【実施例】
【0059】
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
実施例および比較例において、触媒担持体の耐破壊特性及び利用適性、金属化合物の金属化合物換算厚み、触媒の触媒金属換算厚み、並びに得られたカーボンナノチューブの収量、及びCNT合成の成否はそれぞれ以下の通りに測定/評価した。
【0060】
<触媒担持体の耐破壊特性>
触媒担持体の耐破壊特性は、複合層形成工程を5回繰り返して得た触媒担持体をSEM観察し、10個の触媒担持体について触媒担持体表面の欠損の有無を目視にて判定し、以下の基準に従って評価した。触媒担持体が耐破壊特性に優れていれば、触媒担持体の再利用適性が高く、さらに、得られる繊維状炭素ナノ構造体の品質を向上させることができる。
A:欠損なし
B:欠損あり
<触媒担持体の利用適性>
触媒担持体の利用適性は、流動層合成装置の管壁を目視にて観察し、透明な石英ガラスよりなる管壁が傷つくことで生じうる白濁の有無を以下の基準に従って評価した。
A:白濁あり
B:白濁なし
【0061】
<換算厚み>
走査型電子顕微鏡(日立ハイテクノロジーズ社製S−4800)付属のエネルギー分散X線分光装置(アメテック社製、EDAX Genesis)を用いて、触媒担持体についての特性X線強度を測定し、得られた特性X線強度測定値を予め得たAl標準膜/Fe標準膜を用いて得た検量線と比較して、各種換算厚みを測定した。なお、金属化合物の金属化合物換算厚みについてはAl標準膜を、触媒の触媒金属換算厚みについてはFe標準膜を用いた。
【0062】
<カーボンナノチューブの収量>
CNT合成用流動層装置よりCNT合成中に排気されるガスについて、水素炎イオン化型検出器を備えるガスクロマトグラフ(島津製作所社製、GC−2014)により分析した。分析値より、排気ガス中における炭素含有成分の質量を算出し、CNTの合成に際してCNT合成用流動層装置に導入した炭素原料の質量(C
S)から差し引いてCNTに転化したと考えられる炭素原料の質量(C
CNT,gas)を算出した。そして、得られた値について(C
CNT,gas/C
S)×100を計算して炭素原料の転化率(モル%)を得た。また、CNT合成前後の触媒担持体の質量変化を電子天秤(島津製作所製、型番AUW120D)で測定し、CNTの質量(C
CNT,powder)を求め、(C
CNT,powder/C
s)×100を計算して、CNTの収率を算出した。
【0063】
<CNT合成の成否>
CNTの合成の成否は、CNT合成を行った触媒担持体を走査型電子顕微鏡観察により観察し、以下の基準に従って評価した。
A:触媒担持体の全面にわたって略均一にCNTが成長していた。
B:CNTの成長が非常に少ないかあるいは認められなかった。
【0064】
(実施例1)
<触媒担持体の製造>
[準備工程]
支持体として、体積平均粒子径(D50)約150μmのムライト粉末(伊藤忠セラテック株式会社製、「ナイガイセラビーズ60」、#750)を用いた。ムライト粉末70gを、ガラス管よりなる流動層装置に充填し、酸素4体積%、窒素96体積%を含むガスを3slmで流通しながら800℃まで40℃/分で昇温し、2分間維持した。
[複合層形成工程]
金属化合物材料としてのアルミニウムイソプロポキシド(和光純薬工業社製、「012-16012」、化学式:Al(O-i-Pr)
3[i-Prはイソプロピル基−CH(CH
3)
2])の蒸気を130℃にて0.5slmのN
2ガスで同伴し、酸素4体積%、窒素96体積%、10slmのガスとともに5分間供給して、支持体としてのムライト粉末上に、金属化合物部としての酸化アルミニウム層(酸化アルミニウム換算厚み5nm)を形成した。
次いで、触媒材料としてフェロセン(和光純薬工業社製、「060-05981」)の蒸気を130℃にて0.02slmのN
2ガスで同伴し、酸素4体積%、窒素96体積%、10slmのガスとともに5分間供給して、Feにより形成される微粒子を含む触媒層(鉄換算厚み0.5nm)を形成した。
[繰り返し工程]
そして、複合層を形成した触媒担持体について、複合層形成工程をさらに4回繰り返し、複合層を5層備える触媒担持体を製造した。
得られた触媒担持体を、上述した方法に従って評価した。結果を表1に示す。なお、触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
【0065】
<CNTの合成>
そして、触媒担持体を、管内径2.2cmのガラス管よりなるカーボンナノチューブ合成用流動層装置に層高3cmになるように充填した。CNT合成用流動層装置内を、水素10体積%、窒素90体積%を含むガスを2slmで流通しながら800℃に昇温し、10分間維持して触媒担持体を還元した。そして、CNT合成用流動層装置内に、炭素原料としてのアセチレン(C
2H
2)を0.7体積%と、水素10体積%と、二酸化炭素3体積%と、窒素86.3体積%とを含むガスを2slmで10分間供給して、CNTを合成した。得られたCNTについて、上述した方法に従って各種測定及び評価を行った。結果を表1に示す。また、実施例1に従って得られた表面にCNTを有する触媒担持体のSEM画像を
図1に示す。
図1によれば、触媒担持体粒子の全面にて、CNTが成長していることがわかる。
【0066】
(実施例2−1)
CNTの合成温度を725℃に変更するとともに、CNT合成用流動層装置内に供給する炭素原料を含むガスの量を3slmに変更した以外は実施例1と同様とした。そして、得られたCNTについて、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例2−2)
CNTの合成温度を750℃に変更するとともに、CNT合成用流動層装置内に供給する炭素原料を含むガスの量を3slmに変更した以外は実施例1と同様とした。そして、得られたCNTについて、実施例1と同様にして評価を行った。結果を表1に示す。
【0067】
(実施例3−1)
実施例1と同様の触媒担持体を用いてCNTを合成するにあたり、CNTの合成温度を730℃に、CNT合成用流動層装置内に供給するガスの量を3slmに変更した以外は実施例1と同様とした。実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(実施例3−2)
複合層形成工程において、触媒材料であるフェロセンを同伴するN
2ガス流量を0.03slmとして、触媒層の鉄換算厚みを0.75nmに変更した以外は実施例1と同様にして触媒担持体を得た。そして、得られた触媒担持体を用いてCNTを合成するにあたり、CNTの合成温度を730℃に、CNT合成用流動層装置内に供給するガスの量を3slmに変更した以外は実施例1と同様とした。実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(実施例3−3)
複合層形成工程において、触媒材料であるフェロセンを同伴するN
2ガス流量を0.04slmとして、触媒層の鉄換算厚みを1nmに変更した以外は実施例1と同様にして触媒担持体を得た。そして、得られた触媒担持体を用いてCNTを合成するにあたり、CNTの合成温度を730℃に、CNT合成用流動層装置内に供給するガスの量を3slmに変更した以外は実施例1と同様とした。実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
【0068】
(実施例4)
触媒層の鉄換算厚みを1nmに変更した以外は実施例1と同様にして触媒担持体を得た。そして、得られた触媒担持体を用いてCNTを合成するにあたり、CNTの合成温度を725℃に、CNT合成用流動層装置内に供給するガスを、炭素原料としてのエチレン(C
2H
4)を10体積%と、水素10体積%と、二酸化炭素3体積%と、窒素77体積%とを含むガス1.5slmに、変更した以外は実施例1と同様とした。実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。なお、得られた触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
【0069】
(実施例5−1)
実施例4と同様の条件で触媒担持体を合成し、得られた触媒担持体を用いてCNTを合成するにあたり、温度を800℃に変更した以外は実施例4と同様とした。実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(実施例5−2)
実施例4と同様の条件で触媒担持体を合成し、得られた触媒担持体を用いてCNTを合成するにあたり、温度を800℃に変更し、触媒担持体を層高6cmになるように充填した以外は実施例4と同様とした。実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(実施例5−3)
実施例4と同様の条件で触媒担持体を合成し、得られた触媒担持体を用いてCNTを合成するにあたり、温度を800℃に変更し、触媒担持体を層高9cmになるように充填した以外は実施例4と同様とした。実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
【0070】
(実施例6−1)
触媒層の鉄換算厚みを1nmに変えた以外は、実施例1と同様に触媒担持体の製造を行った。さらに、得られた触媒担持体を、横型炉を備えたカーボンナノチューブ合成用固定層装置に充填し、CNT合成用固定層装置内に、炭素原料としてのアセチレン(C
2H
2)を0.3体積%と、水素10体積%と、二酸化炭素3体積%と、アルゴン86.7体積%とを含むガスを0.5slmで10分間供給して、CNTを合成した。得られたCNTに対し、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例6−2)
触媒層の鉄換算厚みを1nmに変え、複合層を10層形成した以外は、実施例1と同様に触媒担持体の製造を行った。得られた触媒担持体を用いて、実施例6−1と同様にしてCNTを合成した。実施例1と同様にして各種評価を行った。結果を表1に示す。なお、得られた触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
(実施例6−3)
触媒層の鉄換算厚みを1nmに変え、複合層を20層形成した以外は、実施例1と同様に触媒担持体の製造を行った。得られた触媒担持体を用いて、実施例6−1と同様にしてCNTを合成した。実施例1と同様にして各種評価を行った。結果を表1に示す。なお、得られた触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
【0071】
(実施例7−1−1〜7−1−3)
触媒層の鉄換算厚みを1nmに変えた以外は、実施例1と同様に触媒担持体の製造を行った。得られた触媒担持体を、横型炉を備えたカーボンナノチューブ合成用固定層装置に充填し、CNT合成用固定層装置内に、炭素原料としてのアセチレン(C
2H
2)を0.3体積%と、水素10体積%と、二酸化炭素3体積%と、アルゴン86.7体積%とを含むガスを0.5slmで10分間供給して、700℃(実施例7−1−1)、750℃(実施例7−1−2)、800℃(実施例7−1−3)にてCNTを合成した。実施例1と同様にして各種評価を行った。結果を表2に示す。
(実施例7−2−1〜7−2−3)
触媒層の鉄換算厚みを1nm、金属化合物層の酸化アルミニウム換算厚みを10nmに変えた以外は、実施例1と同様に触媒担持体の製造を行った。得られた触媒担持体を、横型炉を備えたカーボンナノチューブ合成用固定層装置に充填し、CNT合成用固定層装置内に、炭素原料としてのアセチレン(C
2H
2)を0.3体積%と、水素10体積%と、二酸化炭素3体積%と、アルゴン86.7体積%とを含むガスを0.5slmで10分間供給して、700℃(実施例7−2−1)、750℃(実施例7−2−2)、800℃(実施例7−2−3)にてCNTを合成した。実施例1と同様にして各種評価を行った。結果を表2に示す。ここで、得られた触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
なお、実施例(7−2−1)〜(7−2−3)で作製した触媒担持体の、CNT合成前の表面を、走査型電子顕微鏡(日立ハイテクノロジーズ製S−4800)にて、反射電子モード、加速電圧2kVで観察した。結果を
図2に示す。
図2にて、比較的高輝度で表示されている部分がFe微粒子である。
図2から、ムライト粒子表面に均一にFe微粒子が形成していることがわかる。300nm×500nmの範囲1にFe微粒子が79個存在し、Fe微粒子の数密度は527粒子/μm
2であった。Fe微粒子の平均厚み(鉄換算厚み)は1nmであり、300nm×500nmの範囲にあるFe微粒子の総体積は1.5×10
4 nm
3である。Fe微粒子1個あたりの平均体積は、1.5×10
5nm
3/79=1.9×10
3nm
3であり、球相当径(同じ体積を持つ球の径)は15nmであることが分かった。
【0072】
(実施例8−1)
金属化合物材料としてのアルミニウムイソプロポキシドの蒸気を140℃にて1.1slmのN
2ガスに同伴して5分間供給し、金属化合物部としてのAl
2O
3を酸化アルミニウム換算厚み20nmで形成した後に、触媒材料としてのフェロセンの蒸気を140℃にて0.06slmのN
2ガスに同伴して2分間供給し、触媒層としてのFeを鉄換算厚み1nmで形成した以外は、実施例1と同様にして触媒担持体を作製した。この触媒担持体を用い、実施例6−1と同様にCNTの合成を行った。実施例1と同様にして各種評価を行った。結果を表2に示す。なお、得られた触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
(実施例8−2)
金属化合物材料としてのアルミニウムイソプロポキシドの蒸気を140℃にて1.1slmのN
2ガスに同伴して5分間供給し、金属化合物部としてのAl
2O
3を酸化アルミニウム換算厚み20nmで形成した後に、触媒材料としてのフェロセンの蒸気を140℃にて0.06slmのN
2ガスに同伴しつつ、金属化合物材料としてのアルミニウムイソプロポキシドの蒸気を140℃にて0.07slmのN
2ガスに同伴して、同時に2分間供給し、Feを鉄換算厚み1nm、Al
2O
3を酸化アルミニウム換算厚み0.5nmを有す混合層を形成した以外は、実施例1と同様に触媒担持体を作製した。なお、得られた触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
この触媒担持体を用い、実施例6−1と同様にCNTの合成を行った。実施例1と同様にして各種評価を行った。結果を表2に示す。
(実施例8−3)
金属化合物材料としてのアルミニウムイソプロポキシドの蒸気を140℃にて1.1slmのN
2ガスに同伴して5分間供給し、金属化合物部としてのAl
2O
3を酸化アルミニウム換算厚み20nmで形成した後に、触媒材料としてのフェロセンの蒸気を140℃にて0.06slmのN
2ガスに同伴して2分間供給し、触媒層としてのFeを鉄換算厚み1nmで形成し、更にその後に金属化合物材料としてのアルミニウムイソプロポキシドの蒸気を140℃にて0.07slmのN
2ガスに同伴して2分間供給し、金属化合物層としてのAl
2O
3を酸化アルミニウム換算厚み0.5nmで形成した以外は、実施例1と同様に触媒担持体を作製した。なお、得られた触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
この触媒担持体を用い、実施例6−1と同様にCNTの合成を行った。実施例1と同様にして各種評価を行った。結果を表2に示す。
(実施例8−4)
金属化合物材料としてのアルミニウムイソプロポキシドの蒸気を140℃にて1.1slmのN
2ガスに同伴して5分間供給し、金属化合物層としてのAl
2O
3を酸化アルミニウム換算厚み20nmで形成した後に、触媒材料としてのフェロセンの蒸気を140℃にて0.06slmのN
2ガスに同伴しつつ、金属化合物材料としてのアルミニウムイソプロポキシドの蒸気を140℃にて0.07slmのN
2ガスに同伴して、同時に2分間供給し、Feを鉄換算厚み1nm、Al
2O
3を酸化アルミニウム換算厚み0.5nmを有す混合層を形成し、更にその後に金属化合物材料としてのアルミニウムイソプロポキシドの蒸気を140℃にて0.07slmのN
2ガスに同伴して2分間供給し、金属化合物部としてのAl
2O
3を酸化アルミニウム換算厚み0.5nmで形成した以外は、実施例1と同様に触媒担持体を作製した。なお、得られた触媒担持体の比表面積をBET法に従って測定し、比表面積が1m
2/g未満であることを確認した。
この触媒担持体を用い、実施例6−1と同様にCNTの合成を行った。実施例1と同様にして各種評価を行った。結果を表2に示す。
【0073】
(比較例1)
触媒担持体の製造に際して、ムライトに代えて体積平均粒子径約100μmのケイ砂(三河珪石株式会社製、三河珪砂R8号)を用いた以外は実施例1と同様にして触媒担持体を製造した。次いで、CNT合成用流動層装置内に、炭素原料としてのアセチレン(C
2H
2)を1体積%と、水素10体積%と、二酸化炭素3体積%と、窒素86体積%とを含むガスを2slmで20分間供給して、CNTを合成した。得られた触媒担持体について、実施例1と同様にして評価を行った。結果を表2に示す。CNTを充分に合成することができなかった。その原因を調べるべく、ケイ砂にN
2ガスのみを流通して流動化させた後の粒子構造を観察した。SEM画像を
図3に示す。
図3右側に示す拡大図から明らかなように、ケイ砂は、触媒担持体の製造に用いた流動層装置では破砕されてしまった。
【0074】
(比較例2)
触媒担持体の製造に際して、ムライトに代えて体積平均粒子径約100μmのアルミナビーズ(不二製作所製、ホワイトアランダム#120)を用いた以外は実施例1と同様にして触媒担持体の製造を試みた。しかし、繰り返し工程の回数を重ねるたびに、石英ガラス管よりなる流動層装置の管壁が白濁したため、実験を中止した。よって、多層構造の触媒担持体を形成することができず、CNTを合成することができなかった。
【0075】
(比較例3)
触媒層たるFeの鉄換算厚みを1nmに変え、複合層を1層形成した以外は、実施例1と同様に触媒担持体の製造を行った。得られた触媒担持体について、実施例1と同様にして評価を行った。結果を表2に示す。
さらに、得られた触媒担持体を、横型炉を備えたカーボンナノチューブ合成用装置に充填し、CNT合成用装置内に、炭素原料としてのアセチレン(C
2H
2)を0.3体積%と、水素10体積%と、二酸化炭素3体積%と、アルゴン86.7体積%とを含むガスを0.5slmで10分間供給して、CNTを合成した。実施例1と同様にして各種評価を行った。結果を表1に示す。
【0076】
なお、表中、「FCVD」は流動層CVDを、「SCVD」は固定層CVDを、「CNT」はカーボンナノチューブをそれぞれ指す。
【0077】
【表1】
【表2】
【0078】
表1〜2より、AlとSiとをそれぞれ10質量%以上含み、体積平均粒子径が50μm以上400μm以下である支持体上に複合層を2層以上備える触媒担持体は、耐破壊特性及び利用適性に富み、CNTを合成できたことから、触媒活性も良好であることが分かる。一方、支持体がAlとSiとをそれぞれ10質量%以上含まない比較例1及び2の触媒担持体は、耐破壊特性及び利用適性が不十分であり、また、比較例3より、ムライトを支持体とするものの、複合層を1層しか備えない触媒担持体は触媒活性が不十分であることがわかる。