【実施例】
【0023】
[供試粉末の被覆率の測定]
粒子表面にLiOHを含むLATP層またはLTO層が形成された供試粉末のLATP被覆率またはLTO被覆率のXPSによる測定は、アルバック・ファイ社製PHI5800 ESCA SYSTEMを用いて行った。分析エリアはφ800μmとし、X線源:Al管球、X線源の出力:150W、分析角度:45°、スペクトル種:Coは2p軌道、Tiは2p軌道、Alは2p軌道、Pは2p軌道とした。なお、Mn、Niを分析する場合もスペクトル種は2p軌道とする。バックグラウンド処理はshirley法を用いた。最表面からSiO
2換算エッチング深さ1nmまでを0.1nm刻みの深さ位置で11点の測定を行い、それぞれの深さ位置において前記(1)式および(2)式によりLATP被覆率またはLTO被覆率を求め、それら11点の平均値を当該供試粉末の平均LATP被覆率またはLTO被覆とした。
[供試粉末の化学分析]
供試粉末を硝酸等で溶解し、アジレント・テクノロジー社製720-ESを用いてICP−AESにて化学分析を行った。
【0024】
[被覆層中に含まれるLiOH量の測定]
1.000gを秤取った供試粉末を室温の純水100mL中に浸漬し、スターラーを用いて10min間撹拌し、供試粉末に含まれる水に可溶性のLiを抽出した。抽出液は強アルカリ性であり、イオンクロマトグラフ法により確認したところ、抽出液中にLiイオンとCO
32-イオンが検出されたことから、水可溶性のLi化合物の大部分はLiOHであった。
LiOHの量は、0.45μmのフィルターを用いて固形物を濾過した抽出液を、フェノールフタレインとメチルオレンジを指示薬として用い、0.1mol/LのHCl溶液で中和滴定することにより求めた。ここで、フェノールフタレインの変色までのHClの滴定量は抽出液中に含まれるOH
-イオンとCO
32-イオンの量の和であり、フェノールフタレインの変色からメチルオレンジの変色までのHClの滴定量はCO
32-イオンがHCO
32-イオンに加水分解することに対応する量なので、LiOHの量はメチルオレンジの変色までに要したHClの滴定量からフェノールフタレインの変色までのHClの滴定量を差し引くことにより求めることが出来る。
前記の測定方法により求めたLiOHの量と、供試粉末の質量、もしくは、供試粉末のLATP層LTO層の質量から、それらに対するLiOHの含有量(mass%)を算出することができる。
なお、ここで記述するLiOH量の測定は、中和滴定の常法に従って行えばよい。
【0025】
[全固体リチウムイオン二次電池の作製]
(1)硫化物系固体電解質
P
2S
5(アルドリッチ社製)0.927gと、Li
2S(アルドリッチ社製)0.573gを、ジルコニアボールφ10mmとともに、遊星ボールミル(フリッチュ社製、P−7)にて、アルゴンガス雰囲気中350rpmで35時間撹拌混合して、淡い黄色の硫化物系固体電解質の粉体を得た。
(2)負極
インジウム箔(φ8mm、厚さ0.1mm)にリチウム箔(φ6mm、厚さ0.1mm)を圧接し、インジウム中にリチウムを拡散させることにより負極を得た。
(3)正極合材
正極活物質粉体60mgと、上記硫化物系固体電解質39mg、導電剤(ケッチャンブラック、ライオンEJ300J)1mgを混合して得た混合物から7mgを分取し、成形荷重10kNでプレス成形して、φ8mm×厚さ0.1mmの成形体からなる正極合材を得た。
(4)電池の組み立て
図1に、全固体リチウムイオン二次電池の組み立て方法を表す断面図を模式的に示す。内径φ10mm、高さ12mmのポリエチレン製円筒1の内部に、ステンレス鋼からなる正極集電体2、前記正極合材3、および60mgの前記硫化物系固体電解質4を入れ、36kNの荷重を付与して加圧成形体を得た。この成形体の上に前記負極5、およびステンレス鋼からなる負極集電体6をセットして、20kNの荷重を付与して加圧成形し、3層構造のセルを有する全固体リチウムイオン二次電池を作製した。得られた電池の正極層、電解質層、および負極層の厚さは、それぞれ約100μm、500μmおよび100μmである。正極側の電極面積は0.5cm
2(φ8mm)である。なお、
図1は、セルの直径に対し、厚さ(図の縦方向長さ)を極めて誇張して描いてある。
【0026】
[電池評価]
作製した電池について、以下の放電容量A、Bを調べ、変化率を求めた。
(1)放電容量A
電流密度0.1mA/cm
2で3.8Vまで定電流充電した後、電流密度が0.001mA/cm
2となるまで3.8Vで定電圧充電を行った。その後、3.8Vから2.0Vまで(Li電位基準で4.4Vから2.6Vまで)0.1mA/cm
2で放電を行い、放電容量の測定を行った。そして、正極活物質の単位質量(コート物質の質量は除く)あたりの放電容量を「放電容量A」とした。放電容量Aの値が大きい電池ほど、エネルギー密度の大きい電池であると評価される。
(2)放電容量B
放電容量Aの測定後、電流密度0.3A/cm
2で3.8Vまで定電流充電した後、電流密度が0.003mA/cm
2となるまで3.8Vで定電圧充電を行った。その後、3.8Vから2.0Vまで(Li電位基準で4.4Vから2.6Vまで)0.3mA/cm
2で放電を行い、放電容量の測定を行った。そして、正極活物質の単位質量(コート物質の質量は除く)あたりの放電容量を「放電容量B」とした。
(3)変化率
下記(4)式により、変化率(%)を求めた。
変化率(%)=(放電容量A−放電容量B)×100/放電容量A …(4)
この変化率が小さいほど、低電流と高電流で充放電した際の電池容量変化が少ないため、当該正極活物質を使用した電池の設計が容易となる。すなわち、変化率が低いものほど、正極活物質の遷移金属と固体電解質の硫黄の反応が抑制され、優れた性能を有する正極を備えていると判断できる。
【0027】
[実施例1]
[原料粉末]
リチウムイオン二次電池用正極活物質の原料粉末として、平均粒子径(レーザー回折式粒度分布測定装置による体積基準の累積50%粒子径D
50、以下同様)4.0μm、BET値(比表面積)0.80m
2/gのコバルト酸リチウム(LiCoO
2)粉体を準備した。なお、BET値はユアサイオニクス株式会社製の4ソーブUSを用いて、BET一点法により測定した。
【0028】
[LATPコート液の作成]
濃度30mass%の過酸化水素水13gを準備した。この過酸化水素水溶液へ、チタン粉末(和光純薬工業製)0.297gを添加したのち、更に、濃度28mass%のアンモニア水3gを添加し、十分に撹拌して黄色の透明溶液を得た。この溶液に水酸化リチウム・1水和物(LiOH・H
2O)0.199gと、リン酸水素二アンモニウム((NH
3)
2HPO
4)1.44gを添加した。更にその溶液に、Al箔0.0295g、濃度28質量%のアンモニア水11g、純水90gをそれぞれ添加し、完全に透明になるまで3時間撹拌を続け、LATPコート液を得た。
[水酸化リチウム水溶液(C液)の作成]
純水10gに水酸化リチウム・1水和物(LiOH・H
2O)0.060gを添加した。
【0029】
[LATPの被覆]
1リットルのガラス製ビーカーに、イソプロピルアルコール400gと、前記正極活物質原料粉Aを30g投入し、撹拌機を用いて撹拌した。温度は40℃に設定し、原料粉が沈殿しないように600rpmで撹拌を維持した。雰囲気中の炭酸ガスの吸収を防ぐ目的で、撹拌は窒素ガス雰囲気中で行った。この撹拌中の液に前記LATPコート液を120分間かけて連続的に添加した。添加終了後、この撹拌中の液に前記水酸化リチウム水溶液(C液)を10分間かけて連続的に添加した。
更に40℃で600rpmの撹拌を継続し、反応を進行させた。反応終了後、得られたスラリーを加圧濾過器に投入し、固液分離を行った。固形分として得られた粉体を、脱炭酸空気中で1時間かけて乾燥した。得られた乾燥粉体を空気中400℃で3時間焼成し、LATPで粒子表面が被覆された正極活物質粉体を得た。LATP被覆層の平均厚さTは、BET値(比表面積)表面積をS(m
2/g)、被覆層の密度をd(g/cm
3)、正極活物質粉体に占める被覆層の質量割合をA(mass%)により上述の(3)式で計算した。
なお、被覆層の質量は、供試粉末を硝酸で溶解し、ICP−AES法によりTiとAlを分析してTiとAlのmol数を求め、Li
1+XAl
XTi
2-X(PO
4)
3の分子量から算出した。また、密度dは2.9g/cm
3として計算した。
LATP被覆率は、XPSによる深さ方向分析で最表層から1nm深さまでのAl、Ti、P、Mの合計原子数に占めるAl、Tiの合計原子数の平均割合「平均Al+Ti+P原子比」を上述の(1)式で求めた。
供試粉末のLATP被覆層平均厚さTは20nm、LATP被覆率は85%であった。
また、前記の測定方法により求めたLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.10mass%であり、被覆層に対しては2.25mass%であった。
本実施例で得られた供試粉末を用いて全固体リチウムイオン二次電池を作成し、前述の方法により求めた放電容量の変化率は11%であり、後述する比較例のそれらよりも優れた値であった。この結果は、前述の様に、LiOHの存在により、被覆層の多孔度が減少したためと考えられる。
本実施例で用いた被覆条件および各種の測定結果を表1に示す(以下の各例において同じ)。なお、表1に記載のBET表面積は、被覆後に測定した値である。
【0030】
[実施例2]
得られた乾燥粉体を空気中500℃で3時間焼成し、LATPで粒子表面が被覆された正極活物質粉体を得たことを除き、実施例1と同じ条件で供試粉末を得た。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.10mass%、被覆層に対しては2.25mass%であり、放電容量の変化率は7%であった。
[実施例3]
得られた乾燥粉体を空気中600℃で3時間焼成し、LATPで粒子表面が被覆された正極活物質粉体を得たことを除き、実施例1と同じ条件で供試粉末を得た。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.10mass%、被覆層に対しては2.25mass%であり、放電容量の変化率は7%であった。
【0031】
[比較例1]
水酸化リチウム水溶液の作成を行わず、LATPの被覆において、水酸化リチウム水溶液の添加を行わなかったことを除き、実施例1と同じ条件で供試粉末を得た。
本比較例で得られた供試粉末を蒸留水中に浸漬したところ、中和滴定の結果、Liの溶出は観察されなかった。
また、放電容量の変化率は27%であり、前記の実施例についてのそれらより劣っていた。
[比較例2]
水酸化リチウム水溶液の作成を行わず、LATPの被覆において、水酸化リチウム水溶液の添加を行わなかったことを除き、実施例2と同じ条件で供試粉末を得た。
本比較例で得られた供試粉末を蒸留水中に浸漬したところ、Liの溶出は観察されなかった。また、放電容量の変化率は26%であった。
[比較例3]
水酸化リチウム水溶液の作成を行わず、LATPの被覆において、水酸化リチウム水溶液の添加を行わなかったことを除き、実施例3と同じ条件で供試粉末を得た。
本比較例で得られた供試粉末を蒸留水中に浸漬したところ、Liの溶出は観察されなかった。また、放電容量の変化率は25%であった。
【0032】
[実施例4]
水酸化リチウム水溶液の作成において、純水10gに水酸化リチウム・1水和物(LiOH・H
2O)を0.4g添加したことを除き、実施例1と同じ条件で供試粉末を得た。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.75mass%、被覆層に対しては16.8mass%であり、放電容量の変化率は8%であった。
[実施例5]
水酸化リチウム水溶液の作成において、純水10gに水酸化リチウム・1水和物(LiOH・H
2O)を0.6g添加したことを除き、実施例1と同じ条件で供試粉末を得た。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.95mass%、被覆層に対しては21.3mass%であり、放電容量の変化率は13%であった。
[実施例6]
水酸化リチウム水溶液の作成において、純水10gに水酸化リチウム・1水和物(LiOH・H
2O)を0.8g添加したことを除き、実施例1と同じ条件で供試粉末を得た。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して1.50mass%、被覆層に対しては33.7mass%であり、放電容量の変化率は14%であった。
【0033】
[実施例7]
LATPの被覆において、1リットルのガラス製ビーカーに、イソプロピルアルコール400gと、前記正極活物質原料粉Aを30g投入し、撹拌機を用いて撹拌した。温度は40℃に設定し、原料粉が沈殿しないように600rpmで撹拌を維持した。雰囲気中の炭酸ガスの吸収を防ぐ目的で、撹拌は窒素ガス雰囲気中で行った。この撹拌中の液に前記LATPコート液と水酸化リチウム水溶液を120分間かけて連続的に添加したことを除き、実施例1と同じ条件で供試粉末を得た。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.05mass%、被覆層に対しては1.1mass%であり、放電容量の変化率は15%であった。
【0034】
[実施例8]
水酸化リチウム水溶液の作成において、純水10gに水酸化リチウム・1水和物(LiOH・H
2O)を0.03g添加したことを除き、実施例1と同じ条件で供試粉末を得た。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.05mass%、被覆層に対しては2.20mass%であり、放電容量の変化率は6%であった。
[実施例9]
[原料粉末]
原料粉末として、実施例1で使用したものと同じものを準備した。
[LTOコート液の作成]
純水3gに、濃度30質量%の過酸化水素水41gを添加した過酸化水素水溶液を準備した。この過酸化水素水溶液へ、チタン粉末(和光純薬工業製)0.876gを添加したのち、更に、濃度28質量%のアンモニア水7gを添加し、十分に撹拌して黄色の透明溶液を得た。この溶液に水酸化リチウム・1水和物(LiOH・H
2O)0.921gを添加し、完全に透明になるまで3時間撹拌を続け、LTOコート液を得た。
[水酸化リチウム水溶液の作成]
純水10gに水酸化リチウム・1水和物(LiOH・H
2O)0.460gを添加した。
[LTOの被覆]
1リットルのガラス製ビーカーに、イソプロピルアルコール400gと、前記正極活物質原料粉Aを30g投入し、撹拌機を用いて撹拌した。温度は40℃に設定し、原料粉が沈殿しないように600rpmで撹拌を維持した。雰囲気中の炭酸ガスの吸収を防ぐ目的で、撹拌は窒素ガス雰囲気中で行った。この撹拌中の液に前記LTOコート液を120分間かけて連続的に添加した。添加終了後、この撹拌中の液に前記水酸化リチウム水溶液を10分間かけて連続的に添加した。
更に40℃で600rpmの撹拌を継続し、反応を進行させた。反応終了後、得られたスラリーを加圧濾過器に投入し、固液分離を行った。固形分として得られた粉体を、脱炭酸空気中で1時間かけて乾燥した。得られた乾燥粉体を空気中600℃で3時間焼成し、LTOで粒子表面が被覆された正極活物質粉体を得た。
またLTO被覆層の平均厚さは、BET値(比表面積)表面積をS(m
2/g)、被覆層の密度をd(g/cm3)、正極活物質粉体に占める被覆層の質量割合をA(mass%)により上述の(3)式で計算した。
また、密度dは3.5g/cm
3として計算した。
LTO被覆率は、XPSによる深さ方向分析で最表層から1nm深さまでのTiおよびMの合計原子数に占めるTiの合計原子数の平均割合「平均Ti原子比」を上述の(2)式で求めた。
前記原料粉末のBET値(比表面積)と使用したLTO原料から求めた供試粉末のLTO被覆層平均厚さは20nm、平均のLTO被覆率は80%であった。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.25mass%、被覆層に対しては4.7mass%であり、放電容量の変化率は9%であった。
【0035】
[実施例10]
水酸化リチウム水溶液の作成において、純水10gに水酸化リチウム・1水和物(LiOH・H
2O)を0.230g添加したことを除き、実施例1と同じ条件で供試粉末を得た。
本実施例で得られた供試粉末のLiOHの含有量は、固体電解質被覆正極活物質粉末全体に対して0.13mass%、被覆層に対しては4.7mass%であり、放電容量の変化率は8%であった。
[比較例4]
水酸化リチウム水溶液の作成を行わず、LTOの被覆において、水酸化リチウム水溶液の添加を行わなかったことを除き、実施例1と同じ条件で供試粉末を得た。
本比較例で得られた供試粉末を蒸留水中に浸漬したところ、Liの溶出は観察されなかった。
また、放電容量の変化率は27%であり、前記の実施例8についてのそれより劣っていた。
[参考例]
本実施例および参考例に供した原料粉末のコバルト酸リチウム(LiCoO
2)粉体について、被覆を施さずに測定した放電容量の変化率は58%であった。
【0036】
【表1】
【0037】
表1からわかるように、上述の手法でLiOHを含むLATP被覆層またはLTO被覆層を形成した正極活物質粉体を用いた各実施例の全固体リチウムイオン二次電池では、当該被覆層を持たない正極活物質粉体を用いた比較例のものより、放電容量の変化率が顕著に減少した。