【実施例】
【0040】
以下、実施例に基づいて本発明の実施態様をさらに具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。
【0041】
(実施例1)
<試料の作製>
ヒドラジン一水和物(N
2H
4・H
2O、和光純薬社製、特級)を蒸留水に溶解して5質量%水溶液を調製し、該水溶液950mgを10mLの蒸留水に滴下した。その後、290mgの五酸化バナジウム(V
2O
5、和光純薬社製、特級)、8mgのオキシ硫酸チタン(IV)(TiOSO
4・nH
2O、三津和化学薬品社製、Assay(TiO
4)33.6%)、及び24mgのヘキサフルオロチタン(IV)酸二アンモニウム((NH
4)
2TiF
6、和光純薬社製)をそれぞれ加えて撹拌することにより、反応溶液を調製した。該反応溶液を、市販の水熱反応用オートクレーブ(三愛科学社製、高圧用反応分解容器25mLセット(耐圧ステンレス製外筒HUS−25、カーボン繊維含有PTFE製内筒HUTc−25)内に入れ、270℃で48時間、水熱反応させた。
水熱反応後、オートクレーブ外筒表面の温度が室温と同等になったのを確認してからオートクレーブを開封し、溶液を市販の遠心分離用遠沈管(ナルゲン社製、梨型沈澱管42mLタイプ)に入れ、遠心分離機(日立工機社製、himacCR20GIII)を用いて15000rpm、10分間の条件で遠心分離を施し、上澄み水を除去した。さらに、遠沈管底に沈澱した反応生成物に蒸留水を加えて振盪させて混合し、再度遠心分離を施し、上澄み水を除去し、さらに遠沈管底に沈澱した反応生成物にエタノールを加えて振盪させて混合し、再度遠心分離を施し、上澄みのエタノールを除去することで反応生成物の洗浄をした。このようにして洗浄された反応生成物を70℃の定温乾燥機で一晩乾燥し、実施例1に係る微粒子状試料を得た。微粒子状試料の走査型電子顕微鏡(SEM)写真を
図1に示す。
【0042】
<TiによるV置換の確認>
得られたナノ粒子について、X線回折測定を行ったところ、VO
2結晶M相の回折ピークシフトが確認され、TiO
2結晶の回折パターンは確認されなかった。この結果から、原料として添加したTiは、ほぼ全量がVと置換し、VO
2に固溶しているといえる。
【0043】
<FによるO置換量の測定>
得られたナノ粒子について、FによるOの置換量を、上述の方法で測定したところ、組成式Ti
xV
1−xF
yO
2−yにおいてy=0.0241となった。混合した原料中のFが全てVO
2ナノ粒子中に取り込まれた場合、前記値はy=0.217と計算される。原料配合量から算出したF量に比べて、実測されたF量が1桁程度少ないことから、本実施例においては、原料として混合したFの多くはナノ粒子中に存在せず、フッ化物イオン等として溶液中に溶け出したと推察される。
【0044】
<転移温度、サーマルヒステリシス幅及び透過率変化幅の測定>
得られたナノ粒子を、市販の高透明接着転写テープ(住友スリーエム社製、高透明粘着剤転写テープ、CAS.No.9483)に均一に塗布し、このテープをガラス基板に張り付け、フッ素ドープ型酸化チタンバナジウムのナノ粒子を有する調光ガラス基板試料を得た。
前記調光ガラス基板試料は、試料温度を変化させたときの光透過率の変化が波長1500nm近傍で最も大きくなるため、前記調光ガラス基板試料について、加熱アタッチメント付き分光光度計(日本分光社製、V−570)を用いて、波長1500nmの赤外領域における光透過率の温度依存性(サーマルヒステリシス)を測定した。測定結果から、高温における光透過率の平坦部の値(T
h)と低温における光透過率の平坦部の値(T
l)とを読み取り、両者の差(T
l−T
h)を、透過率の変化幅ΔTとして算出した。また、光透過率が(T
l−T
h)/2となる昇温時の温度(以下、相転移温度T
cとする)と降温時の温度の差を、サーマルヒステリシス幅ΔHとして算出した(
図2参照)。なお、低温側の透過率曲線が平坦にならなかった場合には、測定した温度範囲内で最も高い透過率(昇温過程の出発点、即ち昇温過程の最も低温側)をT
lとして計算を行った。
【0045】
(実施例2〜9)
五酸化バナジウム、オキシ硫酸チタン(IV)及びヘキサフルオロチタン(IV)酸二アンモニウムの配合量を表1のとおり変更した以外は、実施例1と同様にして、実施例2〜9に係る微粒子状試料を作製した。得られた微粒子はいずれも、サブミクロンの径を有するナノ粒子であり、原料として添加したTiは、ほぼ全量がVと置換し、VO
2に固溶していることが確認された。また、作製した試料を代表して、実施例2,5,9に係るナノ粒子について、実施例1と同様にしてFによるOの置換量を測定したところ、いずれの試料においても、置換量は原料配合量から算出された計算値よりも少量であった。
得られたナノ粒子について、実施例1と同様にして、波長1500nmの赤外領域における光透過率の温度依存性(サーマルヒステリシス)を測定し、サーマルヒステリシスの測定結果から透過率変化幅ΔT、サーマルヒステシリス幅ΔH及び相転移温度T
cの値を算出した。
【0046】
<ナノ粒子の粒径及びアスペクト比の測定>
実施例1〜9に係るナノ粒子について、上述の方法で平均粒径及びアスペクト比を測定したところ、平均粒径が50nm以上200nmの範囲内であり、平均アスペクト比が1〜5であった。これは、特許文献1で開示されている従来の二酸化バナジウム(VO
2)微粒子の形態と同等である。
【0047】
(比較例1、2)
<試料の作製>
Fを含まない試料を作製した。
蒸留水60ml中に、表1における比較例1及び比較例2のV
2O
5欄とTiOSO
4欄とにそれぞれ示された量の(表1、注3参照)バナジン酸アンモニウム(NH
4VO
3、和光純薬社製)及びメタチタン酸(H
2TiO
3、三津和化学薬品社製)を混合し、更にヒドラジン一水和物(N
2H
4・H
2O、和光純薬社製、特級)の5質量%水溶液5.70gをゆっくり滴下し、pH値が9.0〜9.5の溶液を調製した。調製した溶液を、市販の水熱反応処理用オートクレーブ(三愛科学社製、高圧用反応分解容器100mLセット(耐圧ステンレス製外筒HUS−100、カーボン繊維含有PTFE製内筒HUTc−100)に入れ、120℃で8時間、引き続き270℃で24時間、水熱反応処理を行った。
反応後、実施例1と同様の方法で、得られた反応生成物の遠心分離、洗浄及び乾燥を行い、比較例1及び2に係る微粒子状試料を得た。得られた微粒子はいずれも、サブミクロンの径を有するナノ粒子であり、原料として添加したTiは、ほぼ全量がVと置換し、VO
2に固溶していることが確認された。
【0048】
<転移温度、サーマルヒステリシス幅及び透過率変化幅の測定>
得られたナノ粒子について、実施例1と同様にして、波長1500nmの赤外領域における光透過率の温度依存性(サーマルヒステリシス)を測定し、透過率変化幅ΔT、サーマルヒステシリス幅ΔH及び金属−絶縁体転移温度T
cの値を算出した。
【0049】
(比較例3)
<試料の作製>
Tiを含まない試料を作製した。
蒸留水10mL中に、表1における比較例3のV
2O
5欄と(NH
4)
2TiF
6欄とにそれぞれ示された量の(表1、注4参照)バナジン酸アンモニウム(NH
4VO
3、和光純薬社製)及びフッ化アンモニウム(NH
4F、和光純薬社製)を混合し、更にヒドラジン一水和物(N
2H
4・H
2O、和光純薬社製、特級)の5質量%水溶液950mgをゆっくり滴下し、pH9.0〜9.5の溶液を調整した。調整した溶液を、市販の水熱反応処理用オートクレーブ(三愛科学社製、高圧用反応分解容器25mLセット(耐圧ステンレス製外筒HUS−25、カーボン繊維含有PTFE製内筒HUTc−25)に入れ、120℃で8時間、引き続き270℃で24時間、水熱反応処理を行った。
反応後、実施例1と同様の方法で、得られた反応生成物の遠心分離、洗浄及び乾燥を行い、比較例3に係る微粒子状試料を得た。得られた微粒子はいずれも、サブミクロンの径を有するナノ粒子であった。
【0050】
<FによるO置換量の測定>
得られたナノ粒子について、FによるOの置換量を、実施例1と同様の方法で確認したところ、組成式VF
yO
2−yにおいてy=0.0089となった。混合した原料中のFが全てVO
2ナノ粒子中に取り込まれた場合、前記値はy=0.214と計算される。原料として配合したFが、ナノ粒子中のOと僅かしか置換しなかったことから、本比較例においては、実施例と同様に、原料として混合したFの多くはナノ粒子中に存在せず、フッ化物イオン等として溶液中に溶け出したと推察される。
【0051】
上述した実施例及び比較例に係るナノ粒子の原料配合量、並びに透過率変化幅ΔT(%)、サーマルヒステシリス幅ΔH(℃)及び相転移温度T
c(℃)の測定結果を、まとめて表1に示す。実施例1,2,5,9及び比較例3については、FによるO置換量の計算値及び実測値も合わせて示す。また、実施例1,2並びに比較例1に係るナノ粒子のサーマルヒステリシスの測定結果を
図3に示す。
【0052】
【表1】
【0053】
表1より、VO
2のVの一部をTiで置換すると共に、Oの一部をFで置換したフッ素ドープ型酸化チタンバナジウムのナノ粒子は、VO
2よりも低い相転移温度T
cを示すとともに、フッ素をドープしない酸化チタンバナジウム(Ti
xV
1−xO
2)(比較例1,2)及びTiを含まないフッ素ドープ型酸化バナジウム(VF
yO
2−y)(比較例3)よりも狭いサーマルヒステシリス幅ΔHを示すことが判る。
表1において比較例1,2を対比すると、TiによるVの置換量(x)が増加しても、サーマルヒステリシス幅は変化していない。この結果から、フッ素をドープしない酸化チタンバナジウム(Ti
xV
1−xO
2)では、TiによるVの置換で低減可能なサーマルヒステリシス幅には限界があり、置換量(x)を増加しても、該限界を超えてサーマルヒステシリス幅ΔHが低減することはないと推察される。
また、Tiを含まないフッ素ドープ型酸化バナジウム(VF
yO
2−y)である比較例3を見ると、VO
2に比べて相転移温度T
cは低下するものの、サーマルヒステリシス幅ΔHは比較例1,2と同程度であり、十分に低減されていない。さらに比較例3は、相転移に伴う近赤外線透過率の変化幅ΔTが20%を切っており、サーモクロミック特性も十分とはいえない。
本発明は、Ti及びFを共に含むフッ素ドープ型酸化チタンバナジウムを採用することにより、いずれか一方の添加では実現できなかった小さなサーマルヒステリシス幅を実現するものといえる。