特許第6873827号(P6873827)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 新日本無線株式会社の特許一覧

<>
  • 特許6873827-基準電圧生成回路 図000006
  • 特許6873827-基準電圧生成回路 図000007
  • 特許6873827-基準電圧生成回路 図000008
  • 特許6873827-基準電圧生成回路 図000009
  • 特許6873827-基準電圧生成回路 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6873827
(24)【登録日】2021年4月23日
(45)【発行日】2021年5月19日
(54)【発明の名称】基準電圧生成回路
(51)【国際特許分類】
   G05F 3/30 20060101AFI20210510BHJP
【FI】
   G05F3/30
【請求項の数】7
【全頁数】12
(21)【出願番号】特願2017-107813(P2017-107813)
(22)【出願日】2017年5月31日
(65)【公開番号】特開2018-116673(P2018-116673A)
(43)【公開日】2018年7月26日
【審査請求日】2020年4月9日
(31)【優先権主張番号】特願2017-6326(P2017-6326)
(32)【優先日】2017年1月18日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000191238
【氏名又は名称】新日本無線株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】吉田 晴彦
【審査官】 東 昌秋
(56)【参考文献】
【文献】 特開2013−254359(JP,A)
【文献】 特開2013−149197(JP,A)
【文献】 特開2012−243054(JP,A)
【文献】 米国特許出願公開第2010/0156384(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G05F 3/00−3/30
(57)【特許請求の範囲】
【請求項1】
抵抗の正の温度係数によりトランジスタのベース・エミッタ間電圧の負の温度係数をキャンセルすることで、常温においてほぼ一定の基準電圧を生成し高温になるほど前記常温における基準電圧よりも低下した基準電圧を生成するバンドギャップ型の基準電圧生成回路本体と、
高温になるほど増大する高温補正電流を前記抵抗に供給して高温時に前記基準電圧生成回路本体で生成される基準電圧を上昇させる高温補正回路と、
温度に応じたバイアス電圧を生成して前記高温補正回路に供給し前記高温補正電流を制御するバイアス回路と、
を備え
前記基準電圧生成回路本体は、前記抵抗の一部が第1乃至第3の抵抗の直列接続回路によって構成され、前記第1及び第2の抵抗の共通接続点に前記高温補正回路から供給される高温補正電流が供給され、
前記高温補正回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第10のトランジスタと、該第10のトランジスタの出力電流が分岐してエミッタに流れる第11及び第12のトランジスタとを備え、前記第11のトランジスタのコレクタは接地に接続され、前記第12のトランジスタのコレクタは前記基準電圧生成回路本体の前記第1及び第2の抵抗の共通接続点に接続され、
前記バイアス回路によって、温度が常温のときは前記第12のトランジスタよりも前記第11のトランジスタが深く導通するよう制御され、温度が高温のときは前記第11のトランジスタよりも第12のトランジスタが深く導通するよう制御される、
ことを特徴とする基準電圧生成回路。
【請求項2】
請求項に記載の基準電圧生成回路において、
前記バイアス回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第6及び第7のトランジスタと、該第6のトランジスタのコレクタから接地にかけて直列接続された第5乃至第7の抵抗と、前記第7のトランジスタのコレクタ電流が流れるダイオード接続の第9のトランジスタとを備え、
前記第6及び第7の抵抗の共通接続点の電圧が前記第11のトランジスタのベースに第3のバイアス電圧として供給され、
前記第7のトランジスタのコレクタ電圧が前記第12トランジスタのベースに第4のバイアス電圧として供給される、
ことを特徴とする基準電圧生成回路。
【請求項3】
抵抗の正の温度係数によりトランジスタのベース・エミッタ間電圧の負の温度係数をキャンセルすることで、常温においてほぼ一定の基準電圧を生成し低温になるほど前記常温における基準電圧よりも低下した基準電圧を生成するバンドギャップ型の基準電圧生成回路本体と、
低温になるほど増大する低温補正電流を前記抵抗に供給して低温時に前記基準電圧生成回路本体で生成される基準電圧を上昇させる低温補正回路と、
温度に応じたバイアス電圧を生成して前記低温補正回路に供給し前記低温補正電流を制御するバイアス回路と、
を備え
前記基準電圧生成回路本体は、前記抵抗の一部が第1乃至第3の抵抗の直列接続回路によって構成され、前記第2及び第3の抵抗の共通接続点に前記低温補正回路から供給される低温補正電流が供給され、
前記低温補正回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第13のトランジスタと、該第13のトランジスタの出力電流が分岐してエミッタに流れる第14及び第15のトランジスタとを備え、前記第14のトランジスタのコレクタは接地に接続され、前記第15のトランジスタのコレクタは前記基準電圧生成回路本体の前記第2及び第3の抵抗の共通接続点に接続され、
前記バイアス回路によって、温度が常温のときは前記第15のトランジスタよりも第14のトランジスタが深く導通するよう制御され、温度が低温のときは前記第14のトランジスタよりも第15のトランジスタが深く導通するよう制御される、
ことを特徴とする基準電圧生成回路。
【請求項4】
請求項に記載の基準電圧生成回路において、
前記バイアス回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第6及び第7のトランジスタと、該第6のトランジスタのコレクタから接地にかけて直列接続された第5乃至第7の抵抗と、前記第7のトランジスタのコレクタ電流が流れるダイオード接続の第9のトランジスタとを備え、
前記第6のトランジスタのコレクタ電圧が前記第15のトランジスタのベースに第1のバイアス電圧として供給され、
前記第7のトランジスタのコレクタ電圧が前記第14のトランジスタのベースに第4のバイアス電圧として供給される、
ことを特徴とする基準電圧生成回路。
【請求項5】
抵抗の正の温度係数によりトランジスタのベース・エミッタ間電圧の負の温度係数をキャンセルすることで、常温においてほぼ一定の基準電圧を生成し、且つ高温になるほど及び低温になるほど前記常温における基準電圧よりも若干低下した基準電圧を生成するバンドギャップ型の基準電圧生成回路本体と、
高温になるほど増大する高温補正電流を前記抵抗に供給して高温時に前記基準電圧生成回路本体で生成される基準電圧を上昇させる高温補正回路と、
低温になるほど増大する低温補正電流を前記抵抗に供給して低温時に前記基準電圧生成回路本体で生成される基準電圧を上昇させる低温補正回路と、
温度に応じたバイアス電圧を生成し、前記高温補正回路に供給して前記高温補正電流を制御するとともに前記低温補正回路に供給して前記低温補正電流を制御するバイアス回路と、
を備え
前記基準電圧生成回路本体は、前記抵抗の一部が第1乃至第3の抵抗の直列接続回路によって構成され、前記第1及び第2の抵抗の共通接続点に前記高温補正回路から供給される高温補正電流が供給され、前記第2及び第3の抵抗の共通接続点に前記低温補正回路から供給される低温補正電流が供給され、
前記高温補正回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第10のトランジスタと、該第10のトランジスタの出力電流が分岐してエミッタに流れる第11及び第12のトランジスタとを備え、前記第11のトランジスタのコレクタは接地に接続され、前記第12のトランジスタのコレクタは前記基準電圧生成回路本体の前記第1及び第2の抵抗の共通接続点に接続され、
前記バイアス回路によって、温度が常温及び低温のときは前記第12のトランジスタよりも第11のトランジスタが深く導通するよう制御され、温度が高温のときは前記第11のトランジスタよりも第12のトランジスタが深く導通するよう制御され、
前記低温補正回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第13のトランジスタと、該第13のトランジスタの出力電流が分岐してエミッタに流れる第14及び第15のトランジスタとを備え、前記第14のトランジスタのコレクタは接地に接続され、前記第15のトランジスタのコレクタは前記基準電圧生成回路本体の前記第2及び第3の抵抗の共通接続点に接続され、
前記バイアス回路によって、温度が常温及び高温のときは前記第15のトランジスタよりも第14のトランジスタが深く導通するよう制御され、温度が低温のときは前記第14のトランジスタよりも第15のトランジスタが深く導通するよう制御される、
ことを特徴とする基準電圧生成回路。
【請求項6】
請求項に記載の基準電圧生成回路において、
前記バイアス回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第6及び第7のトランジスタと、該第6のトランジスタのコレクタから接地にかけて直列接続された第5乃至第7の抵抗と、前記第7のトランジスタのコレクタ電流が流れるダイオード接続の第9のトランジスタとを備え、
前記第6のトランジスタのコレクタ電圧が前記第15のトランジスタのベースに第1のバイアス電圧として供給され、
前記第6及び第7の抵抗の共通接続点の電圧が前記第11のトランジスタのベースに第3のバイアス電圧として供給され、
前記第7のトランジスタのコレクタ電圧が前記第12及び14のトランジスタのベースに第4のバイアス電圧として供給される、
ことを特徴とする基準電圧生成回路。
【請求項7】
請求項又はに記載の基準電圧生成回路において、
前記第6及び第7の抵抗に並列にダイオード接続の第8のトランジスタが接続されていることを特徴とする基準電圧生成回路。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、温度変化に対して安定した基準電圧を生成するバンドギャップ型の基準電圧生成回路に関する
【背景技術】
【0002】
従来の基準電圧生成回路としては、例えば図4に示すような基準電圧生成回路50が知られている。これはバンドギャップ型基準電圧回路と呼ばれるもので、ベースを出力端子1に共通接続したnpnトランジスタQ1,Q2と、そのトランジスタQ1,Q2のコレクタに能動負荷として接続されるカレントミラー接続のpnpトランジスタQ3,Q4と、ベースをトランジスタQ1のコレクタに接続しエミッタをトランジスタQ1,Q2のベースと出力端子1に接続しコレクタを電源端子に接続したpnpトランジスタQ5と、直列接続の抵抗R1,R2で構成されている。抵抗R1はトランジスタQ1のエミッタとトランジスタQ2のエミッタ間に接続され、抵抗R2はトランジスタQ2のエミッタと接地間に接続されている。
【0003】
出力端子1に出力する基準電圧VBGは、トランジスタQ1,Q2の面積比をQ1:Q2=n:1、トランジスタQ3,Q4の面積比をQ3:Q4=1:1、トランジスタQ2のベース・エミッタ間電圧をVbe2とすると、次式で表される。
【0004】
ここで、Vtは熱電圧(=kT/q、k:ボルツマン定数、T:絶対温度、q:電子の電荷)であり、0.0086mV/℃程度の正の温度係数を有するが、バイポーラトランジスタQ2のベース・エミッタ間電圧Vbe2は、2mV程度の負の温度係数を有している。
【0005】
そこで、この2種類の温度係数を用い、それらが打ち打ち消し合うように、n、R1,R2の値を設定することにより、温度変化に対して安定した基準電圧VBGを生成することができる。
【0006】
しかし、実際にはバイポーラのトランジスタのベース・エミッタ間電圧Vbeは、僅かながら2次の温度係数を持っているため、図5に示すように、基準電圧VBGの温度特性が、常温領域Aよりも高温領域Bと低温領域Cが低下する2次の温度依存性を持ってしまう。このため、車載アプリケーションのような広い温度範囲について安定性が要求されるアプリケーションでは、この僅かな温度依存性が問題となる場合がある。
【0007】
そこで、このような2次の温度特性を打ち消す方法として、特許文献1にあるような方法が提案されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2009−59149号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1に記載のような出力電圧温度特性では、産業機器、車載アプリケーションでの使用では必要十分とならない場合があった。
【0010】
本発明の目的は、所定の動作温度範囲において安定した基準電圧を生成できるようにした基準電圧生成回路を提供することである。
【課題を解決するための手段】
【0011】
上記目的を達成するために、請求項1にかかる発明は、抵抗の正の温度係数によりトランジスタのベース・エミッタ間電圧の負の温度係数をキャンセルすることで、常温においてほぼ一定の基準電圧を生成し高温になるほど前記常温における基準電圧よりも低下した基準電圧を生成するバンドギャップ型の基準電圧生成回路本体と、高温になるほど増大する高温補正電流を前記抵抗に供給して高温時に前記基準電圧生成回路本体で生成される基準電圧を上昇させる高温補正回路と、温度に応じたバイアス電圧を生成して前記高温補正回路に供給し前記高温補正電流を制御するバイアス回路と、を備え、前記基準電圧生成回路本体は、前記抵抗の一部が第1乃至第3の抵抗の直列接続回路によって構成され、前記第1及び第2の抵抗の共通接続点に前記高温補正回路から供給される高温補正電流が供給され、前記高温補正回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第10のトランジスタと、該第10のトランジスタの出力電流が分岐してエミッタに流れる第11及び第12のトランジスタとを備え、前記第11のトランジスタのコレクタは接地に接続され、前記第12のトランジスタのコレクタは前記基準電圧生成回路本体の前記第1及び第2の抵抗の共通接続点に接続され、前記バイアス回路によって、温度が常温のときは前記第12のトランジスタよりも前記第11のトランジスタが深く導通するよう制御され、温度が高温のときは前記第11のトランジスタよりも第12のトランジスタが深く導通するよう制御される、ことを特徴とする。
【0014】
請求項にかかる発明は、請求項に記載の基準電圧生成回路において、前記バイアス回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第6及び第7のトランジスタと、該第6のトランジスタのコレクタから接地にかけて直列接続された第5乃至第7の抵抗と、前記第7のトランジスタのコレクタ電流が流れるダイオード接続の第9のトランジスタとを備え、前記第6及び第7の抵抗の共通接続点の電圧が前記第11のトランジスタのベースに第3のバイアス電圧として供給され、前記第7のトランジスタのコレクタ電圧が前記第12トランジスタのベースに第4のバイアス電圧として供給される、ことを特徴とする。
【0015】
請求項にかかる発明は、抵抗の正の温度係数によりトランジスタのベース・エミッタ間電圧の負の温度係数をキャンセルすることで、常温においてほぼ一定の基準電圧を生成し低温になるほど前記常温における基準電圧よりも低下した基準電圧を生成するバンドギャップ型の基準電圧生成回路本体と、低温になるほど増大する低温補正電流を前記抵抗に供給して低温時に前記基準電圧生成回路本体で生成される基準電圧を上昇させる低温補正回路と、温度に応じたバイアス電圧を生成して前記低温補正回路に供給し前記低温補正電流を制御するバイアス回路と、を備え、前記基準電圧生成回路本体は、前記抵抗の一部が第1乃至第3の抵抗の直列接続回路によって構成され、前記第2及び第3の抵抗の共通接続点に前記低温補正回路から供給される低温補正電流が供給され、前記低温補正回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第13のトランジスタと、該第13のトランジスタの出力電流が分岐してエミッタに流れる第14及び第15のトランジスタとを備え、前記第14のトランジスタのコレクタは接地に接続され、前記第15のトランジスタのコレクタは前記基準電圧生成回路本体の前記第2及び第3の抵抗の共通接続点に接続され、前記バイアス回路によって、温度が常温のときは前記第15のトランジスタよりも第14のトランジスタが深く導通するよう制御され、温度が低温のときは前記第14のトランジスタよりも第15のトランジスタが深く導通するよう制御される、ことを特徴とする。
【0018】
請求項にかかる発明は、請求項に記載の基準電圧生成回路において、前記バイアス回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第6及び第7のトランジスタと、該第6のトランジスタのコレクタから接地にかけて直列接続された第5乃至第7の抵抗と、前記第7のトランジスタのコレクタ電流が流れるダイオード接続の第9のトランジスタとを備え、前記第6のトランジスタのコレクタ電圧が前記第15のトランジスタのベースに第1のバイアス電圧として供給され、前記第7のトランジスタのコレクタ電圧が前記第14のトランジスタのベースに第4のバイアス電圧として供給される、ことを特徴とする。
【0019】
請求項にかかる発明は、抵抗の正の温度係数によりトランジスタのベース・エミッタ間電圧の負の温度係数をキャンセルすることで、常温においてほぼ一定の基準電圧を生成し、且つ高温になるほど及び低温になるほど前記常温における基準電圧よりも若干低下した基準電圧を生成するバンドギャップ型の基準電圧生成回路本体と、高温になるほど増大する高温補正電流を前記抵抗に供給して高温時に前記基準電圧生成回路本体で生成される基準電圧を上昇させる高温補正回路と、低温になるほど増大する低温補正電流を前記抵抗に供給して低温時に前記基準電圧生成回路本体で生成される基準電圧を上昇させる低温補正回路と、温度に応じたバイアス電圧を生成し、前記高温補正回路に供給して前記高温補正電流を制御するとともに前記低温補正回路に供給して前記低温補正電流を制御するバイアス回路と、を備え、前記基準電圧生成回路本体は、前記抵抗の一部が第1乃至第3の抵抗の直列接続回路によって構成され、前記第1及び第2の抵抗の共通接続点に前記高温補正回路から供給される高温補正電流が供給され、前記第2及び第3の抵抗の共通接続点に前記低温補正回路から供給される低温補正電流が供給され、前記高温補正回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第10のトランジスタと、該第10のトランジスタの出力電流が分岐してエミッタに流れる第11及び第12のトランジスタとを備え、前記第11のトランジスタのコレクタは接地に接続され、前記第12のトランジスタのコレクタは前記基準電圧生成回路本体の前記第1及び第2の抵抗の共通接続点に接続され、前記バイアス回路によって、温度が常温及び低温のときは前記第12のトランジスタよりも第11のトランジスタが深く導通するよう制御され、温度が高温のときは前記第11のトランジスタよりも第12のトランジスタが深く導通するよう制御され、前記低温補正回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第13のトランジスタと、該第13のトランジスタの出力電流が分岐してエミッタに流れる第14及び第15のトランジスタとを備え、前記第14のトランジスタのコレクタは接地に接続され、前記第15のトランジスタのコレクタは前記基準電圧生成回路本体の前記第2及び第3の抵抗の共通接続点に接続され、前記バイアス回路によって、温度が常温及び高温のときは前記第15のトランジスタよりも第14のトランジスタが深く導通するよう制御され、温度が低温のときは前記第14のトランジスタよりも第15のトランジスタが深く導通するよう制御される、ことを特徴とする。
【0022】
請求項にかかる発明は、請求項に記載の基準電圧生成回路において、前記バイアス回路は、前記基準電圧生成回路本体からバイアス電圧が供給される第6及び第7のトランジスタと、該第6のトランジスタのコレクタから接地にかけて直列接続された第5乃至第7の抵抗と、前記第7のトランジスタのコレクタ電流が流れるダイオード接続の第9のトランジスタとを備え、前記第6のトランジスタのコレクタ電圧が前記第15のトランジスタのベースに第1のバイアス電圧として供給され、前記第6及び第7の抵抗の共通接続点の電圧が前記第11のトランジスタのベースに第3のバイアス電圧として供給され、前記第7のトランジスタのコレクタ電圧が前記第12及び14のトランジスタのベースに第4のバイアス電圧として供給される、ことを特徴とする。
【0023】
請求項にかかる発明は、請求項又はに記載の基準電圧生成回路において、前記第6及び第7の抵抗に並列にダイオード接続の第8のトランジスタが接続されていることを特徴とする。
【発明の効果】
【0024】
請求項1乃至4にかかる発明によれば高温領域で基準電圧の温度補正を行うことができ、請求項5乃至8にかかる発明によれば低温領域で基準電圧の温度補正を行うことができ、請求項9乃至12にかかる発明によれば低温領域及び高温領域で基準電圧の温度補正を行うことができるので、所望の温度範囲で基準電圧特性を平坦化することができ、これにより当該の基準電圧生成回路を備えた集積回路のアプリケーション領域を拡大できる利点がある。
【図面の簡単な説明】
【0025】
図1】本発明の基準電圧生成回路の原理構成のブロック図である。
図2】(a)は基準電圧生成回路本体で生成される基準電圧の温度特性図、(b)は高温補正回路で生成される補正電流i1の温度特性図、(c)は低温補正回路で生成される補正電流i2の温度特性図図である。
図3】本発明の第1の実施例の基準電圧生成回路の具体回路の回路図である。
図4】従来の基準電圧生成回路の具体回路の回路図である。
図5図4の基準電圧生成回路で生成される基準電圧の温度特性図である。
【発明を実施するための形態】
【0026】
<原理構成>
図1に本発明の基準電圧生成回路の原理構成を示す。10は図4で説明したのと同等のバンドギャップ型の基準電圧生成回路本体、20は温度特性を有するバイアス電圧を生成するバイアス回路、30は高温補正回路、40は低温補正回路である。
【0027】
本発明では、図2の(a)に示すように、基準電圧生成回路本体10で生成される基準電圧の動作温度領域を、常温領域A、高温領域B、低温領域Cの3領域に分ける。常温領域Aはおおよそ0〜100℃、高温領域Bはおおよそ100〜150℃、低温領域Cはおおよそ−50〜0℃である。そして、高温補正回路30は、高温時(100〜150℃)にバイアス回路20で生成される高温用バイアス電圧によって、高温領域Bでのみ基準電圧VBG電圧を増大補正するための電流i1(図2(b))を生成して、基準電圧生成回路本体10に出力する。また、低温補正回路40は、低温時(−50〜0℃)にバイアス回路20によって生成される低温用バイアス電圧によって、低温領域Cでのみ基準電圧VBGを増大補正するための電流i2(図2(c))を生成して基準電圧生成回路本体10に出力する。これにより、基準電圧生成回路本体10で生成される基準電圧VBGは、図2(a)に点線で示すように、全温度範囲にわたってフラットな安定した電圧にすることができる。
【0028】
<第1の実施例>
図3に本発明の第1の実施例の基準電圧生成回路を示す。基準電圧生成回路本体10は、図4で説明した基準電圧生成回路50の構成の抵抗R2を3個の抵抗R21,R22,R23により構成している。つまり、これらの抵抗値は、R21+R22+R23=R2の関係にある。
【0029】
バイアス回路20は、トランジスタQ3,Q4にベースが共通接続されたpnpトランジスタQ6,Q7と、トランジスタQ6のコレクタと接地GNDとの間に接続された直列接続の抵抗R5,R6,R7と、抵抗R5とR6の共通接続点と接地GNDとの間に接続されたダイオード接続のnpnトランジスタQ8と、トランジスタQ7のコレクタにダイオード接続されたnpnトランジスタQ9とにより構成されている。
【0030】
高温補正回路30は、トランジスタQ3,Q4にベースが共通接続されたpnpトランジスタQ10と、そのトランジスタQ10のコレクタに一端がそれぞれ接続された抵抗R8,R9と、抵抗R8の他端にエミッタが接続されベースが抵抗R6,R7の共通接続点に接続されコレクタが接地GNDに接続されたpnpトランジスタQ11と、抵抗R9の他端にエミッタが接続されベースがトランジスタQ9のベースに接続されコレクタが抵抗R21,R22の共通接続点ノードN1に接続されたpnpトランジスタQ12とで構成されている。
【0031】
低温補正回路40は、トランジスタQ3,Q4にベースが共通接続されたpnpトランジスタQ13と、そのトランジスタQ13のコレクタに一端がそれぞれ接続された抵抗R10,R11と、抵抗R10の他端にエミッタが接続されベースがトランジスタQ9のベースに接続されコレクタが接地GNDに接続されたpnpトランジスタQ14と、抵抗R11の他端にエミッタが接続されベースがトランジスタQ6のコレクタに接続されコレクタが抵抗R22,R23の共通接続点ノードN2に接続されたpnpトランジスタQ15とで構成されている。
【0032】
さて、本実施例の基準電圧生成回路で生成される電圧VBGは、常温領域Aでは、
で表され、高温領域Bでは、
で表され、低温領域Cでは、
で表される。このように、基準電圧VBGは、高温領域Bでは常温領域Aよりもi1×(R22+R23)の電圧分だけ高くなるよう補正され、低温領域Cでは常温領域Aよりもi2×R23の電圧分だけ高くなるよう補正される。
【0033】
以下、詳しく説明する。ここで、バイアス回路20において発生するバイアス電圧として、トランジスタQ6のコレクタ電圧をV1、抵抗R5,R6の共通接続点の電圧をV2、抵抗R6,R7の共通接続点の電圧をV3、トランジスタQ7のコレクタ電圧をV4とすると、それらのバイアス電圧V1,V2,V3,V4が、
常温領域A:V1>V2>V4>V3
高温領域B:V1>V2>V3>V4
低温領域C:V4>V1>V2>V3
の関係になるように、抵抗R5〜R7の抵抗値やトランジスタQ5〜Q9の特性が設定されている。
【0034】
まず、常温領域Aにおいては、上記したようにバイアス電圧はV1>V2>V4>V3となるので、高温補正回路30では、V4>V3によって、トランジスタQ11がトランジスタQ12よりも深く導通して、トランジスタQ10のコレクタ電流のほとんどはトランジスタQ11に流れ、トランジスタQ12のコレクタ電流i1はほぼゼロとなる。また、低温補正回路40では、V1>V4によって、トランジスタQ14がトランジスタQ15よりも深く導通して、トランジスタQ13のコレクタ電流のほとんどはトランジスタQ14を流れ、トランジスタQ15のコレクタ電流i2はほぼゼロとなる。したがって、抵抗R22,R23には補正による電圧増大は発生せず、発生する基準電圧VBGは式(2)に示すようになる。
【0035】
次に、高温領域Bにおいては、上記したようにバイアス電圧はV1>V2>V3>V4となる。このため、高温補正回路30では、V3>V4によって、トランジスタQ12がトランジスタQ11よりも深く導通して、トランジスタQ10のコレクタ電流のほとんどはトランジスタQ12に流れ、トランジスタQ12から温度が上昇するほど増大するコレクタ電流i1が流れる。また、低温補正回路40では、V1>V4によって、トランジスタQ14がトランジスタQ15よりも深く導通して、トランジスタQ13のコレクタ電流のほとんどはトランジスタQ14を流れ、トランジスタQ15のコレクタ電流i2はほぼゼロとなる。したがって、抵抗R22,R23に電流i1が流れるので、そこに生じる電圧によって、基準電圧VBGは式(3)に示すように、「i1×(R22+R23)」だけ高くなるよう補正される。
【0036】
次に、低温領域Cにおいては、上記したようにバイアス電圧はV4>V1>V2>V3となる。このため、高温補正回路30では、V4>V3によって、トランジスタQ11がトランジスタQ12よりも深く導通して、トランジスタQ10のコレクタ電流のほとんどはトランジスタQ11に流れ、トランジスタQ12のコレクタ電流i1はほぼゼロとなる。また、低温補正回路40では、V4>V1によって、トランジスタQ15がトランジスタQ14よりも深く導通して、トランジスタQ13のコレクタ電流のほとんどはトランジスタQ15に流れ、トランジスタQ15から温度が低下するほど増大するコレクタ電流i2が流れる。したがって、抵抗R23に電流i2が流れるので、そこに生じる電圧によって、基準電圧VBGは式(4)に示すように、「i2×R23」だけ高くなるよう補正される。
【0037】
なお、高温領域Bにおいては、トランジスタQ8の閾値電圧が常温領域Aや低温領域Cの場合に比べて小さくなるので、その内部抵抗が低下して抵抗R6,R7に流れていた電流がそのトランジスタQ8に分流する。このため、バイアス電圧V1〜V3がトランジスタQ8が無い場合よりも低下し、トランジスタQ11に流れる電流を若干増大させ、トランジスタQ12に過大電流が流れることを防止している。常温領域Aや低温領域Cにおいては、トランジスタQ8の閾値電圧が大きくなるので、そのトランジスタQ8の影響は無くなる。
【0038】
以上から、基準電圧生成回路本体10から出力する基準電圧VBGは、温度が高温領域Bになれば高温補正回路30によって増大するよう補正され、温度が低温領域Cになれば低温補正回路40によって増大するように補正されることで、図2(a)の点線で示すように、低温から高温の全温度範囲にわたってほぼフラットな温度特性を実現することができる。
【0039】
<第2の実施例>
図3の基準電圧生成回路では、高温領域B及び低温領域Cについて温度補正を行うようにしたが、アプリケーションによっては高温領域Bのみの温度補正で十分な場合がある。このように高温領域Bのみの温度補正を行う場合は、低温補正回路40を使用しない。また、この低温補正回路40に供給するバイアス電圧V1が不要になる。この場合、基準電圧生成回路本体10では、抵抗R22,R23を1個の抵抗(抵抗値=R22+R23)に置き換えることができる。
【0040】
<第3の実施例>
図3の基準電圧生成回路では、高温領域B及び低温領域Cについて温度補正を行うようにしたが、アプリケーションによっては低温領域Cのみの温度補正で十分な場合がある。このように低温領域Cのみの温度補正を行う場合は、高温補正回路30を使用しない。また、この高温補正回路30に供給するバイアス電圧V3が不要になり、バイアス回路20のトランジスタQ8も不要になる。この場合、基準電圧生成回路本体10では抵抗R21,R22を1個の抵抗(抵抗値=R21+R22)に置き換えることができ、バイアス回路20では抵抗R6,R7を1個の抵抗(抵抗値=R6+R7)に置き換えることができる。
【符号の説明】
【0041】
10:基準電圧生成回路本体
20:バイアス回路
30:高温補正回路
40:低温補正回路
50:従来の基準電圧生成回路
図1
図2
図3
図4
図5