特許第6857710号(P6857710)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電信電話株式会社の特許一覧
<>
  • 特許6857710-土壌腐食性評価装置 図000002
  • 特許6857710-土壌腐食性評価装置 図000003
  • 特許6857710-土壌腐食性評価装置 図000004
  • 特許6857710-土壌腐食性評価装置 図000005
  • 特許6857710-土壌腐食性評価装置 図000006
  • 特許6857710-土壌腐食性評価装置 図000007
  • 特許6857710-土壌腐食性評価装置 図000008
  • 特許6857710-土壌腐食性評価装置 図000009
  • 特許6857710-土壌腐食性評価装置 図000010
  • 特許6857710-土壌腐食性評価装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6857710
(24)【登録日】2021年3月24日
(45)【発行日】2021年4月14日
(54)【発明の名称】土壌腐食性評価装置
(51)【国際特許分類】
   G01N 17/02 20060101AFI20210405BHJP
【FI】
   G01N17/02
【請求項の数】2
【全頁数】11
(21)【出願番号】特願2019-232700(P2019-232700)
(22)【出願日】2019年12月24日
(62)【分割の表示】特願2016-240116(P2016-240116)の分割
【原出願日】2016年12月12日
(65)【公開番号】特開2020-46440(P2020-46440A)
(43)【公開日】2020年3月26日
【審査請求日】2019年12月24日
(73)【特許権者】
【識別番号】000004226
【氏名又は名称】日本電信電話株式会社
(74)【代理人】
【識別番号】100083806
【弁理士】
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100129230
【弁理士】
【氏名又は名称】工藤 理恵
(72)【発明者】
【氏名】峯田 真悟
(72)【発明者】
【氏名】東 康弘
(72)【発明者】
【氏名】水沼 守
(72)【発明者】
【氏名】大木 翔太
【審査官】 櫃本 研太郎
(56)【参考文献】
【文献】 米国特許出願公開第2013/0037420(US,A1)
【文献】 特開2008−298688(JP,A)
【文献】 特開昭63−079053(JP,A)
【文献】 特開2017−172997(JP,A)
【文献】 門井 守夫 ほか,金属材料の土壌腐食についての研究(第1報)−土壌に関する基礎的実験−,防蝕技術,1967年,Vol.16,No.6,第10−18頁
(58)【調査した分野】(Int.Cl.,DB名)
G01N 17/00−17/04
G01N 27/26
(57)【特許請求の範囲】
【請求項1】
土壌に埋設された2つの金属の電位差から、前記土壌が前記金属を腐食する程度を評価するための土壌腐食性評価装置であって、
前記土壌に埋設する2つの金属と、
前記2つの金属間に接続される回路と、
を備え、
前記回路は、
陽極を構成する一方の前記金属に負電源端子を接続させる直流電源と、
前記直流電源の正電源端子にアノード電極を接続させ、カソード電極を他方の前記金属に接続させる発光ダイオードと
を備え、
記金属の腐食が進んだ場合の前記電位差をV1、前記直流電源の電圧をV2、及び前記発光ダイオードの順方向電圧をV3とした場合に、前記V2をV2=V3-V1となるように設定す
とを特徴とする土壌腐食性評価装置。
【請求項2】
前記金属と前記回路は切り離しが可能であることを特徴とする請求項1に記載の土壌腐食性評価装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、土壌の腐食性を評価する土壌腐食性評価装置に関する。
【背景技術】
【0002】
鋼管柱、支持アンカや配管などのインフラ設備に代表されるように、様々な金属構造物が、全体またはその一部を地中に埋設された状態で利用されている。金属構造物は土壌に接するために腐食し、経過年数とともに減肉、劣化していくのが普通である。
【0003】
土壌に埋設した金属構造物の腐食の程度は、土壌の種類や性質、金属構造物の構造や埋設状態、および気象条件の差異で著しく異なる。金属構造物の腐食に影響を及ぼす因子として、土壌の種類、気温や土の温度、pH、比抵抗、含水量、可溶性塩類濃度、酸素濃度、ガス類、バクテリア活動などが挙げられる。土壌腐食はこれら諸因子が関係した複雑なメカニズムで進行する。
【0004】
そのため,金属構造物が本来確保するべき機能を発揮できなくなるより前に、補修や交換など、なんらかの対策を講じる必要がある。しかし地中構造物は、地中にあるが故に、人または機械による直接的な点検が困難な場合が多い。そこで、土壌に埋設した金属構造物に対する土壌の腐食性を表す土壌腐食性を、ある基準に基づいて評価し、その土壌腐食性の評価結果によって設備の保守運用計画を立案する方法がある。
【0005】
一般的に、例えば腐食土、泥炭土、粘土、さらに河川や海岸付近の土壌などが、地中の金属、特に鋼や鋳鉄材の腐食が大きいと言われている。しかし、非常に広範囲に大規模に設備が敷設される現在では、敷設環境も多様であり、こうした定性的かつ経験的な指標では対応できない。
【0006】
そこで、電気化学的手法を用いて土壌腐食性を評価する考えが、例えば非特許文献1に開示されている。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】宮田義一ほか1名、「電気化学的手法を中心とした土壌腐食計測(その2)」、材料と環境、46, 610〜619, 1997.
【発明の概要】
【発明が解決しようとする課題】
【0008】
従来の電気化学的手法は、例えば交流インピーダンス法で土壌の分極抵抗を求め、土壌腐食性を評価する方法である。その方法は、複雑であることから、もっぱら実験室等で行われる。したがって、実際に金属構造物が埋設される現場で用いるのが困難で有るという課題がある。
【0009】
本発明は、この課題に鑑みてなされたものであり、従来よりも簡単な構成で、且つ便利に使える土壌腐食性評価装置とその方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本実施形態の一態様に係る土壌腐食性評価装置は、土壌に埋設された2つの金属の電位差から、前記土壌が前記金属を腐食する程度を評価するための土壌腐食性評価装置であって、前記土壌に埋設する2つの金属と、前記2つの金属間に接続される回路と、を備え、前記回路は、陽極を構成する一方の前記金属に負電源端子を接続させる直流電源と、前記直流電源の正電源端子にアノード電極を接続させ、カソード電極を他方の前記金属に接続させる発光ダイオードとを備え、前記金属の腐食が進んだ場合の前記電位差をV1、前記直流電源の電圧をV2、及び前記発光ダイオードの順方向電圧をV3とした場合に、前記V2をV2=V3-V1となるように設定することを要旨とする。
【発明の効果】
【0011】
本発明によれば、従来よりも簡単な構成で、且つ便利に使える土壌腐食性評価装置を提供することができる。
【図面の簡単な説明】
【0012】
図1】本発明の第1実施形態に係る土壌腐食性評価装置の機能構成例を示す図である。
図2】本発明の第2実施形態に係る土壌腐食性評価装置の機能構成例を示す図である。
図3図2に示す土壌腐食性評価装置の測定部の具体例を示す図である。
図4】評価時間と自然電位との関係を模式的に示す図である。
図5】本発明の第3実施形態に係る土壌腐食性評価装置の機能構成例を示す図である。
図6】本発明の第4実施形態に係る土壌腐食性評価装置の機能構成例を示す図である。
図7】本発明の第1実施形態に係る土壌腐食性評価装置を複数用いて評価する場合の一例を示す図である。
図8】評価時間と自然電位との関係を模式的に示す図である。
図9】本発明の第1実施形態に係る土壌腐食性評価装置を複数用いて評価する場合の他の例を示す図である。
図10】本発明の第3実施形態に係る土壌腐食性評価装置の変形例の機能構成例を示す図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。
【0014】
〔第1実施形態〕
図1に、第1実施形態に係る土壌腐食性評価装置1の機能構成例を示す。土壌腐食性評価装置1は、2つの金属11,12、回路20、及び測定部21を備える。
【0015】
金属11と金属12は、互いに材質が異なり、土壌100に埋設される。金属12,13は、土壌100中に埋設した状態で回路20を介して電気的に接続した際に起電力が生じる必要がある。そのために、金属12,13は、土壌中の自然電位(腐食電位)が異なる金属同士を組み合わせた異種金属対10を構成する。
【0016】
金属の組み合わせは、例えば、鉄と亜鉛、銀と鉄、銅と鉄、及び鉄とマグネシウム等の組み合わせが考えられる。なお、金属は単一組成を有するものである必要もなく、例えば溶融亜鉛メッキを施した金属を用いてもよい。つまり、異種金属対10の組み合わせとして、例えば鋼材と溶融亜鉛メッキ鋼材でもよい。また、金属の大きさ、厚みを含む形状も特に制限はない。
【0017】
回路20は、異種金属対10を成す金属11,12の間に接続される。測定部21は、回路20を流れる電流を測定する。
【0018】
測定部21は、例えば電流計である。なお、後述するように測定部21は、金属11,12の間の電位差を測定する電圧計で有ってもよい。また、電荷量測定器で有ってもよい。
【0019】
本実施形態では、異種金属対10を土壌中に埋設し、金属11,12同士を電気的に接続すると発生する、いわゆるガルバニック腐食を利用して土壌100の土壌の腐食性(土壌腐食性)を評価する。
【0020】
図1に示すように、土壌100に異種金属対10を埋設し、金属11,12を電気的に接続するとガルバニック腐食電流が流れる。例えば、鉄と亜鉛の組み合わせで一般的な関東ローム土等に埋め込むと、土壌100の水分量によっても異なるが、金属11,12の間に凡そ0.3〜0.4V程度の自然電位を生じる。このガルバニック腐食は、土壌100中に独立して存在する金属の腐食とはそのメカニズムを異にしているが、土壌100中での腐食速度と高い相関を示すことが知られている。
【0021】
2つの金属11,12の間を、回路20で接続することでガルバニック腐食が生じ、金属11,12の腐食が進行する。一定期間が経過すると異種金属対10を構成する一方の金属である例えば亜鉛が消失し、他方の金属である例えば鉄の表面に腐食生成部が形成される。
【0022】
腐食が進行し金属11,12の状態が変化すると、金属11と12との間に生じる電位差の大きさが変化する。この変化を測定部21で可視化することで、土壌100の金属11,12に対する土壌腐食性を評価することができる。
【0023】
以上説明したように本実施形態の土壌腐食性評価装置1は、2つの金属11,12、回路20、及び測定部21の簡単な構成で、土壌100の土壌腐食性を評価するための金属11と12との間に生じる電位差の大きさの変化を表示する。このように土壌腐食性評価装置1は、簡便な土壌腐食性の評価を可能にする。よって、実際に金属構造物が埋設される現場における土壌腐食性の評価も可能にする。
【0024】
〔第2実施形態〕
図2に、第1実施形態に係る土壌腐食性評価装置2の機能構成例を示す。土壌腐食性評価装置2は、測定部21に代えて、金属11,12間に接続される電圧計である測定部22を備える。
【0025】
このように測定部22は、電圧計で構成してもよい。電圧計は一般的なものでよい。
【0026】
なお、一般的な電圧計よりも簡単な構成で金属11,12間の電圧を測定することが可能である。図3に、その測定部22の具体例を示す。
【0027】
図3は、直流電源23と発光ダイオード24で測定部22を構成した例である。
【0028】
直流電源23の負極は金属11と接続され、直流電源23の正極は発光ダイオード24のアノード電極に接続され、発光ダイオード24のカソード電極は金属12に接続される。つまり、直流電源23と発光ダイオード24は、金属11,12の間に直列に接続される。
【0029】
測定部22を接続した状態で時間が経過すると、例えば金属11(例えば鉄)の表面に錆が生じ、金属12(例えば亜鉛)が減肉して行く。これによって、金属11,12の間の電位差は小さくなる。
【0030】
図4に、自然電位が時間の経過に伴って小さくなる様子を模式的に示す。土壌腐食性の大小の境の電位差を、例えばV1と定めておくと、図4中のパターンαの変化をたどる土壌100の土壌腐食性を小とし、パターンβの変化をたどる土壌100の土壌腐食性を大として分類することができる。
【0031】
この場合、発光ダイオード24の順方向電圧をV3、直流電源23の電圧をV2とすると、V2=V3−V1となるように設定しておけば、発光ダイオード24の点灯の有無によって土壌腐食性の大小を識別することができる。つまり、V3=V2+V1なので、金属11と12の間の自然電位がV1よりも小さくなると、発光ダイオード24にかかる電圧は順方向電圧以下になり、発光ダイオード24が消灯する。
【0032】
本実施形態の測定部22は、発光ダイオード24と直流電源23の直列接続で構成される。この構成によれば、腐食が進んで自然電位がV1より小さくなると発光ダイオード24が消灯する。その結果、電位差がV1まで低下したこと(腐食が進んだこと)を知ることができる。つまり、消灯を確認したオペレータは、土壌腐食性が大きいと判定することができる。
【0033】
以上説明したように本実施形態の土壌腐食性評価装置2は、直流電源23と発光ダイオード24の簡単な構成で、土壌腐食性の大小を表示することができる。
【0034】
〔第3実施形態〕
図5に、第3実施形態に係る土壌腐食性評価装置3の機能構成例を示す。土壌腐食性評価装置3は、土壌腐食性評価装置1(図1)に対して支持部30を備える点で異なる。
【0035】
支持部30は、例えば棒状の金属11と12を、当該棒状の一方の端部を、土壌100の表面部分で支持するものである。支持部30を備えることで、金属11,12の土壌100への埋設を容易にすることができる。
【0036】
また、支持部30は、金属11と12の間隔を所定の間隔に固定するので、金属11と12の間隔を、評価する現場ごとに一定にする手間を省くことができる。また、金属11
,12の長さを固定にし、支持部30を土壌100の表面まで押し込むことで、金属11と12の深さ方向の条件も揃えることができる。
【0037】
なお、本実施形態の金属11,12と回路20は、切り離せるようにしても良い。金属11,12と回路20の切り離しを可能にすることで、全ての土壌腐食性評価装置3に回路20を設ける必要が無くなる。よって、土壌腐食性評価装置3のコストを下げることができる。
【0038】
なお、回路20を金属11,12から切り離すと、金属11と12は、土壌100以外では絶縁された状態になる。その状態では、ガルバニック腐食が起きないので、腐食の進行速度が遅くなる課題がある。次に、この課題を解決した第4実施形態を説明する。
【0039】
〔第4実施形態〕
図6に、第4実施形態に係る土壌腐食性評価装置4の機能構成例を示す。土壌腐食性評価装置4は、土壌腐食性評価装置3(図5)に対して短絡部31を備える点で異なる。
【0040】
短絡部31は、金属11,12と回路20を切り離した場合に、金属11と12の間を短絡させる。短絡部31は、例えば回路20に設けた凸部と、支持部30に設けた接点とで容易に実現することができる。つまり、回路20を切り離した場合に導通する接点の接点間に、回路20の凸部が挿入されるように構成すればよい。なお、その構成(凸部と接点)の表記は省略する。
【0041】
また、磁石を用いてもよい。回路20に、支持部30に設けられたリレーをOFFする磁石を配置しておくことで短絡部31を構成できる。回路20を切り離した場合に、金属11と12の間を接続するリレーがONし、ガルバニック腐食が生じる。
【0042】
本実施形態の土壌腐食性評価装置4は、短絡部31を備えることで、回路20を切り離した場合でも金属11と12の間にガルバニック腐食を生じさせることができる。また、短絡部31は、金属11,12間を電圧計で接続するよりも、金属11,12間に大きな電流(ガルバニック腐食電流)を流せる。したがって、本実施形態の土壌腐食性評価装置4は、電圧計(測定部22)を常時接続した場合よりも評価時間を短縮できる。
【0043】
(応用例I)
本実施形態の土壌腐食性評価装置を、複数用いて土壌腐食性評価を行ってもよい。図7に、土壌腐食性評価装置1を3個用いた応用例Iを示す。
【0044】
図7において、3個の土壌腐食性評価装置1,72,73は並べて配置されている。一方の端の土壌腐食性評価装置1は、参照符号から明らかなように上記の土壌腐食性評価装置1と同じものである。
【0045】
なお、本実施形態の土壌腐食性評価装置は、上記の通り金属11,12と回路20を切り離しても良いことから、応用例Iにおいても異種金属対のみで構成してもよい。つまり、土壌100に埋設する2つの金属11,12、2つの金属14,15、及び2つの金属16,17で構成される土壌腐食性評価装置としてもよい。
【0046】
真ん中の土壌腐食性評価装置72は、土壌腐食性評価装置1に対して直流電源723の電圧が異なる。また、土壌腐食性評価装置72の一方の金属14の材質は、金属11と同じで且つ厚みが金属11よりも薄い。また、真ん中の土壌腐食性評価装置72の他方の金属15の材質は、金属12と同じで且つ厚みが金属12よりも薄い。なお、金属15の厚みは、金属14と同じである。
【0047】
他方の端の土壌腐食性評価装置73は、土壌腐食性評価装置1,72に対して直流電源733の電圧が異なる。また、土壌腐食性評価装置73の一方の金属16の材質は、金属14と同じで且つ厚みが金属14よりも薄い。また、他方の端の土壌腐食性評価装置73の他方の金属17の材質は、金属15と同じで且つ厚みが金属15よりも薄い。なお、金属17の厚みは金属16と同じである。
【0048】
つまり応用例Iは、2つの金属から成る金属対を2組み以上備え、各金属対の金属は固有の厚みである。
【0049】
このように、2つの金属の組み合わせを同じにして、厚みを異ならせることで、2つの金属間の電位差の経時変化を調整することができる。金属のそれぞれの厚みを厚くした場合と、薄くした場合とでは、薄くした場合の方が電位差が小さくなるまでの期間が短くなる。
【0050】
図8に、評価時間に対する傾きが異なる3個の2つの金属間の電位差の変化を模式的に示す。γは、金属16,17の厚みも一番薄くした土壌腐食性評価装置73の2つの金属間の電位差の変化を表す。βは、金属14,15の厚みを中位にした土壌腐食性評価装置72の2つの金属間の電位差の変化を表す。αは、金属11,12の厚みを一番厚くした土壌腐食性評価装置1の2つの金属間の電位差の変化を表す。
【0051】
最も大きな電位差の変化を示す土壌腐食性評価装置73の直流電源733の電圧をVα、中位の電位差の変化を示す土壌腐食性評価装置72の直流電源723の電圧をVβ、及び最も小さな電位差の変化を示す土壌腐食性評価装置1の直流電源23の電圧をVγとする。このように直流電源23,723,733のそれぞれの電圧を変えておくことで、土壌腐食性を多段階で表示することができる。
【0052】
例えば、発光ダイオード24,724,734の全てが点灯(腐食度A)、発光ダイオード734のみが消灯(腐食度B)、発光ダイオード734と724が消灯(腐食度C)、発光ダイオード24,724,734の全てが消灯(腐食度D)の4段階で土壌腐食性を表すことができる。
【0053】
(応用例II)
複数の土壌腐食性評価装置の異種金属対10の金属の組み合わせの種類を異ならせてもよい。応用例Iと同様に3個の土壌腐食性評価装置1,74,75を用いる場合は、それぞれの異種金属対10の材質の組み合わせを異ならせる。
【0054】
図9に、土壌腐食性評価装置1を3個用いた応用例IIを示す。応用例IIは、2つの金属から成る金属対の金属の材質の組み合わせが固有で有る。応用例IIは、応用例Iと同じ作用効果を奏する。
【0055】
応用例IIで、例えば異なる金属に対する土壌腐食性を評価したい場合は、その対象とする金属それぞれと、それよりも貴(高い)な自然電位を有する金属とをそれぞれ組み合わせる。そうすることで、異なる金属の同時評価を可能にする。
【0056】
(変形例)
図10に、土壌腐食性評価装置3の変形例の機能構成例を示す。土壌腐食性評価装置3の変形例は、金属42,43の形状が、土壌腐食性評価装置2(図4)と異なる。
【0057】
金属42,43は、一方の端部から土壌100側の先端に向けて断面積が小さくなるテーパ形状の棒である。
【0058】
このように金属42,43を形成することで、金属42,43を土壌100に埋設し易くできる。つまり、金属42,43を備えた支持部30を土壌100に押し入れる場合の抵抗を小さくできるので、金属42,43を土壌100に埋設し易くできる。
【0059】
以上説明したように本実施形態の土壌腐食性評価装置1,2,3,4は、簡便な土壌腐食性の評価を可能にする。よって、実際に金属構造物が埋設される現場における土壌腐食性の評価も可能にする。
【0060】
なお、金属11,12等の形状は、棒状を例に説明を行ったが、棒状に限られない。金属11,12等の形状は、どのような形状で有っても構わない。また、第3実施形態の土壌腐食性評価装置3は、土壌腐食性評価装置1(図1)に支持部30を追加する構成で説明を行ったが、この例に限定されない。第2実施形態の土壌腐食性評価装置2に、支持部30を追加する構成で有ってもよい。
【0061】
また、応用例I,IIは、土壌腐食性評価装置1(図1)を3個用いる例で説明を行ったが、土壌腐食性評価装置2及び3を複数個用いてもよい。このように本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。
【符号の説明】
【0062】
1、2、3、72、73、74、75:土壌腐食性評価装置
10:異種金属対
11、12、14、15、16、17、18、19、40、41、42、43:金属
20:回路
21、22:測定部
23、723、733:直流電源
24、724,734:発光ダイオード
30:支持部
31:短絡部
100:土壌
α、β、γ:自然電位の変化パターン
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10