエチルアミン、ジエチルアミノエチルメタクリレート等が挙げられる。これらの中でも、ジエチルアミノエチルメタクリレート、トリエチルアミンが好ましい。
【0086】
光重合開始剤と増感剤とを混合して使用する場合には、光重合開始剤と増感剤の質量比率は、10:90〜90:10の範囲が好ましく、20:80〜80:20の範囲がより好ましい。
【0087】
また、上記活性エネルギー線硬化性組成物には、本発明の効果を損なわない限り、本発明の(メタ)アクリル系ブロック共重合体以外の、活性エネルギー線の照射によって重合性を示す反応性希釈剤が含まれていてもよい。反応性希釈剤としては、活性エネルギー線の照射によって重合性を示す化合物であれば特に制限はないが、例えば、スチレン、インデン、p−メチルスチレン、α−メチルスチレン、p−メトキシスチレン、p−tert−ブトキシスチレン、p−クロロメチルスチレン、p−アセトキシスチレン、ジビニルベンゼンなどのスチレン誘導体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、安息香酸ビニル、珪皮酸ビニルなどの脂肪酸ビニルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t− ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ボルニル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸4−ブチルシクロヘキシル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシブチル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシジエチレングリコール、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸ポリエチレングリコールモノエステル、(メタ)アクリル酸ポリプロピレングリコールモノエステル、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコール、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸7−アミノ−3,7−ジメチルオクチル、4−(メタ)アクリロイルモルホリン、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジイルジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの両末端(メタ)アクリル酸付加体、ペンタエリスリトールテトラ(メタ)アクリレート、2,4,6−トリオキソヘキサヒドロ−1,3,5−トリアジン−1,3,5−トリスエタノールトリ(メタ)アクリレート、N,N’−ビス[2−((メタ)アクリロイルオキシ)エチル]−N’’−(2−ヒドロキシエチル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、水添ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、ビスフェノールAのジグリシジルエーテルに(メタ)アクリレートを付加させたエポキシ(メタ)アクリレート、およびシクロヘキサンジメタノールジ(メタ)アクリレート等の(メタ)アクリル酸誘導体;ビスフェノールA型エポキシアクリレート樹脂、フェノールノボラック型エポキシアクリレート樹脂、クレゾールノボラック型エポキシアクリレート樹脂等のエポキシアクリレート系樹脂;COOH基変性エポキシアクリレート系樹脂;ポリオール(ポリテトラメチレングリコール、エチレングリコールとアジピン酸のポリエステルジオール、ε−カプロラクトン変性ポリエステルジオール、ポリプロピレングリコール、ポリエチレングリコール、ポリカーボネートジオール、水酸基末端水添ポリイソプレン、水酸基末端ポリブタジエン、水酸基末端ポリイソブチレン等)と有機イソシアネート(トリレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート等)から得られたウレタン樹脂を水酸基含有(メタ)アクリレート{ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリアクリレート等}と反応させて得られたウレタンアクリレート系樹脂;上記ポリオールにエステル結合を介して(メタ)アクリル基を導入した樹脂;ポリエステルアクリレート系樹脂;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ化合物等が挙げられる。これら反応性希釈剤は1種を単独で用いても、2種以上を併用してもよい。
【0088】
上記活性エネルギー線硬化性組成物には、その硬化性を著しく阻害しない範囲内で、可塑剤、粘着付与剤、軟化剤、充填剤、安定剤、顔料、染料などの活性エネルギー線硬化性基を有さない各種添加剤が含まれていてもよい。
【0089】
上記可塑剤を活性エネルギー線硬化性組成物に含有させる目的は、例えば活性エネルギー線硬化性組成物の粘度の調整、該活性エネルギー線硬化性組成物を硬化して得られる硬化物の機械的強度の調整である。上記可塑剤としては、例えばジブチルフタレート、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル;トリメリット酸エステル;ポリブタジエン、ブタジエン−アクリロニトリル共重合体、ポリクロロプレン等のジエン系(共)重合体;ポリブテン;ポリイソブチレン;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニル等の炭化水素系油;プロセスオイル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールとこれらポリエーテルポリオールの水酸基をエステル基、エーテル基等に変換した誘導体等のポリエーテル;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル;等が挙げられる。なお、(共)重合体は、単独重合体と共重合体の総称である。これら可塑剤は1種を単独で使用しても、2種以上を併用してもよい。
【0090】
これら可塑剤の分子量または数平均分子量としては、400〜15000であることが好ましく、800〜10000であることがより好ましく、1000〜8000であることがより好ましい。なお、かかる可塑剤は活性エネルギー線硬化性基以外の官能基(例えば水酸基、カルボキシル基、ハロゲン基など)を有していても、有していなくてもよい。可塑剤の分子量または数平均分子量が400以上であることで、活性エネルギー線硬化性組成物の硬化物から可塑剤が経時的に流出せず、初期の物性を長期にわたり維持できる。また、可塑剤の分子量または数平均分子量が15000以下であることで、活性エネルギー線硬化性組成物の取り扱い性がよくなる傾向がある。
【0091】
上記活性エネルギー線硬化性組成物において可塑剤を含有させる場合、その含有量は、本発明の(メタ)アクリル系ブロック共重合体100質量部に対して5〜150質量部が好ましく、10〜120質量部がより好ましく、20〜100質量部がさらに好ましい。5質量部以上とすることで物性の調整、性状の調節等の効果が顕著となり、150質量部以下とすることで活性エネルギー線硬化性組成物を硬化した硬化物は機械強度に優れる傾向がある。
【0092】
上記粘着付与剤を活性エネルギー線硬化性組成物に含有させる目的は、例えば該活性エネルギー線硬化性組成物から得られる硬化物に粘着性を付与することである。粘着付与剤としては、例えばクマロン・インデン樹脂、フェノール樹脂、p−t−ブチルフェノール・アセチレン樹脂、フェノール・ホルムアルデヒド樹脂、キシレン・ホルムアルデヒド樹脂、芳香族炭化水素樹脂、脂肪族炭化水素樹脂(テルペン樹脂等)、スチレン系樹脂(ポリスチレン、ポリ−α−メチルスチレン等)、ロジンの多価アルコールエステル、水素添加ロジン、水素添加ウッドロジン、水素添加ロジンとモノアルコール或いは多価アルコールとのエステル、テレビン系粘着付与樹脂等の粘着付与樹脂が挙げられる。中でも、脂肪族炭化水素樹脂、ロジンの多価アルコールエステル、水素添加ロジン、水素添加ウッドロジン、水素添加ロジンとモノアルコール或いは多価アルコールとのエステルが好ましい。
【0093】
上記活性エネルギー線硬化性組成物において粘着付与剤を含有させる場合、その含有量は、本発明の(メタ)アクリル系ブロック共重合体100質量部に対して5〜150質量部が好ましく、10〜120質量部がより好ましく、20〜100質量部がさらに好ましい。5質量部以上とすることで硬化物の粘着性が顕著となり、150質量部以下とすることで硬化物の柔軟性が優れる傾向となる。
なお、活性エネルギー線硬化性基を有さない添加剤は有機化合物であっても無機化合物であってもよい。
【0094】
本発明の(メタ)アクリル系ブロック共重合体、または該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物を硬化させる際に使用する活性エネルギー線は、公知の装置を用いて照射することができる。電子線(EB)の場合の加速電圧としては0.1〜10MeV、照射線量としては1〜500kGyの範囲が適当である。
【0095】
紫外線照射には、150〜450nm波長域の光を発する高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、LED等を用いることができる。活性エネルギー線の積算光量は、通常10〜20000mJ/cm2の範囲であり、30〜5000mJ/cm2の範囲が好ましい。10mJ/cm2より少ないと(メタ)アクリル系ブロック共重合体の硬化性が不十分となる傾向があり、20000mJ/cm2より多いと(メタ)アクリル系ブロック共重合体が劣化するおそれがある。
【0096】
本発明の(メタ)アクリル系ブロック共重合体、または該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物に対して活性エネルギー線を照射する場合の相対湿度は、(メタ)アクリル系ブロック共重合体の分解を抑制する観点から、30%以下であることが好ましく、10%以下であることがより好ましい。
【0097】
本発明の(メタ)アクリル系ブロック共重合体、または該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物に対して、活性エネルギー線照射中または照射後に、さらに必要に応じて加熱を行って硬化を促進させることもできる。かかる加熱温度は40〜130℃の範囲が好ましく、50〜100℃の範囲がより好ましい。
【0098】
本発明の(メタ)アクリル系ブロック共重合体、または該(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物は、接着剤やコーティング材等、基材に塗布して硬化させた後、廃棄時等の必要が生じた際に、硬化物と基材とを作業性、経済的な観点から湿熱分解法を好適に適用することで容易に剥離して分別できる。
【0099】
湿熱分解温度は、100〜250℃が好ましく、より好ましくは130〜220℃である。湿熱分解相対湿度は10〜100%が好ましく、30〜100%がより好ましい。湿熱分解時間は、1分間〜24時間が好ましく、1分間〜5時間がより好ましく、1分間〜2時間がさらに好ましい。
【実施例】
【0100】
以下、本発明を実施例および比較例によってさらに具体的に説明するが、本発明はかかる実施例に限定されない。
下記実施例および比較例において、原料は常法により乾燥精製し、窒素にて脱気したものを使用し、移送および供給は窒素雰囲気下にて行った。
【0101】
[単量体消費率]
下記実施例および比較例における、重合後の各単量体の消費率は、反応液0.5mlを採取してメタノール0.5ml中に入れて混合後、該混合液からから0.1mlを採取して、重クロロホルム0.5mlに溶解させて1H−NMR測定を下記の測定条件にて行い、単量体として用いた(メタ)アクリル酸エステルの炭素−炭素二重結合に直結するプロトンに由来するピーク(化学シフト値5.79〜6.37ppm)および溶媒として用いたトルエンの芳香環に直結するプロトンに由来するピーク(化学シフト値7.00〜7.38ppm)の積分値の比率の変化から算出した。
1H−NMR測定条件)
装置:日本電子株式会社製核磁気共鳴装置 「JNM−ECX400」
温度:25℃
【0102】
[数平均分子量(Mn)、分子量分布(Mw/Mn)]
下記実施例および比較例において、得られた重合体のGPC(ゲルパーミュエーションクロマトグラフィー)測定を下記の測定条件にて行い、標準ポリスチレン換算の数平均分子量(Mn)および分子量分布(Mw/Mn)の値を求めた。
(GPC測定条件)
装置:東ソー株式会社製 GPC装置「HLC−8220GPC」
分離カラム:東ソー株式会社製 「TSKgel SuperMultiporeHZ−M(カラム径=4.6mm、カラム長=15cm)」(2本を直列に繋いで使用)
溶離液:テトラヒドロフラン
溶離液流量:0.35ml/分
カラム温度:40℃
検出方法:示差屈折率(RI)
【0103】
[重合開始効率]
実際に工程(1)で得られた重合体のMn(Mn(R1)とする)、および重合開始効率が100%である場合の工程(1)で得られる重合体のMn(計算値:Mn(I1)とする)から、工程(1)における重合開始効率(F1)を以下の式によって算出した。
F1(%)=100×Mn(I1)/Mn(R1)
【0104】
[工程(1)から工程(2)にかけてのブロック効率]
上記Mn(R1)およびMn(I1)、実際に工程(2)で得られた重合体のMn(Mn(R2)とする)、並びにブロック効率が100%である場合の工程(2)で得られる重合体のMn(計算値:Mn(I2)とする)から、工程(1)から工程(2)にかけてのブロック効率(F2)を以下の式によって算出した。
F2(%)=10000×{Mn(I2)−Mn(I1)}/[F1×{Mn(R2)−Mn(R1)}]
【0105】
[(メタ)アクリル系ブロック共重合体を形成する各単量体単位の含有量]
下記実施例および比較例で得られた(メタ)アクリル系ブロック共重合体を形成する各単量体単位の含有量は、以下の方法により算出した。
【0106】
得られた(メタ)アクリル系ブロック共重合体0.01gを、重クロロホルム0.5mlに溶解させて1H−NMR測定を行い、1,1−ジメチルプロパン−1,3−ジオールジメタクリレート単位のメタクリロイル基(−O−C(=O)−C(=CH2)−CH3)の炭素−炭素二重結合に直結するプロトンに由来するピーク(6.0ppm付近)、メタクリル酸メチル単位のメトキシ基(−O−CH3)のプロトンに由来するピーク(3.6ppm付近)、メタクリル酸2−エチルヘキシル単位の2−エチルヘキシルオキシ基(−O−CH2−CH(CH2−CH3)−CH2−CH2−CH2−CH3)の酸素原子に直結するメチレンのプロトンに由来するピーク(3.9ppm付近)、アクリル酸2−エチルヘキシル単位の2−エチルヘキシルオキシ基(−O−CH2−CH(CH2−CH3)−CH2−CH2−CH2−CH3)の酸素原子に直結するメチレンのプロトンに由来するピーク(3.9ppm付近)、アクリル酸n−ブチル単位のn−ブトキシ基(−O−CH2−CH2−CH2−CH3)の酸素原子に直結するメチレンのプロトンに由来するピーク(4.0ppm付近)、の積分値の比率から算出した。
【0107】
但し比較例3で得られた(メタ)アクリル系ブロック共重合体(3’)については、メタクリル酸2−エチルヘキシル単位に由来する上記メチレンのプロトンに由来するピーク(3.9ppm付近)と、アクリル酸2−エチルヘキシル単位の上記メチレンのプロトンに由来するピーク(3.9ppm付近)との区別が困難なことから、用いた単量体が全て得られた(メタ)アクリル系ブロック共重合体となったと仮定して、用いた各単量体の比率から算出した。
1H−NMR測定条件)
装置:日本電子株式会社製核磁気共鳴装置 「JNM−ECX400」
溶媒:重水素化クロロホルム
温度:25℃
【0108】
[粘度]
下記実施例および比較例で得られた(メタ)アクリル系ブロック共重合体の粘度は、粘度・粘弾性測定装置(HAAKE製、MARS III)を用いて評価した。
【0109】
φ35mm、1°傾斜コーンプレート上に、下記実施例および比較例で得られたブロック共重合体を1g滴下し、塗膜を形成した。測定モードとして定常流粘度測定モードを使用し、測定温度25℃、測定ギャップ0.05mm、せん断速度1(1/s)の条件で粘度(Pa・s)を測定した。
【0110】
[硬化速度(反応率)]
下記実施例および比較例で得られた活性エネルギー線硬化性組成物の硬化速度は、粘度・粘弾性測定装置(HAAKE製、MARS III)を用いて評価した。
【0111】
φ20mmのパラレルプレート上に、下記実施例および比較例で得られたブロック共重合体組成物を1g滴下し、塗膜を形成した。測定モードとして高速OSC時間依存性測定モードを使用し、測定温度25℃、測定ギャップ0.15mm、測定周波数5Hzの条件で、UVランプ(Lumen Dynamics製、Omni Cure series2000、照射強度150mW/cm2)を用いて紫外光を照射しながら粘弾性測定を実施した。
【0112】
紫外光照射開始時の貯蔵せん断弾性率(Pa)をG’(0)、紫外光照射開始から3.6秒後(540mJ/cm2照射後)の貯蔵せん断弾性率(Pa)をG’(3.6)、紫外光照射開始から16秒後(2400mJ/cm2照射後)に飽和値に達した貯蔵せん断弾性率(Pa)をG’(16)とし、以下の式にしたがって得られる反応率(%)を硬化速度の指標とした。
反応率(%)={G’(3.6)−G’(0)}/{G’(16)−G’(0)}×100
【0113】
[実施例1]
(工程(1))
内部を乾燥し、窒素置換した3Lのフラスコに、トルエン1.30kgを添加したのち、フラスコ内の溶液を攪拌しながら、ルイス塩基として1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン1.6g(6.8mmol)、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液16.1g(8.1mmol)を順次添加したのち、−20℃に冷却した。これに有機リチウム化合物としてsec−ブチルリチウムの10.5質量%シクロヘキサン溶液4.0g(6.5mmol)を加え、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート4.7g(19.5mmol)とメタクリル酸メチル3.9g(39mmol)との混合物8.6gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から160分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
【0114】
工程(1)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は1,330、Mw/Mnは1.15であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
【0115】
(工程(2))
引き続き反応液を−20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液を12.9g(6.5mmol)加え、その1分後に単量体としてアクリル酸2−エチルヘキシル410g(2.22mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
【0116】
工程(2)におけるアクリル酸2−エチルヘキシルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は65,600、Mw/Mnは1.19であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
【0117】
(工程(3))
引き続き反応液を−20℃で撹拌しつつ、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート3.7g(15.5mmol)とメタクリル酸メチル3.1g(30.9mmol)の混合物6.8gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から300分後に反応液をサンプリングした。
工程(3)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
【0118】
(工程(4))
引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を32.6g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(a1)−アクリル系重合体ブロック(B)−メタクリル系重合体ブロック(a2)(a1−B−a2)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック重合体のMnは67,000、Mw/Mnは1.20であった。
【0119】
(工程(5))
次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。反応液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して410gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(1)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(1)の粘度を測定した。結果を表1に示す。
【0120】
(工程(6))
次いで、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製、イルガキュア184)を、(メタ)アクリル系ブロック共重合体(1)100gに対して2g添加し、攪拌、溶解させて、102gの活性エネルギー線硬化性組成物を得た。得られた活性エネルギー線硬化性組成物の硬化速度を評価した。結果を表2に示す。
【0121】
[比較例1]
(工程(1))
内部を乾燥し、窒素置換した3Lのフラスコに、トルエン1.30kgを添加したのち、フラスコ内の溶液を攪拌しながら、ルイス塩基として1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン1.6g(6.8mmol)、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液16.1g(8.1mmol)を順次添加したのち、−20℃に冷却した。これに有機リチウム化合物としてsec−ブチルリチウムの10.5質量%シクロヘキサン溶液4.0g(6.5mmol)を加え、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート4.7g(19.5mmol)とメタクリル酸メチル3.9g(39mmol)との混合物8.6gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から160分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
【0122】
工程(1)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は1,330、Mw/Mnは1.15であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
【0123】
(工程(2))
引き続き反応液を−20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液を12.9g(6.5mmol)加え、その1分後に単量体としてアクリル酸n−ブチル410g(3.20mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
【0124】
工程(2)におけるアクリル酸n−ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は80,800、Mw/Mnは1.19であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は80%であった。
【0125】
(工程(3))
引き続き反応液を−20℃で撹拌しつつ、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート3.7g(15.5mmol)とメタクリル酸メチル3.1g(30.9mmol)の混合物6.8gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から300分後に反応液をサンプリングした。
工程(3)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
【0126】
(工程(4))
引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を32.6g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(a1)−アクリル系重合体ブロック(B)とは異なるアクリル系重合体ブロック(「アクリル系重合体ブロック(B’)」と称する)−メタクリル系重合体ブロック(a2)(a1−B’−a2)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック重合体のMnは83,000、Mw/Mnは1.19であった。
【0127】
(工程(5))
次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。反応液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して408gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(1’)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(1’)の粘度を測定した。結果を表1に示す。
【0128】
(工程(6))
次いで、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製、イルガキュア184)を、(メタ)アクリル系ブロック共重合体(1’)100gに対して2g添加し、攪拌、溶解させて、102gの活性エネルギー線硬化性組成物を得た。得られた活性エネルギー線硬化性組成物の硬化速度を評価した。結果を表2に示す。
【0129】
[比較例2]
(工程(1))
内部を乾燥し、窒素置換した3Lのフラスコに、トルエン1.30kgを添加したのち、フラスコ内の溶液を攪拌しながら、ルイス塩基として1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン3.1g(13.7mmol)、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液29.6g(15.0mmol)を順次添加したのち、−20℃に冷却した。これに有機リチウム化合物としてsec−ブチルリチウムの10.5質量%シクロヘキサン溶液7.9g(13.0mmol)を加え、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート9.4g(39mmol)とメタクリル酸メチル7.8g(78mmol)との混合物17.2gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から160分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
【0130】
工程(1)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は1,330、Mw/Mnは1.16であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
【0131】
(工程(2))
引き続き反応液を−20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液を18.0g(9.1mmol)加え、その1分後に単量体としてアクリル酸n−ブチル446g(3.48mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
【0132】
工程(2)におけるアクリル酸n−ブチルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は41,200、Mw/Mnは1.18であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は87%であった。
【0133】
(工程(3))
引き続き反応液を−20℃で撹拌しつつ、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート8.1g(33.6mmol)とメタクリル酸メチル6.7g(67.3mmol)の混合物14.8gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から120分後に反応液をサンプリングした。
工程(3)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。
【0134】
(工程(4))
引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を29.4g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(a1)−アクリル系重合体ブロック(B’)−メタクリル系重合体ブロック(a2)(a1−B’−a2)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック重合体のMnは42,600、Mw/Mnは1.19であった。
【0135】
(工程(5))
次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。反応液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して460gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(2’)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(2’)の粘度を測定した。結果を表1に示す。
【0136】
(工程(6))
次いで、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製、イルガキュア184)を、(メタ)アクリル系ブロック共重合体(2’)100gに対して2g添加し、攪拌、溶解させて、102gの活性エネルギー線硬化性組成物を得た。得られた活性エネルギー線硬化性組成物の硬化速度を評価した。結果を表2に示す。
【0137】
[比較例3]
(工程(1))
内部を乾燥し、窒素置換した3Lのフラスコに、トルエン1.30kgを添加したのち、フラスコ内の溶液を攪拌しながら、ルイス塩基として1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン3.1g(13.7mmol)、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液29.6g(15.0mmol)を順次添加したのち、−20℃に冷却した。これに有機リチウム化合物としてsec−ブチルリチウムの10.5質量%シクロヘキサン溶液7.9g(13.0mmol)を加え、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート9.4g(39mmol)とメタクリル酸2−エチルヘキシル7.8g(39.4mmol)との混合物17.2gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から160分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
【0138】
工程(1)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸2−エチルヘキシルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は1,320、Mw/Mnは1.14であった。さらに、工程(1)における重合開始効率(F1)は100%であった。
【0139】
(工程(2))
引き続き反応液を−20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液を18.0g(9.1mmol)加え、その1分後に単量体としてアクリル酸2−エチルヘキシル450g(2.44mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
【0140】
工程(2)におけるアクリル酸2−エチルヘキシルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は33,500、Mw/Mnは1.17であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は108%であった。
【0141】
(工程(3))
引き続き反応液を−20℃で撹拌しつつ、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート8.2g(33.9mmol)とメタクリル酸2−エチルヘキシル6.8g(34.3mmol)の混合物15.0gを一括で添加したのち、2℃/分の速度で20℃に昇温した。上記混合物の添加から120分後に反応液をサンプリングした。
工程(3)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸2−エチルヘキシルの消費率は100%であった。
【0142】
(工程(4))
引き続き反応液を20℃で攪拌しつつ、50質量%酢酸水を29.4g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(a1)とは異なるメタクリル系重合体ブロック(「メタクリル系重合体ブロック(a1’)」と称する)−アクリル系重合体ブロック(B)−メタクリル系重合体ブロック(a2’)(a1’−B−a2’)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。かかる溶液からサンプリングした(メタ)アクリル系ブロック重合体のMnは34,800、Mw/Mnは1.19であった。
【0143】
(工程(5))
次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。反応液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して465gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(3’)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(3’)の粘度を測定した。結果を表1に示す。
【0144】
(工程(6))
次いで、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製、イルガキュア184)を、(メタ)アクリル系ブロック共重合体(3’)100gに対して2g添加し、攪拌、溶解させて、102gの活性エネルギー線硬化性組成物を得た。得られた活性エネルギー線硬化性組成物の硬化速度を評価した。結果を表2に示す。
【0145】
[比較例4]
(工程(1))
内部を乾燥し、窒素置換した3Lのフラスコに、トルエン1.30kgを添加したのち、フラスコ内の溶液を攪拌しながら、ルイス塩基として1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン1.6g(6.8mmol)、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液16.1g(8.1mmol)を順次添加したのち、−20℃に冷却した。これに有機リチウム化合物としてsec−ブチルリチウムの10.5質量%シクロヘキサン溶液4.0g(6.5mmol)を加え、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート4.7g(19.5mmol)とメタクリル酸メチル3.9g(39mmol)との混合物8.6gを一括で添加し、アニオン重合を開始した。混合物の添加終了後から160分後に反応液は当初の黄色から無色に変わった。さらに20分撹拌後に反応液をサンプリングした。
【0146】
工程(1)における1,1−ジメチルプロパン−1,3−ジオールジメタクリレートおよびメタクリル酸メチルの消費率は100%であった。また、得られた重合体のMn(Mn(R1))は1,330、Mw/Mnは1.15であった。さらに、工程(1)における重合開始効率(F1)は99%であった。
【0147】
(工程(2))
引き続き反応液を−20℃で撹拌しつつ、有機アルミニウム化合物としてイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの26.4質量%トルエン溶液を12.9g(6.5mmol)加え、その1分後に単量体としてアクリル酸2−エチルヘキシル410g(2.22mol)を5g/分の速度で添加した。単量体の添加終了直後に反応液をサンプリングした。
【0148】
工程(2)におけるアクリル酸2−エチルヘキシルの消費率は100%であった。また、得られた重合体のMn(Mn(R2))は65,600、Mw/Mnは1.19であった。さらに、工程(1)から工程(2)にかけてのブロック効率(F2)は99%であった。
【0149】
(工程(3))
引き続き反応液を−20℃で撹拌しつつ、50質量%酢酸水を32.6g加えることによりアニオン重合を停止させて、メタクリル系重合体ブロック(a1)−アクリル系重合体ブロック(B)(a1−B)の順に結合したジブロック共重合体である(メタ)アクリル系ブロック共重合体を含有する溶液を得た。
【0150】
(工程(4))
次いで得られた溶液を窒素流動下、90℃で攪拌しつつ、90分加熱することで触媒金属の酢酸塩を形成させた。反応液を25℃まで冷却した後、遠心分離機(日立工機株式会社製、himacCR22GII)を用いて18,800Gの遠心力で30分間遠心分離して酢酸塩を沈殿させ、上澄み液を回収した。回収した上澄み液からエバポレータを用いて60℃にて溶媒を除去した後、さらに100℃、30Paで乾燥して400gの(メタ)アクリル系ブロック共重合体(以下、「(メタ)アクリル系ブロック共重合体(4’)」と称する)を得た。得られた(メタ)アクリル系ブロック共重合体(4’)の粘度を測定した。結果を表1に示す。
【0151】
(工程(5))
次いで、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ製、イルガキュア184)を、(メタ)アクリル系ブロック共重合体(4’−1)100gに対して2g添加し、攪拌、溶解させて、102gの活性エネルギー線硬化性組成物を得た。得られた活性エネルギー線硬化性組成物の硬化速度を評価した。結果を表2に示す。
【0152】
【表1】
【0153】
【表2】
【0154】
表1、2から分かるように、(メタ)アクリル系ブロック共重合体(1)を含有する活性エネルギー線硬化性組成物は硬化速度が速い。
一方、アクリル系重合体ブロックが、炭素数6以上のアルキル基を有するアクリル酸アルキルエステルに由来する単量体単位を有さない(メタ)アクリル系ブロック共重合体(1’)は、(メタ)アクリル系ブロック共重合体(1)よりも粘度が高い。これは、(メタ)アクリル系ブロック共重合体(1)においては、炭素数6以上のアルキル基によるアクリル系重合体ブロック(B)同士の絡み合いが抑制されるためと推定される。したがって本発明の(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物は塗工性に優れる傾向となる。また(メタ)アクリル系ブロック共重合体(1’)を含有する比較例1の活性エネルギー硬化性組成物は硬化速度が遅い。
【0155】
アクリル系重合体ブロックが、炭素数6以上のアルキル基を有するアクリル酸アルキルエステルに由来する単量体単位を有さない(メタ)アクリル系ブロック共重合体(2’)は、(メタ)アクリル系ブロック共重合体(1)よりも、活性エネルギー線硬化性基を有する1,1−ジメチルプロパン−1,3−ジオールジメタクリレート単位が多い。しかしながら、かかる(メタ)アクリル系ブロック共重合体(2’)を含有する比較例2の活性エネルギー線硬化性組成物は硬化速度が遅い。
【0156】
メタクリル系重合体ブロックが、メタクリル酸メチルに由来する単量体単位を有さない(メタ)アクリル系ブロック共重合体(3’)も、(メタ)アクリル系ブロック共重合体(1)よりも、活性エネルギー線硬化性基を有する1,1−ジメチルプロパン−1,3−ジオールジメタクリレート単位が多い。しかしながら、かかる(メタ)アクリル系ブロック共重合体(3’)を含有する比較例3の活性エネルギー線硬化性組成物も硬化速度が遅い。
【0157】
アクリル系重合体ブロック(B)が、メタクリル系重合体ブロック(a1)とメタクリル系重合体ブロック(a2)との間に位置しないジブロック共重合体である(メタ)アクリル系ブロック共重合体(4’)を含有する比較例4の活性エネルギー線硬化性組成物は硬化速度が遅い。
以上のことから、本発明の(メタ)アクリル系ブロック共重合体を含有する活性エネルギー線硬化性組成物は、硬化速度が速いことが分かる。