【実施例】
【0020】
以下、実施例により本発明を更に詳細に説明する。本発明の内容はこの実施例に限定されるものではない。
【0021】
<実施例1:n-NCの製造例1>
(1)n-Cゲルの作製
含水量が約95%のn-Cゲルを作製した。
(2)n-Cゲルの脱水
上記(1)で作製したn-Cゲルを遠心分離機((株)久保田製作所製 テーブルトップ遠心機5420)を用いて10分間遠心脱水し、含水量が約92%の脱水n-Cゲル(原料ゲル)を得た。
(3)硫酸前処理(2回)
上記(2)で得た脱水n-Cゲル16gと濃度65%の硫酸16mLを自転公転ミキサー(ARE310、THINKY製)で10分間混合・撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水し、一次硫酸前処理n-Cゲルを得た。
この一次硫酸前処理n-Cゲルに濃度65%の硫酸16mLを加え、再度、自転公転ミキサー(ARE310、THINKY製)で10分撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水し、二次硫酸前処理n-Cゲルを得た。
(4)混酸の調製
ドラフト内で、氷温に冷却しながら、表1中に記載の量の硝酸(濃度70%)に硫酸(濃度98%)を徐々に加えて混酸を調製した。調製後の混酸は4℃程度に保持した。
(5)ニトロ化
上記(3)で得られた硫酸前処理n-Cゲルを上記(4)で調製した混酸140mLに加え、4℃程度になるまで冷却保持した。
4℃程度に保持された溶液を自転公転ミキサー(ARE310、THINKY製)、で10分間撹拌した後、温度が30℃程度まで上昇した溶液を30分間氷水で4℃程度まで冷却した。これらの撹拌と冷却を5回繰り返し、ニトロ化を完了して、未洗浄n-NCゲルを得た。
(6)水洗浄
上記(5)で得た未洗浄n-NCゲルを3L容器に入れ、純水3L程度を注水後、ガラス棒で撹拌し、n-NCゲルが沈殿するまで30分〜12時間放置し、上澄みを廃棄した。これらの注水、撹拌、沈殿、及び、上澄み廃棄を3〜4回繰り返し、n-NCゲルをpH7まで洗浄を進めた。
pH7まで洗浄を進めたn-NCゲルを遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で5分間脱水し、水洗浄n-NCゲルを得た。
(7)煮沸洗浄
上記(6)で得た水洗浄n-NCゲル1gあたり10mL以上注水し、還流装置付のナスフラスコを用いて8時間煮沸洗浄を行った後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水した。これらの注水、煮沸洗浄、遠心脱水をpH7で安定するまで数回繰り返し、煮沸洗浄n-NCゲル(生成ゲル)を得た。
(8)凍結乾燥
上記(7)で得た煮沸洗浄n-NCゲル1gに炭素数1〜4程度の低級アルコール1mLを添加し、自転公転ミキサー(ARE310、THINKY製)で撹拌した後、遠心分離機((株)久保田製作所製テーブルトップ遠心機5420)で遠心脱水した。これらの添加、撹拌、遠心脱水を3〜4回繰り返した。
得られたn-NC1gに低級アルコール0.5mLを添加し、自転公転ミキサー(ARE310、THINKY製)で撹拌し、冷蔵庫に入れて冷却し、完全に凍結させた。凍結後、半解凍し、ナスフラスコに入れた状態で真空乾燥器にセットし、炭素数1〜4程度の低級アルコールと水分が完全に揮発するまで凍結乾燥を行い、羽毛状のn-NCを得た。
(9)製造されたn-NCについて
上記(8)で得た実験#27のn-NCについて、走査型電子顕微鏡(日本電子(株)製JSM-7400)で観察したところ、平均直径は20nm程度であり、原料のn-Cと同様のナノ繊維構造を有するものであった。また、BET比表面積を測定したところ、103m
2/gであり、原料のn-Cの比表面積100〜130m
2/gと同程度であった。また、窒素含有量は、13.7%程度であった。
【0022】
【表1】
【0023】
エレクトロスピニング法で作製したNCの直径Xは90〜500nmであり、NCを、直径Xnm、長さYμm、密度ρ(g/cm
3;通常1.65g/cm
3程度)、表面積S(m
2)、重量V(g)とすると、比表面積=S/V=[π・X・Y+π(X/2)^2・2]/[π(X/2)^2・Y・ρ]=4/(ρX)+2/(ρY)、ここでY≫Xであるため、比表面積≒4/(ρX)x10
3(m
2/g)となる。該式により算出した比表面積は、4.8〜26.9m
2/gであることから、本発明の実施例のn-NCは、エレクトロスピニング法で作製したn-NCよりも4倍程度以上の比表面積を有するものと言える。
なお、実施例1のn-NCについて、その平均直径20nmに基づいて同様に算出した比表面積は121m
2/gである。上記実測値103m
2/gは、平均直径に基づく比表面積より少し低い値となっているが、これは繊維同士の多少の重なりによるものと考えられる。
下記の実施例4〜7のn-NCについてはBET比表面積を測定していないが、その繊維の直径はn-Cと同等か又はそれより僅かに小さくなっている。それ故、凍結乾燥などの凝集が防止される乾燥方法を採用することにより、実施例1と同様のBET比表面積が得られると言える。
また、n-Cゲルとしては繊維直径が3〜100nmのものが得られるので、それらの繊維直径のn-Cゲルを用いれば、BET比表面積が50〜900m
2/gの範囲内のn-NCを合成することも可能である。
【0024】
<実施例2:n-NCの示差走査熱量測定>
実施例1の実験#27のn-NCと同じ製造方法で得た、凍結乾燥n-NC、および、加熱乾燥以外は実施例1と同じ製造方法で得た加熱乾燥n-NC(比較例)について示差走査熱量測定を行った。測定結果を
図3に示した。加熱乾燥n-NCについては、乾燥の際に凝集する。よって得られた試料は比表面積が小さいため、ピークが広がってしまい、火薬として性能が出せない。一方、凍結乾燥を行った凍結乾燥n-NCでは、鋭いピークが得られ、比表面積が大きく、火薬として性能が出せることが本結果から予想できる。
【0025】
<実施例3:n-NCの燃焼試験>
実施例1の実験#27のn-NC又は市販のNC(窒素量13.4%)0.2gを点火装置を備えた100ccの耐圧密閉容器に導入し、密閉後点火した。
図3に点火後の時間経過に伴う容器内圧力変化を示す。n-NCはNCに比べ、最高圧力が高く、また、最高圧力に達するまでの時間が短かった。このことから、n-NCは、NCに比べ燃焼性能が向上していると考えられる。
【0026】
<実施例4:n-NCの製造例2、硫酸前処理条件の影響調査>
硫酸前処理の条件およびニトロ化の条件を表2のとおり変更し、実施例1の実験#27と同様にしてn-NCを製造した。硫酸濃度が65%で1回処理した場合にみかけの収率(=煮沸洗浄n-NCゲル(生成ゲル)/脱水n-Cゲル(原料ゲル))が最も高く210%となった。同濃度で2回処理した場合には、窒素含有率が11.6%と高くなった。
これらの実施例からみて、硫酸前処理後の水分濃度51〜60%がみかけの収率の点で好ましいと言える。また、窒素濃度を高くする点では2回処理することが好ましい。
【0027】
【表2】
【0028】
<実施例5:n-NCの製造例3、ニトロ化条件の影響調査1>
ニトロ化条件における硫酸と硝酸の100%濃度換算での量比等を表3のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。混酸に用いる硫酸量の比を高くすると高い収率が得られた。混酸に用いる硫酸量の比が84(実験#6)の場合、みかけの収率と窒素含有率がバランス良く、高くなった。
【0029】
【表3】
【0030】
<実施例6:n-NCの製造例4、ニトロ化条件の影響調査2>
ニトロ化条件におけるn-Cゲル量の混酸(100%濃度換算)量に対する比等を表4のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。用いるn-Cの量を少なくすると、収率や窒素含有率が高くなった。その傾向は、n-Cゲル/混酸の比が0.2g/ml以下の場合に特に著しい。
【0031】
【表4】
【0032】
<実施例7:n-NCの製造例5、ニトロ化条件の影響調査3>
ニトロ化条件における反応時間を表5のとおりに変更し、実施例1の実験#27と同様にしてn-NCを製造した。反応時間が45分の場合に収率や窒素含有率が最も高くなった。反応時間が90分程度以上に長くなると、収率や窒素含有率が45分の場合よりも低くなった。これらのことから、高いみかけの収率を得るニトロ化処理時間は10〜30分(好ましくは10〜20分)であり、高い窒素含有率を得るニトロ化処理時間は30〜60分(好ましくは40〜50分)であると言える。
【0033】
【表5】