特許第6874094号(P6874094)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社クラレの特許一覧

特許6874094合わせガラス用中間膜および合わせガラス
<>
  • 特許6874094-合わせガラス用中間膜および合わせガラス 図000013
  • 特許6874094-合わせガラス用中間膜および合わせガラス 図000014
  • 特許6874094-合わせガラス用中間膜および合わせガラス 図000015
  • 特許6874094-合わせガラス用中間膜および合わせガラス 図000016
  • 特許6874094-合わせガラス用中間膜および合わせガラス 図000017
  • 特許6874094-合わせガラス用中間膜および合わせガラス 図000018
  • 特許6874094-合わせガラス用中間膜および合わせガラス 図000019
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6874094
(24)【登録日】2021年4月23日
(45)【発行日】2021年5月19日
(54)【発明の名称】合わせガラス用中間膜および合わせガラス
(51)【国際特許分類】
   C03C 27/12 20060101AFI20210510BHJP
   B32B 27/32 20060101ALI20210510BHJP
   C08F 297/04 20060101ALI20210510BHJP
【FI】
   C03C27/12 F
   B32B27/32 E
   B32B27/32 C
   C08F297/04
【請求項の数】23
【全頁数】55
(21)【出願番号】特願2019-205658(P2019-205658)
(22)【出願日】2019年11月13日
(62)【分割の表示】特願2015-220812(P2015-220812)の分割
【原出願日】2015年11月10日
(65)【公開番号】特開2020-40876(P2020-40876A)
(43)【公開日】2020年3月19日
【審査請求日】2019年11月14日
(31)【優先権主張番号】特願2014-228354(P2014-228354)
(32)【優先日】2014年11月10日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2014-246710(P2014-246710)
(32)【優先日】2014年12月5日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000001085
【氏名又は名称】株式会社クラレ
(74)【代理人】
【識別番号】110001782
【氏名又は名称】特許業務法人ライトハウス国際特許事務所
(72)【発明者】
【氏名】楠藤 健
(72)【発明者】
【氏名】小林 卓哉
(72)【発明者】
【氏名】油井 太我
(72)【発明者】
【氏名】鎌田 洋平
(72)【発明者】
【氏名】磯上 宏一郎
【審査官】 若土 雅之
(56)【参考文献】
【文献】 特開2012−006406(JP,A)
【文献】 特開2013−224257(JP,A)
【文献】 特開2007−091491(JP,A)
【文献】 特開昭63−248749(JP,A)
【文献】 国際公開第2009/081877(WO,A1)
【文献】 特開平10−152590(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B32B 1/00−43/00
C03C 27/00−29/00
C08F 251/00−283/00
283/02−289/00
291/00−297/08
(57)【特許請求の範囲】
【請求項1】
熱可塑性エラストマーを含有するA層を少なくとも1層含み、A層の少なくとも片面に熱可塑性樹脂を含むB層を有する合わせガラス用中間膜であって、
A層が接着性官能基を有するポリオレフィン類を含有し、
熱可塑性エラストマーが、ハードセグメントブロックとソフトセグメントブロックを有し、
熱可塑性エラストマーが、ハードセグメントブロックを島成分とし、ソフトセグメントブロックを海成分とする海島相分離構造を有し、
A層と略平行な平面に沿ってA層の厚さ方向中央域をスライスして、
得られたスライス面上の任意の5ヶ所について200nm×200nmの範囲の領域を原子間力顕微鏡により観察した位相像において、
それぞれの位相像の中の略楕円状または略連続直線状の島成分の中から、長径サイズが最大となる島成分をそれぞれ選定した場合に、
選定した島成分の長径サイズの平均値が100nm以下となり、
B層の厚さの合計に対するA層の厚さの合計の比が1/2以下であり、
ソフトセグメントブロックが共役ジエン単量体を含み、
共役ジエン単量体単位由来の炭素間二重結合の残存量が2モル%以上である、合わせガラス用中間膜。
【請求項2】
ASTM D4065−06に基づいて周波数1000Hzの条件で動的粘弾性試験を行うことで測定されるA層のtanδが最大となるピークを−10〜30℃の範囲に有する、請求項1に記載の合わせガラス用中間膜。
【請求項3】
ASTM D4065−06に基づいて周波数1000Hzの条件で動的粘弾性試験を行うことで測定されるA層のtanδが最大となるピークの高さが1.3以上である、請求項1または2に記載の合わせガラス用中間膜。
【請求項4】
tanδが最大となるピークの高さが1.5以上である、請求項3に記載の合わせガラス用中間膜。
【請求項5】
B層における可塑剤の含有量が、熱可塑性樹脂100質量部に対して50質量部以下である、請求項1〜4のいずれかに記載の合わせガラス用中間膜。
【請求項6】
B層の熱可塑性樹脂がポリビニルアセタールである、請求項1〜5のいずれかに記載の合わせガラス用中間膜。
【請求項7】
B層の熱可塑性樹脂がアイオノマーである、請求項1〜5のいずれかに記載の合わせガラス用中間膜。
【請求項8】
合わせガラス用中間膜を、ガラスの厚さの合計が4mm以下となる2枚のガラスで挟持した合わせガラスにおいて、ASTM E90−09の条件にて測定した4000Hzでの音響透過損失が37dB以上となる、請求項1〜7のいずれかに記載の合わせガラス用中間膜。
【請求項9】
ハードセグメントブロックがポリスチレンブロックまたはポリメチルメタクリレートブロックである、請求項1〜8のいずれかに記載の合わせガラス用中間膜。
【請求項10】
熱可塑性エラストマー中のハードセグメントブロックの含有量が20質量%未満である、請求項1〜9のいずれかに記載の合わせガラス用中間膜。
【請求項11】
合わせガラス用中間膜を構成する層の少なくとも1層に遮熱材料を含有する、請求項1〜10のいずれかに記載の合わせガラス用中間膜。
【請求項12】
合わせガラス用中間膜を、クリアガラスの厚さの合計が4mm以下となる2枚のクリアガラスで挟持した合わせガラスにおいて、可視光透過率が70%以上となり、波長800〜1100nmの赤外線平均透過率が70%以下となる、請求項1〜11のいずれかに記載の合わせガラス用中間膜。
【請求項13】
合わせガラス用中間膜を、グリーンガラスの厚さの合計が4mm以下となる2枚のグリーンガラスで挟持した合わせガラスにおいて、可視光透過率が70%以上となり、波長800〜1100nmの赤外線平均透過率が32%以下となる、請求項1〜12のいずれかに記載の合わせガラス用中間膜。
【請求項14】
遮熱材料が、錫ドープ酸化インジウム、アンチモンドープ酸化錫、アンチモン酸亜鉛、金属ドープ酸化タングステン、フタロシアニン化合物、アルミニウムドープ酸化亜鉛、および六ホウ化ランタンからなる群より選ばれる少なくとも1種を含有する、請求項11〜13のいずれかに記載の合わせガラス用中間膜。
【請求項15】
金属ドープ酸化タングステンがセシウムドープ酸化タングステンである、請求項14に記載の合わせガラス用中間膜。
【請求項16】
A層又はB層のいずれか少なくとも一層に遮熱材料を含有する、請求項1〜15のいずれかに記載の合わせガラス用中間膜。
【請求項17】
B層に紫外線吸収剤を含有する、請求項1〜16のいずれかに記載の合わせガラス用中間膜。
【請求項18】
紫外線吸収剤が、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾエート系化合物、マロン酸エステル系化合物、およびシュウ酸アニリド系化合物からなる群より選ばれる少なくとも1種である、請求項17に記載の合わせガラス用中間膜。
【請求項19】
合わせガラス用中間膜を、ガラスの厚さの合計が4mm以下となる2枚のガラスで挟持した合わせガラスにおいて、ヘイズが5以下となる、請求項1〜18のいずれかに記載の合わせガラス用中間膜。
【請求項20】
接着性官能基を有するポリオレフィン類の含有量が、A層の熱可塑性エラストマー100質量部に対して20質量部以下である、請求項1〜19のいずれかに記載の合わせガラス用中間膜。
【請求項21】
接着性官能基を有するポリオレフィン類が、カルボキシル基を含有するポリプロピレンである、請求項1〜20のいずれかに記載の合わせガラス用中間膜。
【請求項22】
A層の膜厚が400μm以下である、請求項1〜21のいずれかに記載の合わせガラス用中間膜。
【請求項23】
請求項1〜22のいずれかに記載の合わせガラス用中間膜が2枚のガラスの間に配置されてなる合わせガラス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、遮音性に優れ、シュリンク性が低減された合わせガラス用中間膜および合わせガラスに関する。
【背景技術】
【0002】
従来、窓など遮音が求められる場所でガラスを施工する場合には、ガラスの厚さを厚くすることで重量により遮音効果を高めるか、2枚以上のガラス板と中間膜とを積層してなる合わせガラスを用いて遮音効果を高めるという方法が行われてきた。後者の中間膜を用いる方法では、中間膜のダンピング性能と、振動エネルギーを熱エネルギーに変換する中間膜の性能とによって、ガラスの遮音性を向上させている。
【0003】
遮音性を改善させる方法としては、ポリスチレンとゴム系樹脂の共重合体を可塑化されたポリビニルアセタール系樹脂で積層した中間膜が提案されている(例えば、特許文献1参照)。
【0004】
また、ポリビニルブチラールからなり、一定の耐衝撃性および遮音性を有する合わせガラス用中間膜および合わせガラスが提案されている(例えば、特許文献2参照)。
【0005】
さらに近年、省エネルギー化の観点から、自動車等の燃費向上が益々大きな課題となっている。自動車等の燃費を向上させるための方法としては、エアコンの使用を抑える工夫や、自動車を軽量化する工夫が挙げられる。
【0006】
エアコンの使用を抑える工夫としては、自動車内の温度上昇を抑えることができる遮熱性の高い合わせガラスを自動車のガラスに用いる方法が挙げられる。自動車を軽量化する工夫としては、合わせガラスそのものを軽量化する方法が挙げられる。
【0007】
合わせガラスそのものを軽量化する場合は、合わせガラスを薄くする必要がある。しかし、既存の合わせガラスには、薄くすることによって遮音性が低下するという問題があった。
【0008】
好適な遮音性を有する合わせガラスを製造する方法としては、スチレンとゴム系樹脂モノマーとの共重合体を含む層を、熱接着性樹脂を含む層で狭持して3層構成の中間膜とし、該中間膜を2枚以上のガラスでラミネートして合わせガラスを製造する方法(例えば、特許文献3参照)や、ポリビニルアセタールを含むA層とポリオレフィンを含むB層とを積層して層間接着性を向上させた積層体を用いて合わせガラスを作製する方法が提案されている(例えば、特許文献4参照)。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2007−91491号公報
【特許文献2】国際公開2005/018969号公報
【特許文献3】特開2009−256128号公報
【特許文献4】特開2012−006406号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は上記課題を解決するものであり、薄くしても遮音性に優れるとともに、島成分の相分離サイズが小さく、シュリンク性の低い合わせガラス用中間膜およびそれを用いた合わせガラスを提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明者らは上記課題を解決するために鋭意検討した結果、合わせガラス用中間膜に用いる層において、島成分の相分離サイズが大きくなってしまうことがあったため、合わせガラスを製造する際に、合わせガラス用中間膜が収縮したり、合わせガラスのヘイズが低下したりすることを見出し、ある特定の構成を有する合わせガラス用中間膜を用いた合わせガラスが、薄くしても遮音性に優れるとともに、シュリンク性が低いことを見出した。
【0012】
すなわち、本発明は、熱可塑性エラストマーを含有するA層を少なくとも1層含む合わせガラス用中間膜であって、熱可塑性エラストマーが、ハードセグメントブロックとソフトセグメントブロックを有し、熱可塑性エラストマーが、ハードセグメントブロックを島成分とし、ソフトセグメントブロックを海成分とする海島相分離構造を有し、A層と略平行な平面に沿ってA層の厚さ方向中央域をスライスして、得られたスライス面上の任意の5ヶ所について200nm×200nmの範囲の領域を原子間力顕微鏡により観察した位相像において、それぞれの位相像の中の略楕円状または略連続直線状の島成分の中から、長径サイズが最大となる島成分をそれぞれ選定した場合に、選定した島成分の長径サイズの平均値が100nm以下となる、合わせガラス用中間膜に関する。
【0013】
本発明は、さらに、ASTM D4065−06に基づいて周波数1000Hzの条件で動的粘弾性試験を行うことで測定されるA層のtanδが最大となるピークを−10〜30℃の範囲に有する、合わせガラス用中間膜であることが好ましい。
【0014】
本発明は、さらに、ASTM D4065−06に基づいて周波数1000Hzの条件で動的粘弾性試験を行うことで測定されるA層のtanδが最大となるピークの高さが1.3以上であることが好ましく、tanδが最大となるピークの高さが1.5以上である、合わせガラス用中間膜であることが好ましい。
【0015】
本発明は、さらに、A層の少なくとも片面に熱可塑性樹脂を含むB層を有する、合わせガラス用中間膜であることが好ましい。
【0016】
本発明は、さらに、B層における可塑剤の含有量が、熱可塑性樹脂100質量部に対して50質量部以下である、合わせガラス用中間膜であることが好ましい。
【0017】
本発明は、さらに、B層の熱可塑性樹脂がポリビニルアセタールである、合わせガラス用中間膜であることが好ましい。
【0018】
本発明は、さらに、B層の熱可塑性樹脂がアイオノマーである、合わせガラス用中間膜であることが好ましい。
【0019】
本発明は、さらに、合わせガラス用中間膜を、ガラスの厚さの合計が4mm以下となる2枚のガラスで挟持した合わせガラスにおいて、ASTM E90−09の条件にて測定した4000Hzでの音響透過損失が37dB以上となる、合わせガラス用中間膜であることが好ましい。
【0020】
本発明は、さらに、ハードセグメントブロックがポリスチレンブロックまたはポリメチルメタクリレートブロックである、合わせガラス用中間膜であることが好ましい。
【0021】
本発明は、さらに、熱可塑性エラストマー中のハードセグメントブロックの含有量が20質量%未満である、合わせガラス用中間膜であることが好ましい。
【0022】
本発明は、さらに、合わせガラス用中間膜を構成する層の少なくとも1層に遮熱材料を含有することが好ましい。
【0023】
本発明はさらに、合わせガラス用中間膜を、クリアガラスの厚さの合計が4mm以下となる2枚のクリアガラスで挟持した合わせガラスにおいて、可視光透過率が70%以上となり、波長800〜1100nmの赤外線平均透過率が70%以下となる、合わせガラス用中間膜であることが好ましい。
【0024】
本発明は、さらに、合わせガラス用中間膜を、グリーンガラスの厚さの合計が4mm以下となる2枚のグリーンガラスで挟持した合わせガラスにおいて、可視光透過率が70%以上となり、波長800〜1100nmの赤外線平均透過率が32%以下となる、合わせガラス用中間膜であることが好ましい。
【0025】
本発明は、さらに、遮熱材料が、錫ドープ酸化インジウム、アンチモンドープ酸化錫、アンチモン酸亜鉛、金属ドープ酸化タングステン、フタロシアニン化合物、アルミニウムドープ酸化亜鉛、および六ホウ化ランタンからなる群より選ばれる少なくとも1種を含有する、合わせガラス用中間膜であることが好ましい。
【0026】
本発明は、さらに、金属ドープ酸化タングステンがセシウムドープ酸化タングステンである、合わせガラス用中間膜であることが好ましい。
【0027】
本発明は、さらに、A層又はB層のいずれか少なくとも一層に遮熱材料を含有する、合わせガラス用中間膜であることが好ましい。
【0028】
本発明は、さらに、B層に紫外線吸収剤を含有する、合わせガラス用中間膜であることが好ましい。
【0029】
本発明は、さらに、紫外線吸収剤が、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾエート系化合物、マロン酸エステル系化合物、およびシュウ酸アニリド系化合物からなる群より選ばれる少なくとも1種である、合わせガラス用中間膜であることが好ましい。
【0030】
本発明は、さらに、合わせガラス用中間膜を、ガラスの厚さの合計が4mm以下となる2枚のガラスで挟持した合わせガラスにおいて、ヘイズが5以下となる、合わせガラス用中間膜であることが好ましい。
【0031】
本発明は、上記の合わせガラス用中間膜が2枚のガラスの間に配置されてなる合わせガラスに関する。
【発明の効果】
【0032】
本発明によれば、薄くしても遮音性に優れるとともに、シュリンク性の低い合わせガラス用中間膜および合わせガラスを提供することができる。
【図面の簡単な説明】
【0033】
図1】合わせガラス用中間膜の構成の断面図の一例である。
図2】ASTM D4065−06に基づいて周波数1000Hzの条件で動的粘弾性試験を行うことで測定されるA層のtanδ11の測定結果の一例である。
図3】実施例11に係る合わせガラス用中間膜のA層をスライスして、原子間力顕微鏡によってスライス面を200nm×200nmのスキャンサイズで撮影した写真である。
図4】比較例1に係る合わせガラス用中間膜のA層をスライスして、原子間力顕微鏡によってスライス面を200nm×200nmのスキャンサイズで撮影した写真である。
図5】耐熱クリープ性の評価に用いる合わせガラスの模式図の一例である。
図6】耐熱クリープ性の評価に用いる合わせガラスに、鉄板を張り合わせた場合の模式図の一例である。
図7】耐熱クリープ性の評価のために、鉄板を張り合わせた合わせガラスをスタンドに立て掛けた場合の模式図の一例である。
【発明を実施するための形態】
【0034】
以下、本発明の実施形態について説明するが、本発明は本実施形態に限定されるものではない。
【0035】
[A層]
本発明は、熱可塑性エラストマーを含有するA層を少なくとも1層含む合わせガラス用中間膜であって、熱可塑性エラストマーは、ハードセグメントブロックとソフトセグメントブロックを有する。また、本発明の合わせガラス用中間膜のA層においては、熱可塑性エラストマーが、ハードセグメントブロックを島成分とし、ソフトセグメントブロックを海成分とする海島相分離構造を有する。
【0036】
ハードセグメントブロックとソフトセグメントブロックとは、相溶性が高くないため、混合状態において、ハードセグメントブロックの相とソフトセグメントブロックの相とに分離して、相分離構造を形成する。本明細書において、海島相分離構造とは、連続相(海成分)であるソフトセグメントブロックの相の中に、ハードセグメントブロックの相が分散している構造を意味する。
【0037】
本発明の合わせガラス用中間膜におけるA層では、A層と略平行な平面に沿ってA層の厚さ方向中央域をスライスして、得られたスライス面上の任意の5ヶ所について200nm×200nmの範囲の領域を原子間力顕微鏡により観察した位相像において、それぞれの位相像の中の略楕円状または略連続直線状の島成分の中から、長径サイズが最大となる島成分をそれぞれ選定した場合に、選定した島成分の長径サイズの平均値が100nm以下となる。
【0038】
なお、該平均値を、A層の相分離サイズともいう。また、選定した島成分の長径サイズの平均値が100nm以下となる5つの領域の組み合わせが1つでも存在すれば、上記規定は満たされるものとする。
【0039】
ここで、略楕円状または略連続直線状の島成分とは、一方向に線状に延びた島成分を意味しており、曲がった形状の島成分と区別される。略楕円状または略連続直線状の島成分などの一方向に線状に延びた島成分が、シュリンク性に影響する。該島成分が多い場合、特に、該島成分のうち、長径サイズの長い島成分が多いと、シュリンク性が高くなってしまい、合わせガラスを製造する際に、合わせガラス用中間膜が収縮したり、合わせガラスのヘイズが低下したりする。
【0040】
本発明の合わせガラス用中間膜のA層において、該平均値は、100nm以下であり、90nm以下であることが好ましく、85nm以下であることがより好ましく、80nm以下であることがさらに好ましい。該平均値が、100nmを超えると、シュリンク性が高くなってしまい、合わせガラスを製造する際に、合わせガラス用中間膜が収縮したり、合わせガラスのヘイズが低下したりする。なお、島成分の長径サイズは、島成分の一方の末端から他方の末端までの線分の長さとして測定することができる。
【0041】
該平均値が100nm以下となるA層を作製するための方法としては、熱可塑性エラストマー中のハードセグメントブロックの含有量を20質量%未満とする方法などが挙げられる。
【0042】
なお、上記5つの領域は、領域を選択する際の恣意性を排除する観点からは、例えば、1000nm×1000nmの範囲をまず測定し、その中から改めて200nm×200nmの範囲の領域を5カ所再測定することが好ましい。また、200nm×200nmの範囲の領域を、1000nm×1000nmの範囲の領域の中から再測定するよりも、より狭い範囲の領域、例えば、800nm×800nmの範囲の領域を測定し、その中から、200nm×200nmの範囲の領域を再度測定することがより好ましい。
【0043】
なお、選択の対象となる200nm×200nmの範囲の領域の数は増やしてもよく、例えば、6つの領域を選択して測定をしてもよい。また、選択の対象となる200nm×200nmの領域の範囲は拡大してもよく、例えば、300nm×300nmの範囲の領域を選択して測定をしてもよい。
【0044】
また、スライス面における全島成分の長径サイズの平均値が100nm以下、より好ましくは90nm以下であるA層を用いることによっても、島成分の相分離サイズが小さく、シュリンク性が低い合わせガラス用中間膜を作製することができる。なお、全島成分の長径サイズを測定する代わりに、任意に200nm×200nmの範囲の領域を5つ選択して、その中の全島成分の長径サイズの平均値を算出する近似的な測定方法としてもよい。
【0045】
また、島成分のうち、長径サイズが5nm以上、より好ましくは10nm以上となる島成分の個数の割合がすべての島成分の個数に対して10%以上、より好ましくは20%以上であるA層を用いることによっても、島成分の相分離サイズが小さく、シュリンク性が低い合わせガラス用中間膜を作製することができる。なお、全島成分の個数を計測する代わりに、任意に200nm×200nmの範囲の領域を5つ選択して、その中の島成分の個数を計測する近似的な測定方法としてもよい。
【0046】
この場合においても、上記5つの領域を選択する際の恣意性を排除する観点からは、例えば、1000nm×1000nmの範囲の領域の中から、200nm×200nmの範囲の領域を5つ選択し、再測定することが好ましい。また、200nm×200nmの範囲の領域を、1000nm×1000nmの範囲の領域の中から再測定するよりも、より狭い範囲の領域、例えば、800nm×800nmの範囲の領域の中から、200nm×200nmの範囲の領域を再測定することがより好ましい。
【0047】
同様に、選択の対象となる200nm×200nmの範囲の領域の数は増やしてもよく、例えば、6つの領域を選択して再測定をしてもよい。また、選択の対象となる200nm×200nmの領域の範囲は拡大してもよく、例えば、300nm×300nmの範囲の領域を選択して測定をしてもよい。
【0048】
本発明の合わせガラス用中間膜を構成する積層体に用いるA層は、特定の熱可塑性エラストマーを含有する組成物を含む。A層を特定の熱可塑性エラストマーを含有する組成物によって構成することにより、得られる積層体の遮音性を向上させることができる。熱可塑性エラストマーとは、加熱すると軟化して可塑性を示し、冷却すると固化してゴム弾性を示す高分子化合物を意味しており、熱可塑性樹脂とは区別される。
【0049】
本発明に用いられる熱可塑性エラストマーは、特に限定されないが、例えば、ポリスチレン系エラストマー(ソフトセグメント;ポリブタジエン、ポリイソプレンなど/ハードセグメント;ポリスチレン)、ポリオレフィン系エラストマー(ソフトセグメント;エチレンプロピレンゴム/ハードセグメント;ポリプロピレン)、ポリ塩化ビニル系エラストマー(ソフトセグメント;ポリ塩化ビニル/ハードセグメント;ポリ塩化ビニル)、ポリウレタン系エラストマー(ソフトセグメント;ポリエーテル、ポリエステル/ハードセグメント;ポリウレタン)、ポリエステル系エラストマー(ソフトセグメント;ポリエーテル/ハードセグメント;ポリエステル)、ポリアミド系エラストマー(ソフトセグメント;ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールもしくはポリエステル系、ポリエーテル系/ハードセグメント;ポリアミド<ナイロン樹脂>)、ポリブタジエン系エラストマー(ソフトセグメント;非晶性ブチルゴム/ハードセグメント;シンジオタクチック1、2−ポリブタジエン樹脂)などの熱可塑性エラストマーが挙げられる。なお上記熱可塑性エラストマーは単独で用いてもよいし、2種以上を併用してもよい。
【0050】
本発明の熱可塑性エラストマーには、ハードセグメントとソフトセグメントを少なくとも共に1つずつ有するブロックポリマー(ブロック共重合体)を使用することが、好適なゴム弾性によって薄い合わせガラスにおいても成形性と遮音性を両立させる観点から好ましい。さらに、より一層遮音性を向上させる観点からは、ハードセグメントブロックがポリスチレンブロックまたはポリメチルメタクリレートブロックである熱可塑性エラストマーを用いることがより好ましい。
【0051】
熱可塑性エラストマー中のハードセグメントブロックの含有量は、20質量%未満であることが好ましく、19質量%未満であることがより好ましく、18質量%未満であることがさらに好ましく、16質量%未満であることが特に好ましい。熱可塑性エラストマー中のハードセグメントブロックの含有量が20質量%未満であると、島成分の相分離サイズが小さくなってシュリンク性が抑制される傾向にある。
【0052】
また、本発明の熱可塑性エラストマーには、天然ゴム、イソプレンゴム、ブダジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、フッ素ゴムなどのゴムを用いてもよい。
【0053】
本発明における熱可塑性エラストマーの少なくとも一種は、芳香族ビニル重合体ブロック(以下、重合体ブロック(a)ということがある)などのハードセグメントブロックおよび脂肪族不飽和炭化水素重合体ブロック(以下、重合体ブロック(b)ということがある)などのソフトセグメントブロックを有するブロック共重合体、例えば、ポリスチレン系エラストマーであることが、遮音性を発揮するゴムとしての機能とプラスチックとしての機能を両立させるという観点から好ましい。
【0054】
熱可塑性エラストマーとして、少なくとも一つの芳香族ビニル重合体ブロックおよび少なくとも一つの脂肪族不飽和炭化水素重合体ブロックを有するブロック共重合体を用いる場合、これらの重合体ブロックの結合形態は特に制限されず、直鎖状、分岐状、放射状、またはこれらの2つ以上が組み合わさった結合形態のいずれであってもよいが、直鎖状の結合形態であることが好ましい。
【0055】
直鎖状の結合形態の例としては、芳香族ビニル重合体ブロックをaで、脂肪族不飽和炭化水素重合体ブロックをbで表したとき、a−bで表されるジブロック共重合体、a−b−aまたはb−a−bで表されるトリブロック共重合体、a−b−a−bで表されるテトラブロック共重合体、a−b−a−b−aまたはb−a−b−a−bで表されるペンタブロック共重合体、(а−b)nX型共重合体(Xはカップリング残基を表し、nは2以上の整数を表す)、およびこれらの混合物が挙げられる。これらの中でも、ジブロック共重合体またはトリブロック共重合体が好ましく、トリブロック共重合体としては、a−b−aで表されるトリブロック共重合体であることがより好ましい。
【0056】
ブロック共重合体における芳香族ビニル単量体単位および脂肪族不飽和炭化水素単量体単位の合計量は、全単量体単位に対して80質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。なお、前記ブロック共重合体中の脂肪族不飽和炭化水素重合体ブロックは、一部またはすべてが水素添加されたものでもよい。
【0057】
ブロック共重合体における芳香族ビニル単量体単位の含有量は、ブロック共重合体の全単量体単位に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましく、12質量%以上であることがさらに好ましい。ブロック共重合体における芳香族ビニル単量体単位の含有量が5質量%未満になると、積層体の成形が困難になる傾向にある。ブロック共重合体における芳香族ビニル単量体単位の含有量は、ブロック共重合体を合成する際の各単量体の仕込み比、ブロック共重合体の1H−NMR等の測定結果から求めることができる。本明細書の実施例においては、単量体種の割合を1H−NMRの測定結果から求め、各単量体の割合を質量%として記載した。
【0058】
シュリンク性を抑制する観点からは、ブロック共重合体における芳香族ビニル単量体単位の含有量は、ブロック共重合体の全単量体単位に対して20質量%未満であることが好ましく、19質量%未満であることがより好ましく、18質量%未満であることがさらに好ましく、17質量%未満であることが特に好ましく、16質量%未満であることがことさら好ましく、15質量%未満であることが最も好ましい。ブロック共重合体における芳香族ビニル単量体単位の含有量が20質量%未満であると、島成分の相分離サイズが小さくなってシュリンク性が抑制される傾向にある。
【0059】
芳香族ビニル重合体ブロック中には、少量であれば、芳香族ビニル単量体以外の単量体が共重合されていてもよい。芳香族ビニル重合体ブロック中の芳香族ビニル単量体単位の割合は、芳香族ビニル重合体ブロック中の全単量体単位に対して、80質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。
【0060】
芳香族ビニル重合体ブロックを構成する芳香族ビニル単量体としては、スチレン;α−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、4−プロピルスチレン、4−シクロヘキシルスチレン、4−ドデシルスチレンなどのアルキルスチレン;2−エチル−4−ベンジルスチレン、4−(フェニルブチル)スチレン、1−ビニルナフタレン、2−ビニルナフタレンなどのアリールスチレン;ハロゲン化スチレン;アルコキシスチレン;ビニル安息香酸エステルなどが挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
【0061】
芳香族ビニル単量体以外の単量体の例としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−フェニル−1−ブテン、6−フェニル−1−ヘキセン、3−メチル−1−ブテン、4−メチル−1−ブテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、3−メチル−1−ヘキセン、4−メチル−1−ヘキセン、5−メチル−1−ヘキセン、3,3−ジメチル−1−ペンテン、3,4−ジメチル−1−ペンテン、4,4−ジメチル−1−ペンテン、ビニルシクロヘキサン、ヘキサフルオロプロペン、テトラフルオロエチレン、2−フルオロプロペン、フルオロエチレン、1,1−ジフルオロエチレン、3−フルオロプロペン、トリフルオロエチレン、3,4−ジクロロ−1−ブテン、ノルボルネン、アセチレン等の不飽和単量体、メチルアクリレート、メチルメタクリレート等の(メタ)アクリレート系単量体、ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン、イソプレン、シクロペンタジエン、1,3−シクロヘキサジエン、1,3−オクタジエン、1,3−シクロオクタジエン等の共役ジエン単量体などが挙げられる。芳香族ビニル単量体以外の単量体の含有量は、芳香族ビニル重合体ブロック中の全単量単位に対して20質量%未満であることが好ましく、5質量%未満であることがより好ましく、2質量%未満であることがさらに好ましい。
【0062】
ブロック共重合体における脂肪族不飽和炭化水素単量体単位の含有量は、ブロック共重合体の全単量体単位に対して80質量%以上であることが好ましく、81質量%以上であることがより好ましく、82質量%以上であることがさらに好ましく、83質量%以上であることが特に好ましく、84質量%以上であることがことさら好ましく、85質量%以上であることが最も好ましい。ブロック共重合体における脂肪族不飽和炭化水素単量体単位の含有量が60質量%未満になると、熱可塑性エラストマーとしての特性が発揮されにくくなる傾向にある。ブロック共重合体における脂肪族不飽和炭化水素単量体単位の含有量は、ブロック共重合体を合成する際の各単量体の仕込み比、ブロック共重合体の1H−NMR等の測定結果から求めることができる。本明細書の実施例においては、単量体種の割合を1H−NMRの測定結果から求め、各単量体の割合を質量%として記載した。
【0063】
ブロック共重合体における脂肪族不飽和炭化水素単量体単位の含有量は、ブロック共重合体の全単量体単位に対して95質量%以下であることが好ましく、90質量%以下であることがより好ましく、88質量%以下であることがさらに好ましい。ブロック共重合体における脂肪族不飽和炭化水素単量体単位の含有量が95質量%を超えると、積層体の成形が困難になる傾向にある。
【0064】
脂肪族不飽和炭化水素重合体ブロック中には、少量であれば、脂肪族不飽和炭化水素単量体以外の単量体が共重合されていてもよい。脂肪族不飽和炭化水素重合体ブロック中の脂肪族不飽和炭化水素単量体単位の割合は、脂肪族不飽和炭化水素重合体ブロック中の全単量単位に対して、80質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。
【0065】
脂肪族不飽和炭化水素重合体ブロック中の脂肪族不飽和炭化水素単量体としては、共役ジエン単量体を用いることが好ましい。共役ジエン単量体の種類は、特に限定されないが、例えば、ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン、イソプレン、シクロペンタジエン、1,3−シクロヘキサジエン、1,3−オクタジエン、1,3−シクロオクタジエン等が挙げられる。これらの共役ジエン単量体は、単独で用いてもよいし、2種以上を併用してもよい。共役ジエン単量体の中でも、ブタジエンまたはイソプレンを用いることが好ましい。また、ブタジエンおよびイソプレンを併用することがより好ましい。なお、脂肪族不飽和炭化水素重合体ブロックを構成する単量体として、上記共役ジエン単量体の代わりに、イソブチレンを用いてもよい。また、共役ジエン単量体と共にイソブチレンを用いてもよい。該重合体ブロック中の共役ジエンの含有量は、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。共役ジエン単量体単位の割合が、上記範囲内であると、ゴム弾性などの熱可塑性エラストマーとしての特性が発揮されやすくなり、遮音性が向上する傾向にある。
【0066】
また、脂肪族不飽和炭化水素重合体ブロック中の脂肪族不飽和炭化水素単量体として、共役ジエン単量体以外の単量体の例としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−フェニル−1−ブテン、6−フェニル−1−ヘキセン、3−メチル−1−ブテン、4−メチル−1−ブテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、3−メチル−1−ヘキセン、4−メチル−1−ヘキセン、5−メチル−1−ヘキセン、3,3−ジメチル−1−ペンテン、3,4−ジメチル−1−ペンテン、4,4−ジメチル−1−ペンテン、ビニルシクロヘキサン、ヘキサフルオロプロペン、テトラフルオロエチレン、2−フルオロプロペン、フルオロエチレン、1,1−ジフルオロエチレン、3−フルオロプロペン、トリフルオロエチレン、3,4−ジクロロ−1−ブテン、ノルボルネン、アセチレン等の不飽和単量体などが挙げられる。
【0067】
また、上記脂肪族不飽和炭化水素単量体は、入手容易性や取り扱い性、合成のしやすさの観点から、共役ジエンが好ましい。脂肪族不飽和炭化水素重合体ブロックを構成する単量体として共役ジエンを用いる場合、熱安定性などの耐熱クリープ性や色差変化などの耐候性を向上させる観点から、共役ジエン単量体単位を含む重合体ブロック(b)の一部又は全部を水素添加(以下、「水添」と略称することがある)した水素添加物を用いることが好ましい。重合体ブロック(b)を水添することにより、共役ジエン単量体単位由来の炭素間二重結合の残存量を調整することができる。共役ジエン単量体単位由来の炭素間二重結合の残存量は、ブロック共重合体の水素添加前後におけるヨウ素価を測定し、その測定値より算出できる。
【0068】
耐熱クリープ性を向上させる観点からは、共役ジエン単量体単位由来の炭素間二重結合の残存量は、2モル%以上であることが好ましく、3モル%以上であることがより好ましく、4モル%以上であることがさらに好ましく、5モル%以上であることが特に好ましい。
【0069】
合わせガラスを長期間使用した場合の色差変化を抑制するなど耐候性を向上させる観点からは、共役ジエン単量体由来の炭素間二重結合の残存量は、40モル%以下であることが好ましく、35モル%以下であることがより好ましく、30モル%以下であることがさらに好ましく、25モル%以下であることが特に好ましい。
【0070】
ブロック共重合体の重量平均分子量は、その力学特性、成形加工性の観点から、30,000以上であることが好ましく、50,000以上であることがより好ましい。また、ブロック共重合体の重量平均分子量は、400,000以下であることが好ましく、300,000以下であることがより好ましい。
【0071】
ブロック共重合体の重量平均分子量と数平均分子量の比(Mw/Mn)は、1.0以上であることが好ましい。また、ブロック共重合体の重量平均分子量と数平均分子量の比(Mw/Mn)は、2.0以下であることが好ましく、1.5以下であることがより好ましい。ここで、重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めたポリスチレン換算の重量平均分子量であり、数平均分子量とは、GPC測定によって求めたポリスチレン換算の数平均分子量である。
【0072】
ブロック共重合体の製造方法は、特に限定されないが、例えばアニオン重合法、カチオン重合法、ラジカル重合法などにより製造することができる。例えばアニオン重合の場合、具体的には、
(i)アルキルリチウム化合物を開始剤として用い、前記芳香族ビニル単量体、前記共役ジエン単量体、次いで前記芳香族ビニル単量体を逐次重合させる方法;
(ii)アルキルリチウム化合物を開始剤として用い、前記芳香族ビニル単量体、前記共役ジエン単量体を逐次重合させ、次いでカップリング剤を加えてカップリングする方法;
(iii)ジリチウム化合物を開始剤として用い、前記共役ジエン単量体、次いで前記芳香族ビニル単量体を逐次重合させる方法などが挙げられる。
【0073】
脂肪族不飽和炭化水素単量体として共役ジエンを用いる場合、上記アニオン重合の際に有機ルイス塩基を添加することによって、熱可塑性エラストマーの1,2−結合量および3,4−結合量を増やすことができ、該有機ルイス塩基の添加量によって、熱可塑性エラストマーの1,2−結合量および3,4−結合量を容易に制御することができる。
【0074】
該有機ルイス塩基としては、例えば、酢酸エチルなどのエステル;トリエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA)、N−メチルモルホリンなどのアミン;ピリジンなどの含窒素複素環式芳香族化合物;ジメチルアセトアミドなどのアミド;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサンなどのエーテル;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;ジメチルスルホキシドなどのスルホキシド;アセトン、メチルエチルケトンなどのケトンなどが挙げられる。
【0075】
未水添のポリスチレン系エラストマーを水素添加反応に付す場合、水素添加触媒に対して不活性な溶媒に得られた未水添のポリスチレン系エラストマーを溶解させるか、または、未水添のポリスチレン系エラストマーを反応液から単離せずにそのまま用い、水素添加触媒の存在下、水素と反応させることにより行うことができる。
【0076】
水素添加触媒としては、例えばラネーニッケル;Pt、Pd、Ru、Rh、Niなどの金属をカーボン、アルミナ、珪藻土などの単体に担持させた不均一系触媒;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物などとの組み合わせからなるチーグラー系触媒;メタロセン系触媒などが挙げられる。水素添加反応は、通常、水素圧力0.1MPa以上、20MPa以下、反応温度20℃以上、250℃以下、反応時間0.1時間以上、100時間以下の条件で行なうことができる。
【0077】
A層の膜厚は、20μm以上であることが好ましく、30μm以上であることがより好ましく、50μm以上であることがさらに好ましい。A層の膜厚が20μm未満になると、遮音性が低下する傾向にある。本発明の合わせガラス用中間膜にA層が複数含まれる場合には、A層全体の厚さが上記条件を満たしていることが好ましい。
【0078】
A層の膜厚は、400μm以下であることが好ましく、250μm以下であることがより好ましく、200μm以下であることがさらに好ましい。A層の膜厚が400μmを超えると、合わせガラスを作製したときに耐貫通性などの機械特性が悪化し、合わせガラスとしての安全性能が損なわれる傾向にある。本発明の合わせガラス用中間膜にA層が複数含まれる場合には、A層全体の厚さが上記条件を満たしていることが好ましい。
【0079】
A層には、前記したエラストマー以外の樹脂や、遮熱材料(例えば、赤外線吸収能を有する、無機遮熱性微粒子又は有機遮熱性材料)、酸化防止剤、紫外線吸収剤、光安定剤、ブロッキング防止剤、顔料、染料等の種々の添加剤が必要に応じて添加されていてもよい。
【0080】
本発明の合わせガラス用中間膜に遮熱材料を含有させると、積層体に遮熱機能を付与し、ガラスの厚さの合計が4mm以下となる2枚のクリアガラスで合わせガラス用中間膜を挟持して形成された合わせガラスにおいて、波長800〜1100nmの赤外線平均透過率を70%以下とすることができる。遮熱材料は、A層、後述するB層またはC層のいずれに含まれていてもよい。いずれか一層に含有されているのみでも、複数の層に含有されていてもよい。遮熱材料を含有させる場合、光学ムラを抑える観点からは、少なくとも一つのA層に含有されていることが好ましい。
【0081】
本発明の合わせガラス用中間膜に遮熱材料を含有させると、積層体に遮熱機能を付与し、ガラスの厚さの合計が4mm以下となる2枚のグリーンガラスで合わせガラス用中間膜を挟持して形成された合わせガラスにおいて、波長800〜1100nmの赤外線平均透過率を32%以下とすることができる。遮熱材料は、A層、後述するB層、C層のいずれに含まれていてもよい。いずれか一層に含有されているのみでも、複数の層に含有されていてもよい。遮熱材料を含有させる場合、光学ムラを抑える観点からは、少なくとも一つのA層に含有されていることが好ましい。
【0082】
遮熱材料としては、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、アルミニウムドープ酸化亜鉛(AZO)、一般式MmWOn(Mは金属元素を表し、mは0.01以上、1.0以下、nは2.2以上、3.0以下である)で表される金属ドープ酸化タングステンなどの金属ドープ酸化タングステン、アンチモン酸亜鉛(ZnSb25)、六ホウ化ランタンなどの無機遮熱性微粒子、またはフタロシアニン化合物(NIOBP)、ナフタロシアニン化合物、もしくはアントラシアニン骨格を有する化合物などの有機遮熱材料が挙げられる。中でも、ITOやATO、金属ドープ酸化タングステンが赤外線吸収性の観点から好ましく、金属ドープ酸化タングステンが特に好ましい。前記金属ドープ酸化タングステン中のMで表される金属元素としては、例えばCs、Tl、Rb、Na、Kなどが挙げられ、特にCsによって構成されるCWO(セシウムドープ酸化タングステン)が好ましい。遮熱性の観点から、上記mは、0.2以上であることが好ましく、0.3以上であることがより好ましい。また、上記mは0.5以下であることが好ましく、0.4以下であることがより好ましい。赤外線吸収性の観点から、フタロシアニン化合物は、ニッケル(II)に配位した化合物であることが好ましい。
【0083】
遮熱材料の含有量は、合わせガラス用中間膜を構成する層に用いた樹脂全体に対して0.1質量%以上が好ましく、0.2質量%以上がより好ましい。また、5質量%以下が好ましく、3質量%以下がより好ましい。5質量%より多く含有した場合には可視光線の透過率に影響がでることがある。遮熱材料の平均粒子径は、100nm以下が好ましく、50nm以下が透明性の観点からより好ましい。なお、ここでいう遮熱材料の平均粒子径は、レーザー回折装置で測定されるものをいう。
【0084】
A層に遮熱材料を含有させた場合、遮熱材料の赤外線吸収能は、赤外線がA層を通過するときの光路長(m)およびA層中の遮熱材料の濃度(g/m3)に比例する。したがって、遮熱材料の赤外線吸収能は、A層における遮熱材料の面密度(g/m2)に比例する。
【0085】
A層において遮熱材料として金属ドープ酸化タングステン(セシウムドープ酸化タングステン)を用いた場合は、遮熱材料の面密度(g/m2)は、0.10以上であることが好ましく、0.15以上であることがより好ましく、0.20以上であることがさらに好ましい。A層における遮熱材料の面密度(g/m2)が0.10未満であると、十分な遮熱効果が得られにくくなる傾向にある。A層において遮熱材料として金属ドープ酸化タングステン(セシウムドープ酸化タングステン)を用いた場合、遮熱材料の面密度(g/m2)は、1.00以下であることが好ましく、0.70以下であることがより好ましく、0.50以下であることがさらに好ましい。A層における遮熱材料の面密度(g/m2)が1.00以下であると、合わせガラスとした場合に、可視光線透過率が維持されたり、ヘイズが向上したり、耐候性が維持されたり、色差変化が抑制されたりする傾向にある。
【0086】
A層において遮熱材料として錫ドープ酸化インジウムを用いた場合、遮熱材料の面密度(g/m2)は、0.5以上であることが好ましく、1.0以上であることがより好ましく、1.50以上であることがさらに好ましく、2.25以上であることが特に好ましく、3.00以上であることが最も好ましい。A層において遮熱材料として錫ドープ酸化インジウムを用いた場合における、遮熱材料の面密度(g/m2)は、15.00以下であることが好ましく、10.50以下であることがより好ましく、7.50以下であることがさらに好ましい。
【0087】
A層において遮熱材料としてアンチモンドープ酸化錫を用いた場合、遮熱材料の面密度(g/m2)は、1.00以上であることが好ましく、1.50以上であることがより好ましく、2.00以上であることがさらに好ましい。A層において遮熱材料としてアンチモンドープ酸化錫を用いた場合における、遮熱材料の面密度(g/m2)は、10.00以下であることが好ましく、7.00以下であることがより好ましく、5.00以下であることがさらに好ましい。
【0088】
A層において遮熱材料としてフタロシアニン化合物を用いた場合、遮熱材料の面密度(g/m2)は、0.010以上であることが好ましく、0.015以上であることがより好ましく、0.020以上であることがさらに好ましい。A層において遮熱材料としてフタロシアニン化合物を用いた場合における、遮熱材料の面密度(g/m2)は、0.100以下であることが好ましく、0.070以下であることがより好ましく、0.050以下であることがさらに好ましい。
【0089】
A層において遮熱材料としてアルミニウムドープ酸化亜鉛を用いた場合、遮熱材料の面密度(g/m2)は、1.00以上であることが好ましく、1.50以上であることがより好ましく、2.00以上であることがさらに好ましい。A層において遮熱材料としてアルミニウムドープ酸化亜鉛を用いた場合における、遮熱材料の面密度(g/m2)は、10.00以下であることが好ましく、7.00以下であることがより好ましく、5.00以下であることがさらに好ましい。
【0090】
A層において遮熱材料としてアンチモン酸亜鉛を用いた場合、遮熱材料の面密度(g/m2)は、1.00以上であることが好ましく、1.50以上であることがより好ましく、2.00以上であることがさらに好ましい。A層において遮熱材料としてアンチモン酸亜鉛を用いた場合における、遮熱材料の面密度(g/m2)は、10.00以下であることが好ましく、7.00以下であることがより好ましく、5.00以下であることがさらに好ましい。
【0091】
A層において遮熱材料として六ホウ化ランタンを用いた場合、遮熱材料の面密度(g/m2)は、0.02以上であることが好ましく、0.03以上であることがより好ましく、0.04以上であることがさらに好ましい。A層において遮熱材料として六ホウ化ランタンを用いた場合における、遮熱材料の面密度(g/m2)は、0.20以下であることが好ましく、0.14以下であることがより好ましく、0.10以下であることがさらに好ましい。
【0092】
本発明の合わせガラス用中間膜は、A層に遮熱材料を含有することが好ましい。また、合わせガラス用中間膜を構成する少なくとも一層に紫外線吸収剤を含むことが好ましく、特に後述するB層の少なくとも一層に紫外線吸収剤を少なくとも1種含有するものであることがより好ましい。合わせガラス用中間膜を上記構成とすることで、例えば、A層を内層とし、B層を外層とした場合に、A層の熱可塑性エラストマーが紫外線から保護されるとともに、合わせガラス用中間膜の遮熱性を高めることができ、光学ムラも抑えることができる。
【0093】
本発明に用いることができる紫外線吸収剤は、特に限定されないが、例えば、2−(5−クロロ−2−ベンゾトリアゾリル)−6−tert−ブチル−p−クレゾール、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α’−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール又は2−(2’−ヒドロキシ−5’−t−オクチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤、2,2,6,6−テトラメチル−4−ピペリジルベンゾエート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、又は4−(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ)−1−(2−(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ)エチル)−2,2,6,6−テトラメチルピペリジンなどのヒンダードアミン系紫外線吸収剤、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、又はヘキサデシル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤などが挙げられる。その他に、トリアジン系化合物、ベンゾフェノン系化合物、マロン酸エステル化合物、またはシュウ酸アニリド化合物などが挙げられる。
【0094】
上記トリアジン系化合物としては、例えば、6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、6−(4−ヒドロキシ−3,5−ジメチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、6−(4−ヒドロキシ−3−メチル−5−t−ブチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、または2−オクチルチオ−4,6−ビス−(3,5−ジ−t−ブチル−4−オキシアニリノ)−1,3,5−トリアジンなどが挙げられる。なお、本明細書において、トリアジン系化合物は、紫外線吸収剤に該当するものとし、酸化防止剤には該当しないものとして取り扱う。
【0095】
上記ベンゾフェノン系化合物としては、例えば、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2−カルボキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノンなどが挙げられる。
【0096】
上記マロン酸エステル化合物としては、例えば、2−(p−メトキシベンジリデン)マロン酸ジメチル、テトラエチル−2,2−(1,4−フェニレンジメチリデン)ビスマロネート、2−(p−メトキシベンジリデン)−ビス(1,2,2,6,6−ペンタメチル4−ピペリジニル)マロネートなどが挙げられる。
【0097】
上記マロン酸エステル化合物の市販品としては、例えば、Hostavin B−CAP、Hostavin PR−25、Hostavin PR−31(いずれもクラリアント社製)が挙げられる。
【0098】
上記シュウ酸アニリド化合物としては、例えば、N−(2−エチルフェニル)−N’−(2−エトキシ−5−t−ブチルフェニル)シュウ酸ジアミド、N−(2−エチルフェニル)−N’−(2−エトキシ−フェニル)シュウ酸ジアミド、2−エチル−2’−エトキシ−オキシアニリド(クラリアント社製「SanduvorVSU」)などの窒素原子上に置換されたアリール基などを有するシュウ酸ジアミド類などが挙げられる。
【0099】
A層に紫外線吸収剤が含まれる場合には、A層における紫外線吸収剤の面密度(g/m2)は、0.1以上であることが好ましく、0.2以上であることがより好ましく、0.5以上であることがさらに好ましい。A層における紫外線吸収剤の面密度(g/m2)が0.1以上であると、合わせガラスとした場合に、ヘイズが向上したり、耐候性が維持されたり、色差変化が抑制されたりする傾向にある。
【0100】
A層に紫外線吸収剤が含まれる場合には、A層における紫外線吸収剤の面密度(g/m2)は、10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。A層における紫外線吸収剤の面密度(g/m2)が10を超えると、合わせガラスとした場合に、可視光線透過率が低下したり、ヘイズが悪化したり、耐候性が低下したり、色差変化が増大したりする傾向にある。
【0101】
紫外線吸収剤の添加量は、A層に含有される熱可塑性エラストマーに対して質量基準で10ppm以上であることが好ましく、100ppm以上であることがより好ましい。添加量が10ppmより少ないと充分な効果が発揮されにくくなることがある。なお、紫外線吸収剤は2種以上組み合わせて用いることもできる。
【0102】
紫外線吸収剤の添加量は、A層に含有される熱可塑性エラストマーに対して質量基準で50,000ppm以下であることが好ましく、10,000ppm以下であることがより好ましい。添加量を50,000ppmより多くしても格段の効果は望めない。なお、紫外線吸収剤は2種以上組み合わせて用いることもできる。
【0103】
酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤が特に好ましい。
【0104】
フェノール系酸化防止剤の例としては、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2,4−ジ−t−アミル−6−(1−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)エチル)フェニルアクリレートなどのアクリレート系化合物、2,6−ジ−t−ブチル−4−メチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、オクタデシル−3−(3,5−)ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、4,4’−ブチリデン−ビス(4−メチル−6−t−ブチルフェノール)、4,4’−ブチリデン−ビス(6−t−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、ビス(3−シクロヘキシル−2−ヒドロキシ−5−メチルフェニル)メタン、3,9−ビス(2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス(メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート)メタン、またはトリエチレングリコールビス(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物などが挙げられる。
【0105】
リン系酸化防止剤としては、例えば、トリス(2,4−ジ−t−ブチルフェニル)ホスフェイト、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2−t−ブチル−4−メチルフェニル)ホスファイト、トリス(シクロヘキシルフェニル)ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、または10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレンなどのモノホスファイト系化合物、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシルホスファイト)、4,4’−イソプロピリデン−ビス(フェニル−ジ−アルキル(C12以上、C15以下)ホスファイト)4,4’−イソプロピリデン−ビス(ジフェニルモノアルキル(C12以上、C15以下)ホスファイト)、1,1,3−トリス(2−メチル−4−ジ−トリデシルホスファイト−5−t−ブチルフェニル)ブタン、またはテトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンホスファイトなどのジホスファイト系化合物などが挙げられる。これらの中でもモノホスファイト系化合物が好ましい。
【0106】
硫黄系酸化防止剤としては、例えば、ジラウリル3,3’−チオジプロピオネート、ジステアリル3,3−チオジプロピオネート、ラウリルステアリル3,3’−チオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオプロピオネート)、3,9−ビス(2−ドデシルチオエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンなどが挙げられる。
【0107】
酸化防止剤は単独で、あるいは2種以上を組み合わせて用いることができる。A層における酸化防止剤の面密度は、0.1g/m2以上であることが好ましく、0.2以上であることがより好ましく、0.5以上であることがさらに好ましい。A層における酸化防止剤の面密度が0.1g/m2未満であると、A層が酸化されやすくなって、合わせガラスを長期間使用した場合に、色差変化が大きくなるなど、耐候性が低下する傾向にある。
【0108】
A層における酸化防止剤の面密度は、2.5g/m2以下であることが好ましく、1.5以下であることがより好ましく、2.0以下であることがさらに好ましい。A層における酸化防止剤の面密度が2.5g/m2を超えると、A層の色調が損なわれたり、合わせガラスのヘイズが低下したりする傾向にある。
【0109】
酸化防止剤の配合量は、熱可塑性エラストマー100質量部に対して0.001質量部以上であることが好ましく、0.01質量部以上であることがより好ましい。酸化防止剤の量が0.001質量部より少ないと充分な効果が発揮されにくくなることがある。
【0110】
酸化防止剤の配合量は、熱可塑性エラストマー100質量部に対して5質量部以下であることが好ましく、4質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。酸化防止剤の量を5質量部より多くしても格段の効果は望めない。
【0111】
光安定剤としてはヒンダードアミン系のもの、例えば、株式会社ADEKA製「アデカスタブLA−57(商品名)」や、チバ・スペシャルティ・ケミカルズ株式会社製「Tinuvin−622SF(商品名)」などが挙げられる。光安定剤の配合量は、A層に含有される熱可塑性エラストマー100質量部に対して0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましい。光安定剤の量が0.01質量部より少ないと充分な効果が発揮されにくくなることがある。また、光安定剤の含有量は10質量部以下が好ましく、5質量部以下がより好ましい。光安定剤の量を10質量部より多くしても格段の効果は望めない。A層において光安定剤の面密度は、0.05g/m2以上であることが好ましく、0.5g/m2以上であることがより好ましい。また、該面密度は、70g/m2以下であることが好ましく、30g/m2以下であることがより好ましい。
【0112】
A層とB層との接着力を調整するため、A層またはB層に接着力調整剤を添加しても良い。接着力調整剤としては、カルボキシル基、カルボキシル基の誘導体基、エポキシ基、ボロン酸基、ボロン酸基の誘導体基、アルコキシル基、またはアルコキシル基の誘導体基などの接着性官能基を有するポリオレフィン類が挙げられる。
【0113】
特に、B層にポリビニルアセタール樹脂を用いる場合には、接着性官能基を有するポリオレフィン類をA層に添加し、A層とB層との共押出成形を行うことで、A層とB層との接着力を好適に調整することができる。接着性官能基を有するポリオレフィン類の添加量は、A層の熱可塑性エラストマー100質量部に対して、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。接着性官能基を有するポリオレフィン類の添加量が20質量部を超えると、合わせガラスを作製した際に、ヘイズが悪化することがある。接着性官能基を有するポリオレフィン類としては、上記ポリオレフィン類の中でもカルボキシル基を含有するポリプロピレンが、入手の容易さ、接着性の調整のしやすさ、およびヘイズの調整のしやすさの観点から好適である。
【0114】
A層に熱可塑性エラストマー以外の成分が含まれる場合は、A層を構成する熱可塑性エラストマーを含有する組成物のうち、熱可塑性エラストマー成分は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましく、95質量%以上であることが最も好ましい。A層中の熱可塑性エラストマーが、60質量%未満であると、熱可塑性エラストマーとしての特性が発揮されにくくなったり、光学特性が損なわれたりする傾向にある。
【0115】
本発明において熱可塑性エラストマーは、合わせガラス用中間膜中に5質量%以上含まれることが好ましく、10質量%以上含まれることがより好ましく、13質量%以上含まれることがさらに好ましい。合わせガラス用中間膜中の熱可塑性エラストマーが、5質量%未満であると、遮音性が低下する傾向にある。
【0116】
合わせガラス用中間膜の動的粘弾性は、ASTM D4065−06で定義され、例えば、機械的分光計(メトラー・トレド株式会社製DMA/SDTA861eモデルなど)によって測定できる。測定は、最大振幅0.1%のせん断歪みで、周波数1000Hzの固定正弦波のせん断振動にて実施できる。圧縮成形で得られたポリマーシートから切り出されたテストサンプルは、厚さ1mm(かつ直径3〜10mm:サンプルの状態に合わせて決定される)の円柱状の形状を有するものを用いることができる。測定は、昇温速度1℃/分で−20〜60℃の範囲で行うことができる。せん断貯蔵弾性率(G’)およびせん断損失弾性率(G”)は測定から直接求めることができる。ポリマーの制振性の指標となる(tanδ)は、上記G’およびG”によりASTM D4092−07の定義から求めることができる。特に、1000〜5000Hzの周波数領域は、人間の聴力感度が鋭敏であることから、20℃、1000Hzにおけるtanδをポリマーの遮音性を判断するための指標として用いることができる。高いtanδ値を有する合わせガラス用中間膜が、高い遮音性および高い制振性の観点から好ましい。上記測定手法に基づいて得られる、A層のtanδ11の測定結果の一例を図2に示す。
【0117】
[せん断貯蔵弾性率]
せん断貯蔵弾性率は、例えば、JIS K 7244−10による複素せん断粘度試験に基づいて測定できる。せん断貯蔵弾性率は物体に対する外力とひずみにより生じたエネルギーのうち、物体の内部に保存される成分の指標であり、ひずみ制御型動的粘弾性装置における測定温度等速昇温のもと動的弾性率と温度の関係から求められる。
【0118】
せん断貯蔵弾性率の測定条件は適宜、設定することができるが、例えば、周波数1Hzおよび温度−40℃以上、100℃以下という設定により測定することができる。JIS K 7244−10における試験方式には、応力制御方式とひずみ制御方式がある。
【0119】
JIS K 7244−10における試験装置には、平行平板振動レオメータを用いることができる。平行平板振動レオメータは、2枚の同軸で剛直な平行円板で構成される。試験シートを円板の間に置き、円板の一方を固定し、他方を一定周波数で振動させることにより、せん断損失弾性率やせん断貯蔵弾性率などの動的粘弾性特性を測定できる。
【0120】
円板の直径は一般に20mm以上、50mm以下であり、試験シートの厚さは、円板間の距離として定義される。測定誤差を最小にするためには、3g以上、5g以下程度の試験シートを用い、試験シートの厚さが0.5mm以上、3mm以下の範囲になることが望ましい。また、円板の直径と試験シートの厚さとの比が10以上、50以下の範囲にあることが望ましい。試験シートは、射出成形、圧縮成形、またはシートからの切り出しによって円板形状にする。それ以外に、円板の間にペレット、液体または溶融高分子を充填してもよい。また、試験シートで2枚の平板間の隙間を完全に充填させる。
【0121】
ひずみ制御方式では、一定角周波数の正弦波変位を印加し、その結果発生する正弦波トルクとトルク−角度変位間の位相差を測定する。トルク測定装置は、一方の平板に接続し、試験シートを変形させるのに必要なトルクを測定する。角度変位測定装置は、可動側の平板に接続して、角度変位および周波数を測定する。試験シートに一定周波数で正弦波のトルクまたは角度変位のいずれかを与え、測定したトルク、変位および試験シート寸法から、せん断損失弾性率およびせん断貯蔵弾性率を決定する。
【0122】
また、試験装置を試験温度まで加熱して、熱平衡状態にさせる必要がある。試験温度は、温度計を固定側の円板に接触させるか、または埋め込んで測定することが望ましい。加熱は、強制対流、高周波加熱または適切な方法によって行う。せん断損失弾性率およびせん断貯蔵弾性率の測定値に変化がなくなるまで、試験シートと円板とを試験温度で熱平衡状態に達するまで十分に保持する。平衡時間は15分以上、30分以下であることが望ましい。
【0123】
熱可塑性エラストマーを含有するA層のtanδは、ASTM D4065−06に準じて周波数1000Hzの条件で動的粘弾性試験を行うことで測定することができる。A層においてtanδ(周波数1000Hz)が最大となるピーク温度は、−10℃以上であることが好ましく、−5℃以上であることがより好ましく、0℃以上であることがさらに好ましい。A層においてtanδ(周波数1000Hz)が最大となるピークが−10℃以上であると、合わせガラスとして使用される温度領域、特に低温領域において遮音性が発揮されやすくなる傾向にある。
【0124】
A層においてtanδ(周波数1000Hz)が最大となるピーク温度は、30℃以下であることが好ましく、29℃以下であることがより好ましく、28℃以下であることがさらに好ましい。A層においてtanδ(周波数1000Hz)が最大となるピークが30℃を以下であると、合わせガラスとして使用される温度領域、特に高温領域において遮音性が発揮されやすくなる傾向にある。
【0125】
遮音性をより一層向上させる観点からは、A層に用いる熱可塑性エラストマーのガラス転移温度は10℃以下であることが好ましく、−5℃以下であることがより好ましい。上記熱可塑性エラストマーのガラス転移温度の下限は特に限定されないが、熱可塑性エラストマーのガラス転移温度は、−50℃以上であることが好ましく、−40℃以上であることが好ましい。ガラス転移温度の測定方法には、示差走査熱量測定(DSC)を用いてもよい。
【0126】
本発明の合わせガラス用中間膜におけるA層では、ASTM D4065−06に準じて周波数1000Hzの条件で動的粘弾性試験を行うことで測定される最大となるtanδのピークの高さが、1.3以上であることが好ましく、1.5以上であることがより好ましく、1.6以上であることがさらに好ましく、1.7以上が特に好ましい。上記条件下のtanδ(周波数1000Hz)のピークの高さが1.3のピークの高さが1.3以上であると、得られる合わせガラス用中間膜の遮音性が高くなる傾向にあり、特に薄い合わせガラスにおいて遮音性が発揮される。
【0127】
[B層]
本発明の合わせガラス用中間膜を構成する合わせガラス用中間膜は、A層の少なくとも片面に熱可塑性樹脂を含むB層を有することが好ましい。熱可塑性樹脂とは、加熱すると軟化して可塑性を示し、冷却すると固化する高分子化合物を意味しており、熱可塑性エラストマーとは区別される。B層が熱可塑性樹脂を含有することにより、合わせガラス用中間膜の耐候性や強度が向上したり、合わせガラスの曲げ強度や耐貫通性が向上したりする傾向にある。
【0128】
熱可塑性樹脂の種類は、特に限定されないが、例えば、ポリビニルアセタール、アイオノマー、エチレン・酢酸ビニル共重合体、塩化ビニル樹脂、ウレタン樹脂、またはポリアミド樹脂などが挙げられる。
【0129】
合わせガラス用中間膜の耐候性や強度を向上させたり、合わせガラスの曲げ強度や耐貫通性を向上させたりする観点からは、外層に用いる熱可塑性樹脂は、ポリビニルアセタール樹脂またはアイオノマーであることが特に好ましい。
【0130】
B層は、ASTM D4065−06に基づいて周波数1000Hzの条件で動的粘弾性試験を行うことで測定されるtanδが最大となるピーク温度が30℃以上であることが好ましく、35℃以上であることがより好ましく、40℃以上であることがさらに好ましい。tanδが最大となるピーク温度が30℃未満であると、合わせガラスとして使用される温度領域において耐貫通性や耐衝撃性が発揮されにくくなる傾向にある。
【0131】
本発明の合わせガラス用中間膜を構成する合わせガラス用中間膜のB層は、上記条件を満たすものであれば、特に限定されないが、例えば、合わせガラス用中間膜として実用化したときに、破損時のガラス飛散性が低い安全ガラスを作製できる等の観点から、ポリビニルアセタール樹脂を含有する組成物からなるポリビニルアセタール層とすることが好ましい。
【0132】
B層に用いる熱可塑性樹脂としては、上述の通り、ポリビニルアセタール樹脂の代わりに、エチレン・酢酸ビニル共重合体、アイオノマーなどを用いることもできる。
【0133】
アイオノマーは、エチレン由来の構成単位、およびα、β−不飽和カルボン酸に由来の構成単位を有し、α、β−不飽和カルボン酸の少なくとも一部が金属イオンによって中和された樹脂であれば、特に限定されない。金属イオンとしては、例えば、ナトリウムイオンなどが挙げられる。ベースポリマーとなるエチレン・α,β−不飽和カルボン酸共重合体において、α,β−不飽和カルボン酸の構成単位の含有割合は、2質量%以上が好ましく、5質量%以上がより好ましい。また、α,β−不飽和カルボン酸の構成単位の含有割合は、30質量%以下が好ましく、20質量%以下がより好ましい。本発明においては、入手のしやすさの点から、エチレン・アクリル酸共重合体のアイオノマー、およびエチレン・メタクリル酸共重合体のアイオノマーが好ましい。エチレン系アイオノマーの例としては、エチレン・アクリル酸共重合体のナトリウムアイオノマー、エチレン・メタクリル酸共重合体のナトリウムアイオノマーを、特に好ましい例として挙げることができる。
【0134】
アイオノマーを構成するα、β−不飽和カルボン酸としては、例えばアクリル酸、メタクリル酸、マレイン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸などが挙げられるが、アクリル酸またはメタクリル酸が特に好ましい。
【0135】
ポリビニルアセタール樹脂等の熱可塑性樹脂を含有する組成物をB層として用いる場合には、B層がポリビニルアセタール樹脂等の熱可塑性樹脂を40質量%以上含むことが好ましく、50質量%以上含むことがより好ましく、60質量%以上含むことがさらに好ましく、80質量%以上含むことが特に好ましく、90質量%以上含むことがより一層好ましく、ポリビニルアセタール樹脂等の熱可塑性樹脂のみからB層が構成されていても良い。ポリビニルアセタール樹脂のB層中の含有率が40質量%より少なくなると、所望のせん断貯蔵弾性率を得ることが困難となる傾向にある。
【0136】
ポリビニルアセタール樹脂としては平均アセタール化度40モル%以上のものが好ましい。ポリビニルアセタール樹脂の平均アセタール化度が40モル%未満であると可塑剤などの溶剤との相溶性が好ましくない。ポリビニルアセタール樹脂の平均アセタール化度は、より好ましくは60モル%以上であり、耐水性の観点から、さらに好ましくは65モル%以上である。
【0137】
ポリビニルアセタール樹脂としては平均アセタール化度90モル%以下のものが好ましい。ポリビニルアセタール樹脂の平均アセタール化度が90モル%を超えると、ポリビニルアセタール樹脂を得るための反応に長時間を要し、プロセス上好ましくないことがある。ポリビニルアセタール樹脂の平均アセタール化度は、より好ましくは85モル%以下であり、耐水性の観点から、さらに好ましくは80モル%以下である。
【0138】
ポリビニルアセタール樹脂はポリビニルアセタール樹脂中のビニルアセテート単位の含有量が30モル%以下のものが好ましい。ビニルアセテート単位の含有量が30モル%を超えると樹脂の製造時にブロッキングを起こしやすくなるため、製造しにくくなる。ポリビニルアセタール樹脂中のビニルアセテート単位の含有量は、好ましくは20モル%以下である。
【0139】
ポリビニルアセタール樹脂は、通常、ビニルアセタール単位、ビニルアルコール単位およびビニルアセテート単位から構成されており、これらの各単位量は、例えば、JIS K 6728 「ポリビニルブチラール試験方法」や核磁気共鳴法(NMR)によって測定することができる。
【0140】
ポリビニルアセタール樹脂が、ビニルアセタール単位以外の単位を含む場合は、ビニルアルコールの単位量とビニルアセテートの単位量を測定し、これらの両単位量をビニルアセタール単位以外の単位を含まない場合のビニルアセタール単位量から差し引くことで、残りのビニルアセタール単位量を算出することができる。
【0141】
上記ポリビニルアセタール樹脂は、従来公知の方法により製造することができ、代表的には、ポリビニルアルコールにアルデヒド類を用いてアセタール化することにより製造することができる。具体的には、ポリビニルアルコールを温水に溶解し、得られた水溶液を所定の温度、例えば、0℃以上、90℃以下、好ましくは10℃以上、20℃以下に保持しておいて、所要の酸触媒およびアルデヒド類を加え、撹拌しながらアセタール化反応を進行させ、次いで、反応温度を70℃に上げて熟成して、反応を完結させ、その後、中和、水洗および乾燥を行って、ポリビニルアセタール樹脂の粉末を得る方法等が挙げられる。
【0142】
ポリビニルアセタール樹脂の原料となるポリビニルアルコールの粘度平均重合度は、100以上であることが好ましく、300以上であることがより好ましく、400以上であることがより好ましく、600以上であることがさらに好ましく、700以上であること特に好ましく、750以上であることが最も好ましい。ポリビニルアルコールの粘度平均重合度が低すぎると、耐貫通性、耐熱クリープ性、特に85℃、85%RHのような高温高湿条件下での耐熱クリープ性が低下することがある。また、ポリビニルアルコールの粘度平均重合度は、5000以下であることが好ましく、3000以下であることがより好ましく、2500以下であることがさらに好ましく、2300以下であることが特に好ましく、2000以下であることが最も好ましい。ポリビニルアルコールの粘度平均重合度が5000を超えると樹脂膜の成形が難しくなることがある。
【0143】
なお、ポリビニルアセタール樹脂の粘度平均重合度は、原料となるポリビニルアルコールの粘度平均重合度と一致するため、上記したポリビニルアルコールの好ましい粘度平均重合度はポリビニルアセタール樹脂の好ましい粘度平均重合度と一致する。
【0144】
得られるポリビニルアセタール樹脂のビニルアセテート単位は30モル%以下に設定することが好ましいため、ケン化度が70モル%以上のポリビニルアルコールを使用することが好ましい。ポリビニルアルコールのケン化度が70モル%未満となると、樹脂の透明性や耐熱性が低下することがあり、またアルデヒド類との反応性も低下することがある。ケン化度は、より好ましくは95モル%以上のものである。
【0145】
ポリビニルアルコールの粘度平均重合度およびケン化度は、例えば、JIS K 6726「ポリビニルアルコール試験方法」に基づいて測定することができる。
【0146】
ポリビニルアルコールのアセタール化に用いるアルデヒド類としては、炭素数1以上、12以下のアルデヒドが好ましい。アルデヒドの炭素数が12を超えるとアセタール化の反応性が低下し、しかも反応中に樹脂のブロックが発生しやすくなり、樹脂の合成に困難を伴い易くなる。
【0147】
アルデヒド類としては特に限定されず、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、n−ヘキシルアルデヒド、2−エチルブチルアルデヒド、n−ヘプチルアルデヒド、n−オクチルアルデヒド、n−ノニルアルデヒド、n−デシルアルデヒド、ベンズアルデヒド、シンナムアルデヒド等の脂肪族、芳香族、脂環式アルデヒドが挙げられる。これらのうちでも炭素数2以上、6以下の脂肪族アルデヒドが好ましく、中でもブチルアルデヒドが特に好ましい。また、上記アルデヒド類は単独で用いてもよいし、2種以上を併用してもよい。更に、多官能アルデヒド類やその他の官能基を有するアルデヒド類などを全アルデヒド類の20質量%以下の範囲で少量併用してもよい。
【0148】
B層には、ポリビニルアセタール樹脂等の熱可塑性樹脂以外の成分として、さらに遮熱材料、紫外線吸収剤、可塑剤、酸化防止剤、光安定剤、接着力調整剤および/または接着性を調整するための各種添加剤、ブロッキング防止剤、顔料、染料等が必要に応じて添加されていてもよい。
【0149】
遮熱材料(例えば、赤外線吸収能を有する、無機遮熱性微粒子または有機遮熱性材料)はB層に含有させてもよい。遮熱材料としては、A層に含有させることのできるものと、同様のものを用いることができる。
【0150】
B層に遮熱材料を含有させた場合、遮熱材料の赤外線吸収能は、赤外線がB層を通過するときの光路長(m)およびB層中の遮熱材料の濃度(g/m3)に比例する。したがって、遮熱材料の赤外線吸収能は、B層における遮熱材料の面密度(g/m2)に比例する。
【0151】
B層において遮熱材料として金属ドープ酸化タングステン(セシウムドープ酸化タングステン)を用いた場合、遮熱材料の面密度(g/m2)は、0.10以上であることが好ましく、0.15以上であることがより好ましく、0.20以上であることがさらに好ましい。B層における遮熱材料の面密度(g/m2)が0.10未満であると、十分な遮熱効果が得られにくくなる傾向にある。B層において遮熱材料として金属ドープ酸化タングステン(セシウムドープ酸化タングステン)を用いた場合、遮熱材料の面密度(g/m2)は、1.00以下であることが好ましく、0.70以下であることがより好ましく、0.50以下であることがさらに好ましい。B層における遮熱材料の面密度(g/m2)が1.00を超えると、合わせガラスとした場合に、可視光線透過率が低下したり、ヘイズが悪化したり、耐候性が低下したり、色差変化が増大したりする傾向にある。
【0152】
B層において遮熱材料として錫ドープ酸化インジウムを用いた場合、遮熱材料の面密度(g/m2)は、0.5以上であることが好ましく、1.0以上であることがより好ましく、1.50以上であることがさらに好ましく、2.25以上であることが特に好ましい。B層において遮熱材料として錫ドープ酸化インジウムを用いた場合における、遮熱材料の面密度(g/m2)は、15.00以下であることが好ましく、10.50以下であることがより好ましく、7.50以下であることがさらに好ましい。
【0153】
B層において遮熱材料としてアンチモンドープ酸化錫を用いた場合、遮熱材料の面密度(g/m2)は、1.00以上であることが好ましく、1.50以上であることがより好ましく、2.00以上であることがさらに好ましい。B層において遮熱材料としてアンチモンドープ酸化錫を用いた場合における、遮熱材料の面密度(g/m2)は、10.00以下であることが好ましく、7.00以下であることがより好ましく、5.00以下であることがさらに好ましい。
【0154】
B層において遮熱材料としてフタロシアニン化合物を用いた場合、遮熱材料の面密度(g/m2)は、0.010以上であることが好ましく、0.015以上であることがより好ましく、0.020以上であることがさらに好ましい。B層において遮熱材料としてフタロシアニン化合物を用いた場合における、遮熱材料の面密度(g/m2)は、0.100以下であることが好ましく、0.070以下であることがより好ましく、0.050以下であることがさらに好ましい。
【0155】
B層において遮熱材料としてアルミニウムドープ酸化亜鉛を用いた場合、遮熱材料の面密度(g/m2)は、1.00以上であることが好ましく、1.50以上であることがより好ましく、2.00以上であることがさらに好ましい。B層において遮熱材料としてアルミニウムドープ酸化亜鉛を用いた場合における、遮熱材料の面密度(g/m2)は、10.00以下であることが好ましく、7.00以下であることがより好ましく、5.00以下であることがさらに好ましい。
【0156】
B層において遮熱材料としてアンチモン酸亜鉛を用いた場合、遮熱材料の面密度(g/m2)は、1.00以上であることが好ましく、1.50以上であることがより好ましく、2.00以上であることがさらに好ましい。B層において遮熱材料としてアンチモン酸亜鉛を用いた場合における、遮熱材料の面密度(g/m2)は、10.00以下であることが好ましく、7.00以下であることがより好ましく、5.00以下であることがさらに好ましい。
【0157】
B層において遮熱材料として六ホウ化ランタンを用いた場合、遮熱材料の面密度(g/m2)は、0.02以上であることが好ましく、0.03以上であることがより好ましく、0.04以上であることがさらに好ましい。B層において遮熱材料として六ホウ化ランタンを用いた場合における、遮熱材料の面密度(g/m2)は、0.20以下であることが好ましく、0.14以下であることがより好ましく、0.10以下であることがさらに好ましい。
【0158】
本発明の合わせガラス用中間膜は、B層に遮熱材料を含有し、少なくともB層に紫外線吸収剤を少なくとも1種含有するものであることが好ましい。合わせガラス用中間膜を上記構成とすることで、例えば、A層を内層とし、B層を外層とした場合に、A層の熱可塑性エラストマーが紫外線から保護されるとともに、合わせガラス用中間膜の遮熱性を高めることができる。
【0159】
本発明の合わせガラス用中間膜を、B層を外層として、B層/A層/B層という3層構成とする場合は、B層に遮熱材料を含有させる態様とすることにより、B層2層分の光路長を赤外線が通過することになるため、合わせガラスの可視光線透過率やヘイズを損なわずに遮熱性を高めることができる。
【0160】
本発明の合わせガラス用中間膜においては、さらに、少なくともB層に紫外線吸収剤が含有されることが好ましい。紫外線吸収剤が少なくともB層に含有されることにより、A層を内層とした場合に、A層を紫外線から保護することができる。そのため、合わせガラスとした場合に、ヘイズの悪化や耐候性の低下を防止したり、色差変化を抑えたりすることができるようになる。
【0161】
B層に用いることができる紫外線吸収剤は、A層に含有されていてもよい紫外線吸収剤と同様のものを挙げることができる。
【0162】
B層における紫外線吸収剤の面密度(g/m2)は、0.1以上であることが好ましく、0.2以上であることがより好ましく、0.5以上であることがさらに好ましい。B層における紫外線吸収剤の面密度(g/m2)が0.1以上であると、合わせガラスとした場合に、ヘイズが劣ることなく、耐候性が向上したり、色差変化が抑制されたりする傾向にある。
【0163】
B層における紫外線吸収剤の面密度(g/m2)は、10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。B層における紫外線吸収剤の面密度(g/m2)が10を超えると、合わせガラスとした場合に、可視光線透過率が低下したり、ヘイズが悪化したり、耐候性が低下したり、色差変化が増大したりする傾向にある。
【0164】
紫外線吸収剤の添加量は、B層に含有される熱可塑性樹脂に対して質量基準で10ppm以上であることが好ましく、100ppm以上であることがより好ましい。添加量が10ppmより少ないと充分な効果が発揮されにくくなることがある。なお、紫外線吸収剤は2種以上組み合わせて用いることもできる。
【0165】
紫外線吸収剤の添加量は、B層に含有される熱可塑性樹脂に対して質量基準で50,000ppm以下であることが好ましく、10,000ppm以下であることがより好ましい。添加量を50,000ppmより多くしても格段の効果は望めない。
【0166】
(可塑剤)
本発明のB層で用いられる可塑剤の種類は、特に限定されず、例えば、一価カルボン酸エステル系、多価カルボン酸エステル系などのカルボン酸エステル系可塑剤;リン酸エステル系可塑剤、有機亜リン酸エステル系可塑剤などのほか、カルボン酸ポリエステル系、炭酸ポリエステル系、また、ポリアルキレングリコール系などの高分子可塑剤や、ひまし油などのヒドロキシカルボン酸と多価アルコールのエステル化合物;ヒドロキシカルボン酸と一価アルコールのエステル化合物などのヒドロキシカルボン酸エステル系可塑剤も使用することができる。
【0167】
一価カルボン酸エステル系可塑剤としては、ブタン酸、イソブタン酸、へキサン酸、2−エチルブタン酸、へプタン酸、オクチル酸、2−エチルヘキサン酸、ラウリル酸などの一価カルボン酸と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコールとの縮合反応により得られる化合物であり、具体的な化合物を例示すると、トリエチレングリコールジ2−ジエチルブタノエート、トリエチレングリコールジヘプタノエート、トリエチレングリコールジ2−エチルヘキサノエート、トリエチレングリコールジオクタノエート、テトラエチレングリコールジ2−エチルブタノエート、テトラエチレングリコールジヘプタノエート、テトラエチレングリコールジ2−エチルヘキサノエート、テトラエチレングリコールジオクタノエート、ジエチレングリコールジ2−エチルヘキサノエート、PEG#400ジ2−エチルヘキサノエート、トリエチレングリコールモノ2−エチルヘキサノエート、グリセリンまたはジグリセリンの2−エチルヘキサン酸との完全または部分エステル化物などが挙げられる。ここでPEG#400とは、平均分子量が350〜450であるポリエチレングリコールを表す。
【0168】
多価カルボン酸エステル系可塑剤としては、アジピン酸、コハク酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、トリメット酸などの多価カルボン酸と、メタノール、エタノール、ブタノール、ヘキサノール、2−エチルブタノール、ヘプタノール、オクタノール、2−エチルヘキサノール、デカノール、ドデカノール、ブトキシエタノール、ブトキシエトキシエタノール、ベンジルアルコールなどの炭素数1〜12のアルコールとの縮合反応により得られる化合物が挙げられる。具体的な化合物を例示すると、アジピン酸ジヘキシル、アジピン酸ジ−2−エチルブチル、アジピン酸ジヘプチル、アジピン酸ジオクチル、アジピン酸ジ2−エチルヘキシル、アジピン酸ジ(ブトキシエチル)、アジピン酸ジ(ブトキシエトキシエチル)、アジピン酸モノ(2−エチルヘキシル)、セバシン酸ジブチル、セバシン酸ジヘキシル、セバシン酸ジ2−エチルブチル、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジ(2−エチルブチル)、フタル酸ジオクチル、フタル酸ジ(2−エチルヘキシル)、フタル酸ベンジルブチル、フタル酸ジドデシルなどが挙げられる。
【0169】
リン酸系可塑剤、また、亜リン酸系可塑剤としては、リン酸または亜リン酸とメタノール、エタノール、ブタノール、ヘキサノール、2−エチルブタノール、ヘプタノール、オクタノール、2−エチルヘキサノール、デカノール、ドデカノール、ブトキシエタノール、ブトキシエトキシエタノール、ベンジルアルコールなどの炭素数1〜12のアルコールとの縮合反応により得られる化合物が挙げられる。具体的な化合物を例示すると、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(2−エチルヘキシル)、リン酸トリ(ブトキシエチル)、亜リン酸トリ(2−エチルヘキシル)などが挙げられる。
【0170】
カルボン酸ポリエステル系可塑剤としては、シュウ酸、マロン酸、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの多価カルボン酸と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、1,2−ペンタンジオール、1,5−ペンタンジオール、2,4−ペンタンジオール、1,2−ヘキサンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、3−メチル−2,4−ペンタンジオール、1,2−ヘプタンジオール、1,7−ヘプタンジオール、1,2−オクタンジオール、1,8−オクタンジオール、1,2−ノナンジオール、1,9−ノナンジオール、2−メチル−1,8−オクタンジオール、1,2−デカンジオール、1,10−デカンジオール、1,2−ドデカンジオール、1,12−ドデカンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−ビス(ヒドロキシメチル)シクロヘキサン、1,3−ビス(ヒドロキシメチル)シクロヘキサン、1,4−ビス(ヒドロキシメチル)シクロヘキサンなどの多価アルコールを交互共重合して得られるカルボン酸ポリエステルや、脂肪族ヒドロキシカルボン酸;グリコール酸、乳酸、2−ヒドロキシ酪酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、6−ヒドロキシへキサン酸、8−ヒドロキシへキサン酸、10−ヒドロキシデカン酸、12−ヒドロキシドデカン酸、芳香環を有するヒドロキシカルボン酸;4−ヒドロキシ安息香酸、4−(2−ヒドロキシエチル)安息香酸などのヒドロキシカルボン酸の重合体(ヒドロキシカルボン酸ポリエステル)、脂肪族ラクトン化合物;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、δ−ヘキサノラクトン、ε−カプロラクトン、ラクチドなど、芳香環を有するラクトン化合物;フタリドなどのラクトン化合物を開環重合して得られるカルボン酸ポリエステルでも良い。これらカルボン酸ポリエステルの末端構造は特に限定されず、水酸基やカルボキシル基でも良いし、また、末端水酸基や末端カルボキシル基を1価カルボン酸あるいは1価アルコールと反応させてエステル結合としたものでも良い。
【0171】
炭酸ポリエステル系可塑剤としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、1,2−ペンタンジオール、1,5−ペンタンジオール、2,4−ペンタンジオール、1,2−ヘキサンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、3−メチル2,4−ペンタンジオール、1,2−ヘプタンジオール、1,7−ヘプタンジオール、1,2−オクタンジオール、1,8−オクタンジオール、1,2−ノナンジオール、1,9−ノナンジオール、2−メチル−1,8−オクタンジオール、1,2−デカンジオール、1,10−デカンジオール、1,2−ドデカンジオール、1,12−ドデカンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−ビス(ヒドロキシメチル)シクロヘキサン、1,3−ビス(ヒドロキシメチル)シクロヘキサン、1,4−ビス(ヒドロキシメチル)シクロヘキサンなどの多価アルコールと、炭酸ジメチル、炭酸ジエチルなどの炭酸エステルをエステル交換反応により交互共重合して得られる炭酸ポリエステルが挙げられる。これら炭酸ポリエステル化合物の末端構造は特に限定されないが、炭酸エステル基、または水酸基などであるとよい。
【0172】
ポリアルキレングリコール系可塑剤としては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、オキセタンなどのアルキレンオキシドを、一価アルコール、多価アルコール、一価カルボン酸および多価カルボン酸を開始剤として開環重合させて得られる重合体が挙げられる。
【0173】
ヒドロキシカルボン酸エステル系可塑剤としては、ヒドロキシカルボン酸の1価アルコールエステル;リシノール酸メチル、リシノール酸エチル、リシノール酸ブチル、6−ヒドロキシヘキサン酸メチル、6−ヒドロキシヘキサン酸エチル、6−ヒドロキシヘキサン酸ブチル、ヒドロキシカルボン酸の多価アルコールエステル;エチレングリコールジ(6−ヒドロキシヘキサン酸)エステル、ジエチレングリコールジ(6−ヒドロキシヘキサン酸)エステル、トリエチレングリコールジ(6−ヒドロキシヘキサン酸)エステル、3−メチル−1,5−ペンタンジオールジ(6−ヒドロキシヘキサン酸)エステル、3−メチル−1,5−ペンタンジオールジ(2−ヒドロキシ酪酸)エステル、3−メチル−1,5−ペンタンジオールジ(3−ヒドロキシ酪酸)エステル、3−メチル−1,5−ペンタンジオールジ(4−ヒドロキシ酪酸)エステル、トリエチレングリコールジ(2−ヒドロキシ酪酸)エステル、グリセリントリ(リシノール酸)エステル、L−酒石酸ジ(1−(2−エチルヘキシル))、ひまし油の他、ヒドロキシカルボン酸の多価アルコールエステルのk個のヒドロキシカルボン酸由来の基を、水酸基を含まないカルボン酸由来の基または水素原子に置き換えた化合物も使用可能であり、これらヒドロキシカルボン酸エステルは従来公知の方法で得られるものを使用することができる。
【0174】
本発明において、これら可塑剤は単独で使用してもよいし、2種以上を併用してもよい。
【0175】
可塑剤がB層に含有される場合、可塑剤のB層に用いられる樹脂(特にポリビニルアセタール樹脂)との相溶性、他の層への低移行性、非移行性を高める観点からは、融点が30℃以下であり、水酸基価が15mgKOH/g以上、450mgKOH/g以下であるエステル系可塑剤又はエーテル系可塑剤、または、非結晶性であり、水酸基価が15mgKOH/g以上、450mgKOH/g以下であるエステル系可塑剤又はエーテル系可塑剤を使用することが好ましい。ここで非結晶性とは、−20℃以上の温度において融点が観測されないことを指す。前記水酸基価は、15mgKOH/g以上であることが好ましく、30mgKOH/g以上であることがより好ましく、45mgKOH/g以上であることが最適である。また、前記水酸基価が450mgKOH/g以下であることが好ましく、360mgKOH/g以下であることがより好ましく、280mgKOH/g以下であることが最適である。前記エステル系可塑剤としては、上記規定を満たすポリエステル(前述したカルボン酸ポリエステル系可塑剤、炭酸ポリエステル系可塑剤など)や、ヒドロキシカルボン酸エステル化合物(前述したヒドロキシカルボン酸エステル系可塑剤など)が挙げられ、エーテル系可塑剤としては、前記規定を満たすポリエーテル化合物(前述したポリアルキレングリコール系可塑剤など)が挙げられる。
【0176】
可塑剤の含有量は、ポリビニルアセタール樹脂あるいはエチレン・酢酸ビニル共重合体若しくはアイオノマー等の熱可塑性樹脂100質量部に対して、50質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下がさらに好ましく、10質量部以下が特に好ましく、6質量部以下がとりわけ好ましく、0質量部(すなわち、可塑剤を含まない)が最も好ましい。可塑剤の含有量が50質量部を超えると、ガラスとの接着性が低下することがある。また、2種以上の可塑剤を併用してもよい。
【0177】
可塑剤としては、水酸基を有する化合物を用いることができるが、B層中に用いられる可塑剤の全量に対する水酸基を有する化合物の含有量の割合は、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。B層中に用いられる可塑剤の全量に対する水酸基を有する化合物の含有量の割合は、100質量%以下であることが好ましく、99質量%以下であることがより好ましく、98質量%以下であることがさらに好ましい。水酸基を有する化合物は、ポリビニルアセタール樹脂と高い相溶性を有し、他の樹脂層への移行性が低いため、水酸基を有する化合物を好適に用いることができる。
【0178】
B層に含まれていてもよい酸化防止剤としては、A層に含まれるものと同様のものが用いられる。
【0179】
酸化防止剤は単独で、あるいは2種以上を組み合わせて用いることができる。B層における酸化防止剤の面密度は、0.1g/m2以上であることが好ましく、0.2以上であることがより好ましく、0.5以上であることがさらに好ましい。B層における酸化防止剤の面密度が0.1g/m2未満であると、B層が酸化されやすくなって、合わせガラスを長期間使用した場合に、色差変化が大きくなるなど、耐候性が低下する傾向にある。
【0180】
B層における酸化防止剤の面密度は、2.5g/m2以下であることが好ましく、1.5以下であることがより好ましく、2.0以下であることがさらに好ましい。B層における酸化防止剤の面密度が2.5g/m2を超えると、B層の色調が損なわれたり、合わせガラスのヘイズが低下したりする傾向にある。
【0181】
酸化防止剤の配合量は、ポリビニルアセタール樹脂などの熱可塑性樹脂100質量部に対して0.001質量部以上であることが好ましく、0.01質量部以上であることがより好ましい。酸化防止剤の量が0.001質量部より少ないと充分な効果が発揮されにくくなることがある。
【0182】
酸化防止剤の配合量は、ポリビニルアセタール樹脂などの熱可塑性樹脂100質量部に対して5質量部以下であることが好ましく、4質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。酸化防止剤の量を5質量部より多くしても格段の効果は望めない。
【0183】
B層に含んでいてもよい光安定剤としては、A層に含まれるものと同様のものが用いられる。
【0184】
光安定剤の配合量は、B層に含有されるポリビニルアセタール樹脂などの熱可塑性樹脂100質量部に対して0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましい。光安定剤の量が0.01質量部より少ないと充分な効果が発揮されにくくなることがある。また、光安定剤の含有量はB層に含有される樹脂100質量部に対して10質量部以下が好ましく、5質量部以下がより好ましい。光安定剤の量を10質量部より多くしても格段の効果は望めない。B層において光安定剤の面密度は、0.05g/m2以上であることが好ましく、0.5g/m2以上であることがより好ましい。また、該面密度は、70g/m2以下であることが好ましく、30g/m2以下であることがより好ましい。
【0185】
またB層には、必要に応じて、ガラス等に対する合わせガラス用中間膜の接着性を制御するために、接着力調整剤および/または接着性を調整するための各種添加剤を含有させてもよい。
【0186】
接着性を調整するための各種添加剤としては、国際公開第03/033583号に開示されているものを使用することができ、アルカリ金属塩、アルカリ土類金属塩が好ましく使用され、例えば、カリウム、ナトリウム、マグネシウム等の塩が挙げられる。上記塩としてはオクタン酸、ヘキサン酸、酪酸、酢酸、蟻酸等のカルボン酸等の有機酸;塩酸、硝酸等の無機酸の塩などが挙げられる。
【0187】
接着力調整剤および/または接着性を調整するための各種添加剤の最適な添加量は、使用する添加剤により異なるが、得られる合わせガラス用中間膜のガラスへの接着力が、パンメル試験(Pummeltest;国際公開第03/033583号等に記載)において、一般には3以上、10以下になるように調整することが好ましく、特に高い耐貫通性を必要とする場合は3以上、6以下、高いガラス飛散防止性を必要とする場合は7以上、10以下になるように調整することが好ましい。高いガラス飛散防止性が求められる場合は、接着力調整剤および/または接着性を調整するための各種添加剤を添加しないことも有用な方法である。
【0188】
本発明の合わせガラス用中間膜を用いて合わせガラスとしたときの曲げ強度を向上させる観点からは、B層は、JIS K 7244−10に準じて周波数1Hzで複素せん断粘度試験を行うことで測定される温度25℃におけるせん断貯蔵弾性率が、10.0MPa以上であることが好ましく、20.0MPa以上であることがより好ましく、40.0MPa以上であることがさらに好ましく、60.0MPa以上であることが特に好ましく、80.0MPa以上であることが最も好ましい。せん断貯蔵弾性率が10.0MPa以上のB層は、例えば、ポリビニルアセタール樹脂(あるいはその他の適切な樹脂)100質量部に対して、可塑剤の量を25質量部以下とすることで得ることができる。また、前記25℃におけるせん断貯蔵弾性率の上限は特に限定されないが、合わせガラス用中間膜の成形性、取り扱い性の観点から、900MPa以下であることが好ましい。
【0189】
[合わせガラス用中間膜]
本発明の合わせガラス用中間膜は、熱可塑性エラストマーを含有するA層を少なくとも1層含む合わせガラス用中間膜であって、熱可塑性エラストマーが、ハードセグメントブロックとソフトセグメントブロックを有し、A層が、ハードセグメントブロックを島成分、ソフトセグメントブロックを海成分とする海島相分離構造を有し、該A層の島成分が特定の大きさを有するものである。本発明の合わせガラス用中間膜は、A層の少なくとも片面に熱可塑性樹脂を含むB層を有することが好ましく、少なくとも2つの上記B層の間に、上記A層が積層された合わせガラス用中間膜からなることが好ましい。
【0190】
本発明の合わせガラス用中間膜は、合わせガラスとした場合に遮音性と遮熱性を両立させつつ、色調を向上させる観点からは、クリアガラスの厚さの合計が4mm以下となる2枚のクリアガラスで挟持してなる合わせガラスとした場合に、可視光透過率が70%以上となり、波長800〜1100nmの赤外線平均透過率が70%以下となるものであることが好ましい。上記構成を満たす合わせガラス用中間膜を作製するためには、熱可塑性エラストマーを含有するA層を少なくとも1層含み、前述した遮熱材料を少なくとも1層に含有する合わせガラス用中間膜とすることが好ましい。
【0191】
クリアガラスで合わせガラスとした場合の視認性を確保する観点からは、可視光透過率が70%以上となるものであることが好ましく、72%以上となるものであることがより好ましい。合わせガラスとした場合の可視光透過率が70%未満となるものであると、合わせガラスの視認性が損なわれる傾向にある。
【0192】
同様に、クリアガラスで合わせガラスとした場合の遮熱性をさらに向上させる観点からは、波長800〜1100nmの赤外線平均透過率が70%以下となるものであることが好ましく、69%以下となるものであることがより好ましく、68%以下となるものであることがさらに好ましく、65%以下となるものであることが特に好ましい。合わせガラスとした場合の波長800〜1100nmの赤外線平均透過率が70%を超えるものであると、遮熱性が低下する傾向にある。
【0193】
本発明の合わせガラス用中間膜は、合わせガラスとした場合に遮音性と遮熱性を両立させつつ、色調を向上させる観点から、グリーンガラスの厚さの合計が4.0mm以下となる2枚のグリーンガラスで挟持してなる合わせガラスとした場合に、可視光透過率が70%以上となり、波長800〜1100nmの赤外線平均透過率が32%以下となるものであることが好ましい。上記構成を満たす合わせガラス用中間膜を作製するためには、熱可塑性エラストマーを含有するA層を少なくとも1層含み、前述した遮熱材料を少なくとも1層に含有する合わせガラス用中間膜とすることが好ましい。
【0194】
グリーンガラスで合わせガラスとした場合の視認性を確保する観点からは、可視光透過率が70%以上となるものであることが好ましく、72%以上となるものであることがより好ましい。合わせガラスとした場合の可視光透過率が70%未満となるものであると、合わせガラスの色調が損なわれる傾向にある。
【0195】
同様に、グリーンガラスで合わせガラスとした場合の遮熱性をさらに向上させる観点からは、波長800〜1100nmの赤外線透過率が32%以下となるものであることがより好ましく、31%以下となるものであることがさらに好ましい。合わせガラスとした場合の波長800〜1100nmの赤外線透過率が32%を超えるものであると、遮熱性が低下する傾向にある。
【0196】
本発明の合わせガラス用中間膜は、耐候性を向上させ、色差変化を抑制する観点から、ガラスの厚さの合計が4mm以下となる2枚のガラスで挟持して合わせガラスとし、合せガラスを放射照度180W/m2、ブラックパネル温度60℃、相対湿度50%の条件下で200時間曝露する耐候性試験を行った場合に、耐候性試験の前後において、合わせガラスについてのJIS Z8781−4:2013における色差変化ΔE*abが2.0以下となるものであることが好ましい。上記構成を満たす合わせガラス用中間膜を作製するためには、熱可塑性エラストマーを含有するA層を少なくとも1層含み、前述した遮熱材料を少なくとも1層に含有する合わせガラス用中間膜とすることが好ましい。
【0197】
合わせガラスとした場合の耐候性をさらに向上させ、色差変化をさらに抑制する観点からは、色差変化ΔE*abが1.8以下となるものであることが好ましく、1.5以下となるものであることがさらに好ましい。上記条件下における色差変化ΔE*abが2.0を超えるものは、合わせガラスの長期使用によって黄変しやすくなる傾向にある。
【0198】
本発明の合わせガラス用中間膜は、ガラスの厚さの合計が4mm以下となる2枚のガラスで挟持して合わせガラスを作製した場合に、ヘイズが5以下となるものであることが好ましい。上記構成を満たす合わせガラス用中間膜を作製するためには、熱可塑性エラストマーを含有するA層を少なくとも1層含み、前述した遮熱材料を少なくとも1層に含有する合わせガラス用中間膜とすることが好ましい。
【0199】
より透明度の高い合わせガラスを作製する観点からは、ヘイズが4以下となるものであることがより好ましく、3以下となるものであることがさらに好ましく、ヘイズが2以下となるものであることが特に好ましく、1以下となるものであることがことさら好ましく、0.6以下となるものであることが最も好ましい。合わせガラスとした場合にヘイズが5を超えるものであると、透明度が低下して、自動車等の合わせガラスに適さなくなる傾向にある。
【0200】
本発明の合わせガラス用中間膜は、ガラスの厚さの合計が4mm以下となる2枚のガラスで挟持して合わせガラスを作製した場合に、ASTM E90−09(建築物の間仕切りおよび要素の空気伝達音響透過損失を実験室測定するための標準的試験方法)の条件にて測定した4000Hzにおける音響透過損失が37dB以上となるものであることが好ましい。上記構成を満たす合わせガラス用中間膜を作製するためには、熱可塑性エラストマーを含有するA層を少なくとも1層含み、前述した遮熱材料を少なくとも1層に含有する合わせガラス用中間膜とすることが好ましい。
【0201】
より遮音性の高い合わせガラスを作製する観点からは、ASTM E90−09の条件にて測定した4000Hzにおける音響透過損失が37dB以上となるものであることが好ましく、38dB以上となるものがより好ましい。合わせガラスとした場合に、ASTM E90−09の条件にて測定した4000Hzにおける音響透過損失が37dB未満となるものであると、合わせガラスの遮音性が低くなる傾向にある。ガラスの厚さの合計が4mm以下となる2枚のガラスで挟持して合わせガラスを作製した場合にも、上記音響透過損失を満たすことが好ましい。
【0202】
B層の厚さの合計に対するA層の厚さの合計の比(A層の厚さの合計/B層の厚さの合計)が1/30以上であることが好ましく、1/15以上であることがより好ましく、1/5以上であることがさらに好ましい。上記比率が1/30より大きいと、合わせガラス用中間膜の遮音効果が向上する傾向にある。
【0203】
B層の厚さの合計に対するA層の厚さの合計の比(A層の厚さの合計/B層の厚さの合計)が1/1以下であることが好ましく、1/2以下であることがより好ましく、1/3以下であることがさらに好ましい。上記比率が1/1以下であると、合わせガラス用中間膜の耐熱クリープ性が向上する傾向にある。
【0204】
本発明の合わせガラス用中間膜は、A層/B層という2層構成でも良いし、図1に示すように、A層1がB層2aおよびB層2bによって挟まれた積層構成にすることもできる。合わせガラス用中間膜における積層構成は目的によって決められるが、B層/A層/B層という積層構成の他、B層/A層/B層/A層、B層/A層/B層/A層/B層という積層構成であってもよい。
【0205】
また、A層、B層以外の層(C層とする)を1層以上含んでいても構わず、例えば、B層/A層/C層/B層、B層/A層/B層/C層、B層/C層/A層/C層/B層、B層/C層/A層/B層/C層、B層/A層/C層/B層/C層、C層/B層/A層/B層/C層、C層/B層/A層/C層/B層/C層、C層/B層/C層/A層/C層/B層/C層などの積層構成でも構わない。また上記積層構成において、C層中の成分は、同一であっても異なっていてもよい。これはA層またはB層中の成分についても同様である。上記の中でも、少なくとも2つの上記B層の間に、上記A層が積層された積層構成であることが好ましい。また、B層が最外層の少なくとも一層を構成していることが好ましい。
【0206】
なお、C層としては公知の樹脂からなる層が使用可能であり、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリテトラフルオロエチレン、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステルのうちポリエチレンテレフタレート、ポリブチレンテレフタレート、環状ポリオレフィン、ポリフェニレンスルファイド、ポリテトラフロロエチレン、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、液晶ポリマー、ポリイミドなどを用いることができる。また、C層にも、必要に応じ、可塑剤、酸化防止剤、紫外線吸収剤、光安定剤、接着力調整剤および/または接着性を調整するための各種添加剤、ブロッキング防止剤、顔料、染料、遮熱材料(例えば、赤外線吸収能を有する、無機遮熱性微粒子または有機遮熱性材料)などの添加剤を添加してよい。これらの添加剤としては、A層やB層で用いたものと同様のものを使用できる。
【0207】
[積層体(合わせガラス用中間膜)の製造方法]
本発明の合わせガラス用中間膜を構成する積層体の製造方法は特に限定されるものではなく、上記の熱可塑性樹脂・熱可塑性エラストマーに必要に応じて他の添加剤を配合し、これを均一に混練した後、押出し法、カレンダー法、プレス法、キャスティング法、インフレーション法等、公知の製膜方法によりA層やB層など各層を作製し、これらを積層させてもよいし、A層、B層およびその他必要な層を共押出法により成形してもよい。
【0208】
共押出法によって合わせガラス用中間膜を製造する場合は、冷却ロール温度は50〜70℃とすることが好ましい。また、共押出された成形物を引き取る際の張力は、可能な限り低い方が好ましい。上記条件で共押出を行うと、島成分の長径サイズが小さくなり、シュリンク性が低減される傾向にある。
【0209】
公知の製膜方法の中でも特に押出機を用いてフィルム(シート)を製造する方法が好適に採用される。押出し時の樹脂温度は150℃以上が好ましく、170℃以上がより好ましい。また、押出し時の樹脂温度は250℃以下が好ましく、230℃以下がより好ましい。樹脂温度が高くなりすぎるとポリビニルアセタール樹脂および熱可塑性エラストマーが分解を起こし、樹脂の劣化が懸念される。逆に温度が低すぎると、押出機からの吐出が安定せず、機械的トラブルの要因になる。揮発性物質を効率的に除去するためには、押出機のベント口から減圧により、揮発性物質を除去することが好ましい。
【0210】
また、本発明の合わせガラス用中間膜を構成する積層体は表面にメルトフラクチャー、エンボスなど、従来公知の方法で凹凸構造を形成することが好ましい。メルトフラクチャー、エンボスの形状は特に限定されず、従来公知のものを採用することができる。
【0211】
積層体の膜厚は、20μm以上が好ましく、100μm以上がより好ましい。積層体の膜厚が薄すぎると合わせガラスを作製する際にうまくラミネートできないことがある。また、積層体の膜厚は、10,000μm以下が好ましく、3,000μm以下がより好ましい。積層体の膜厚が厚すぎるとコスト高に繋がるため好ましくない。
【0212】
[合わせガラス]
本発明の合わせガラスは、遮音性と遮熱性を両立させる観点からは、熱可塑性エラストマーを含有するA層を少なくとも1層含み、少なくとも1層に遮熱材料を含有する合わせガラス用中間膜を、少なくとも2枚のクリアガラスで挟持してなり、可視光透過率が70%以上であり、波長800〜1100nmの赤外線平均透過率が70%以下である合わせガラスであることが好ましい。上記構成を満たす合わせガラスを作製するためには、熱可塑性エラストマーを含有するA層を少なくとも1層含み、前述した遮熱材料を少なくとも1層に含有する合わせガラス用中間膜を用いた合わせガラスとすることが好ましい
【0213】
また、本発明の合わせガラスは、遮音性と遮熱性を両立させる観点からは、熱可塑性エラストマーを含有するA層を少なくとも1層含み、少なくとも1層に遮熱材料を含有する合わせガラス用中間膜を、少なくとも2枚のグリーンガラスで挟持してなり、可視光透過率が70%以上であり、波長800〜1100nmの赤外線平均透過率が32%以下である合わせガラスであることが好ましい。上記構成を満たす合わせガラスを作製するためには、熱可塑性エラストマーを含有するA層を少なくとも1層含み、前述した遮熱材料を少なくとも1層に含有する合わせガラス用中間膜を用いた合わせガラスとすることが好ましい。
【0214】
本発明の合わせガラス用中間膜の構成を合わせガラス内部に有することにより、曲げ強度に優れる合わせガラスを得ることができる。そのため、本発明の合わせガラスは、自動車用フロントガラス、自動車用サイドガラス、自動車用サンルーフ、ヘッドアップディスプレイ用ガラスなどに好適に用いることができる。また、本発明の合わせガラスは、建築用ガラスとしても好適に用いることができる。本発明の合わせガラス用中間膜の構成を内部に有する合わせガラスが、ヘッドアップディスプレイ用ガラスに適用される場合、用いられる該合わせガラス用中間膜の断面形状は、一方の端面側が厚く、他方の端面側が薄い形状であることが好ましい。その場合、断面形状は、一方の端面側から他方の端面側に漸次的に薄くなるような、全体が楔形である形状であってもよいし、一方の端面から該端面と他方の端面の間の任意の位置までは同一の厚さで、該任意の位置から他方の端面まで漸次的に薄くなるような、断面の一部が楔形のものであってもよい。
【0215】
本発明の合わせガラスには、通常、ガラスを2枚使用する。本発明の合わせガラスを構成するガラスの厚さは特に限定されないが、100mm以下であることが好ましい。また、本発明の合わせガラス用中間膜は、曲げ強度に優れることから、厚さ2.8mm以下の薄板ガラスを用いて合わせガラスを作製しても、合わせガラスの強度を損なうことなく、合わせガラスの軽量化を実現することができる。ガラスの厚さは、軽量化の観点からは、少なくとも一枚が2.8mm以下であることが好ましく、2.5mm以下であることがより好ましく、2.0mm以下であることがさらに好ましく、1.8mm以下であることが特に好ましい。
【0216】
なお、2枚のガラスの厚さは、同じであっても、異なっていてもよい。例えば、一方のガラスの厚さを1.8mm以上、他方のガラスの厚さを1.8mm以下、各ガラスの厚さの差を0.2mm以上としても、合わせガラスの遮音性、遮熱性、耐候性等を損なうことなく、シュリンク性が低く、薄膜化と軽量化が実現された合わせガラスを作製することができる。
【0217】
[合わせガラスの製造方法]
本発明の合わせガラスは、従来から公知の方法で製造することが可能であり、例えば、真空ラミネータ装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、ニップロールを用いる方法等が挙げられる。また、仮圧着後に、オートクレーブ工程に投入する方法も付加的に行なうことができる。
【0218】
真空ラミネータ装置を用いる場合、例えば、太陽電池の製造に用いられる公知の装置を使用し、1×10-6以上、3×10-2MPa以下の減圧下、100℃以上、200℃以下、特に130℃以上、170℃以下の温度でラミネートされる。真空バッグまたは真空リングを用いる方法は、例えば、欧州特許第1235683号明細書に記載されており、例えば約2×10-2MPaの圧力下、130℃以上、145℃以下でラミネートされる。
【0219】
合わせガラスの作製方法については、ニップロールを用いる場合、例えば、ポリビニルアセタール樹脂の流動開始温度以下の温度で1回目の仮圧着をした後、さらに流動開始温度に近い条件で仮圧着する方法が挙げられる。具体的には、例えば、赤外線ヒーターなどで30℃以上、100℃以下に加熱した後、ロールで脱気し、さらに50℃以上、150℃以下に加熱した後ロールで圧着して接着または仮接着させる方法が挙げられる。
【0220】
また、本発明の合わせガラス用中間膜を合わせガラス内部に有するように、A層の両面にB層を塗布したガラスを合わせて積層し、合わせガラスとしてもよい。
【0221】
仮圧着後に付加的に行われるオートクレーブ工程は、モジュールの厚さや構成にもよるが、例えば、約1MPa以上、15MPa以下の圧力下、130℃以上、155℃以下の温度で約0.5時間以上、2時間以下実施される。
【0222】
本発明の合わせガラス用中間膜により合わせガラスを作製する際に使用するガラスは特に限定されず、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラスなどの無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネートなどの従来公知の有機ガラス等が使用でき、これらは無色、有色、あるいは透明、非透明のいずれであってもよい。これらは単独で使用してもよく、2種以上を併用してもよい。また、ガラスの厚さは特に限定されないが、100mm以下であることが好ましい。
【実施例】
【0223】
以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0224】
なお、以下の実施例および比較例において、使用されたポリビニルブチラール樹脂(PVB)としては、目的とする粘度平均重合度と同じ粘度平均重合度(JIS K 6726「ポリビニルアルコール試験方法」に基づいて測定した粘度平均重合度)を有するポリビニルアルコールを塩酸触媒下にn−ブチルアルデヒドでアセタール化したものを用いた。
【0225】
(実施例1)
(A層用組成物の作製)
窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤としてsec−ブチルリチウム76gを仕込み、ルイス塩基としてテトラヒドロフラン313gを仕込んだ(sec−ブチルリチウムは、10.5質量%のシクロヘキサン溶液を含むため、sec−ブチルリチウムの実質的な添加量は8.0gである)。耐圧容器内を50℃に昇温した後、スチレン0.5kgを加えて1時間重合させ、引き続いてイソプレン8.2kgおよびブタジエン6.5kgからなる混合液を加えて2時間重合させ、さらにスチレン1.5kgを加えて1時間重合させることにより、ポリスチレン−ポリ(イソプレン/ブタジエン)−ポリスチレントリブロック共重合体を含む反応液を得た。
【0226】
該反応液に、オクチル酸ニッケルおよびトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下に添加し、水素圧力1MPa、80℃の条件で5時間反応を行った。放冷、放圧後、水洗により金属触媒を除去し、真空乾燥することにより、ポリスチレン−ポリ(イソプレン/ブタジエン)−ポリスチレントリブロック共重合体の水素添加物(以下、TPE−1とする)を得た。
【0227】
TPE−1に、遮熱材料としてのセシウムタングステンオキサイド(住友金属鉱山株式会社製、以下CWOとする)と、紫外線吸収剤としてのTinuvin326と、酸化防止剤としてのCyanox2777と、光安定剤としてのTinuvin622SFとを混合して、A層を構成する組成物を作製した。遮熱材料はA層における面密度が0.25g/m2となるように、紫外線吸収剤はA層における面密度が1.0g/m2となるように、酸化防止剤はA層における面密度が0.20g/m2となるように、光安定剤はA層における面密度が1.6g/m2となるように、配合量を調節した。
【0228】
なお、紫外線吸収剤として用いたTinuvin326は、2−(5−クロロ−2−ベンゾトリアゾリル)−6−tert−ブチル−p−クレゾール(チバ・スペシャルティ・ケミカルズ株式会社製)である。酸化防止剤として用いたCyanox2777は、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオンとトリス(2,4−ジ−t−ブチルフェニル)ホスフェイトとの混合物(CYTEC社製)である。光安定剤として用いたTinuvin622SFは、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとの重合物(チバ・スペシャルティ・ケミカルズ株式会社製)である。
【0229】
さらに、100質量部のTPE−1に対して、B層との接着力調整剤として、5質量部の無水マレイン酸変性ポリプロピレン(三洋化成工業株式会社製、ユーメックス1010)を添加して、TPE−1を主成分とするA層用組成物を作製した。ここで、主成分とは、組成物中で最も質量の多い成分を意味し、可塑剤を含有する場合は、可塑剤も含めて主成分と称する。
【0230】
(B層用組成物の作製)
B層の主成分には、粘度平均重合度約1100、アセタール化度68.7モル%、ビニルアセテート単位の含有量が0.8モル%、ビニルアルコール単位の含有量が30.5モル%のポリビニルブチラール(PVB−1)を用いた。
【0231】
上記PVB−1に、紫外線吸収剤としてのTinuvin326を混合して、B層を構成する組成物を作製した。紫外線吸収剤はB層における面密度が5.1g/m2となるように配合量を調節して組成物を作製した。
【0232】
(合わせガラス用中間膜の作製)
A層用組成物を、50mmφベント式単軸押出機を用いて、温度210℃、吐出量4kg/hの条件で、205℃のTダイ(マルチマニホールドタイプ:幅500mm)に導入し、B層用組成物を、65mmφベント式単軸押出機を用いて、温度205℃、吐出量24kg/hの条件で、該Tダイに導入した。該Tダイから共押出された成形物を、一方を50℃、他方を60℃とした2つの金属鏡面ロールによってニップし、引き取り速度1.2m/minで、B層/A層/B層(330μm/100μm/330μm)という3層構成となる合わせガラス用中間膜(760μm)を成形した。
【0233】
(合わせガラスの作製)
市販のクリアガラス(縦50mm×横50mm×厚さ1.6mm)2枚に実施例1で得られた合わせガラス用中間膜を挟み、真空ラミネータ(日清紡メカトロニクス株式会社製1522N)を用いて、熱板温度165℃、真空引き時間12分、プレス圧力50kPa、プレス時間17分の条件で合わせガラスを作製した。得られた合わせガラスを、可視光線透過率および赤外線透過率の測定にそれぞれ用いた。
【0234】
また、クリアガラスを用いる代わりに、市販のグリーンガラス(縦50mm×横50mm×厚さ1.6mm)を用いた以外は、上記と同様の条件にて合わせガラスを作製した。得られた合わせガラスを、可視光線透過率、赤外線透過率、耐候性試験(色差変化)、およびヘイズの測定にそれぞれ用いた。
【0235】
1.物性評価(A層の相分離サイズの測定)
実施例1で得られた合わせガラス用中間膜のA層の厚さ方向中央域を、ウルトラミクロトーム(ライカ マイクロシステムズ株式会社製、ライカ EM UC7)のガラスナイフを用いて、−100℃の雰囲気でスライスし、A層の平滑断面を作製した。得られたA層の厚さ方向中央域のスライス面を、原子間力顕微鏡(エスアイアイ・ナノテクノロジー株式会社製、E−sweepおよびNanoNavi II station)を用い、ダイナミックフォースモード(DFM)により、200nm×200nmのスキャンサイズで撮影し、A層のスライス面の位相像を取得した。カンチレバーにはSI−DF20(エスアイアイ・ナノテクノロジー株式会社製)を用いた。200nm×200nmの範囲の撮影をA層のスライス面上の5ヶ所においてそれぞれ行い、それぞれの写真の中から長径サイズが最大となる島成分を選定した。選定された島成分の長径サイズの平均値を算出し、該平均値を相分離サイズとした。A層の相分離サイズの測定結果を表3に示す。
【0236】
2.物性評価(シュリンク性の評価)
縦50mm×横50mmの大きさのクリアガラスを用いる代わりに、縦300mm×横300mmの大きさのクリアガラスを用いた以外は、上記と同様の条件で合わせガラスを作製した。得られた合わせガラスを80℃のオーブンにて1週間放置した。上記条件下で放置した後の、合わせガラスの端部からA層の端部までの距離のうち、最も大きな距離を測定した。該距離を下記の基準で評価して、シュリンク性の評価とした。シュリンク性の評価結果を表3に示す。
<評価基準>
◎:A層のシュリンクが全く見られない
○:A層のシュリンクが0.5mm以内
×:A層のシュリンクが0.5mmを超える
【0237】
3.物性評価(合わせガラスの耐熱クリープ性の評価)
図5に示すように、縦300mm×横100mm、厚さ3mmのフロートガラス71および72に、実施例1で得られた合わせガラス用中間膜73を挟み、真空ラミネータ(日清紡メカトロニクス株式会社製1522N)を用いて、熱板温度165℃、真空引き時間12分、プレス圧力50kPa、プレス時間17分の条件で合わせガラス70を作製した。
【0238】
図6に示すように、重さ1kgの鉄板81をガラス72の片側に瞬間接着剤を用いて張り合わせて、鉄板を張り合わせた合わせガラス80を作製した。
【0239】
図7に示すように、合わせガラス80を、スタンド91に立て掛けて、100℃のチャンバー内にて1週間放置した。放置後に、ガラス72がずり落ちた距離を測定し、前記距離を以下の基準に基づいて評価し、該評価を耐熱クリープ性の評価とした。
<評価基準>
○:ガラス72がずり落ちた距離が1mm以下である。
×:ガラス72がずり落ちた距離が1mmを超える。
【0240】
4.物性評価(共役ジエン単量体単位由来の二重結合残存量の算出)
実施例1で得られたブロック共重合体の水素添加前後におけるヨウ素化を測定し、その測定値より算出した。二重結合残存量の算出結果を表2に示す。
【0241】
5.物性評価(イソプレン単位およびブタジエン単位における1,2−結合および3,4−結合の含有量の合計値の算出)
実施例1で得られたブロック共重合体の水素添加物50mgを重クロロホルムに溶解して、1H−NMRの測定を行った。イソプレン単位およびブタジエン単位における1,2−結合および3,4−結合の含有量をそれぞれ測定し、それらを合計することで、イソプレン単位およびブタジエン単位における1,2−結合および3,4−結合の含有量の合計値を算出した。イソプレン単位およびブタジエン単位における1,2−結合および3,4−結合の含有量の合計値の算出結果を表2に示す。
【0242】
6.物性評価(A層およびB層のtanδのピーク高さおよびピーク温度)
ASTM D4065−06に基づいて、合わせガラス用中間膜の動的粘弾性を測定するために、機械的分光計(メトラー・トレド株式会社製DMA/SDTA861eモデル)を用いた。A層およびB層の主成分(ここで、各層のポリマーが主成分であるが、後述する実施例・比較例における可塑剤が含まれる層については、ポリマーと可塑剤が主成分となる)を、別途、210℃、5MPa、5分間熱プレスをして、評価用のサンプルを作製し、厚さ1mm、直径3〜5mmの円柱状(直径は結果に影響しない)にそれぞれ切り出して、テストサンプルとして用いた。
【0243】
上記テストサンプルのそれぞれに、最大振幅0.1%のせん断歪みで、周波数1000Hzの固定正弦波のせん断振動を与え、測定温度を−20〜60℃まで1℃/minの定速で昇温した。ASTM D4092−07の定義からA層およびB層のtanδのピーク高さおよびピーク温度を求めた。A層およびB層のtanδのピーク高さおよびピーク温度の測定結果を表3に示す。
【0244】
7.物性評価(合わせガラスにおける可視光透過率の測定)
クリアガラスを用いて作製した合わせガラス及びグリーンガラスを用いて作製した合わせガラスについて、JIS R3106に基づいて、分光光度計U−4100(株式会社日立ハイテクサイエンス製)を用いて、可視光透過率を20℃で測定した。可視光透過率の測定結果を表3に示す。
【0245】
8.物性評価(合わせガラスにおける波長800〜1100nmの赤外線平均透過率の測定)
クリアガラスを用いて作製した合わせガラス及びグリーンガラスを用いて作製した合わせガラスについて、分光光度計U−4100を用いて、波長800〜1100nmの赤外線平均透過率を20℃で測定した。波長800〜1100nmの赤外線平均透過率の測定結果を表3に示す。
【0246】
9.物性評価(合わせガラスの色差変化ΔE*abの評価)
[耐候性試験]
グリーンガラスを用いて作製した合わせガラスについて、耐候性試験機(スガ試験機株式会社製、スーパーキセノンウェザーメーターSX75)を用いて、放射照度180W/m2、ブラックパネル温度60℃、相対湿度50%の条件で200時間曝露する耐候性試験を行った。
【0247】
[色差変化ΔE*abの測定]
JIS Z8781−4:2013に基づき、耐候性試験の前後において、合わせガラスの色差を、色差計(スガ試験機株式会社製、SM−T)を用いて測定した。耐候性試験前の合わせガラスの色差から耐候性試験後の合わせガラスの色差を引いた値を色差変化ΔE*abとした。色差変化ΔE*abの測定結果を表3に示す。
【0248】
10.物性評価(合わせガラスの音響透過損失の評価)
グリーンガラスを用いて作製した合わせガラスの音響透過損失は、ASTM E90−09(建築物の間仕切りおよび要素の空気伝達音響透過損失を実験室測定するための標準的試験方法)に規定された方法によって測定した。音響透過損失の測定結果を表3に示す。
【0249】
11.物性評価(合わせガラスのヘイズの評価)
グリーンガラスを用いて作製した合わせガラスのヘイズは、JIS K 7105に基づいて測定した。合わせガラスのヘイズの測定結果を表3に示す。
【0250】
(実施例2)
A層においてCWOを配合する代わりに、B層においてCWOを配合して、B層における面密度が0.28g/m2となるようにした以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表2に、各種物性評価の結果を表3に示す。
【0251】
(実施例3)
B層において、100質量部のPVB−1を用いる代わりに、100質量部のPVB−2(表1に記載)と15質量部のポリエステルポリオールとの混合物を用いた以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表2に、各種物性評価の結果を表3に示す。なお、ポリエステルポリオールとしては、クラレポリオールP−510(株式会社クラレ製、ポリ[(3−メチル−1,5−ペンタンジオール)−alt−(アジピン酸)])を用いた。
【0252】
(実施例4)
B層において、100質量部のPVB−1を用いる代わりに、100質量部のPVB−2と37質量部のポリエステルポリオールとの混合物を用いた以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表2に、各種物性評価の結果を表3に示す。
【0253】
(実施例5)
窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤としてsec−ブチルリチウム130gを仕込み、ルイス塩基としてテトラヒドロフラン290gを仕込んだ(sec−ブチルリチウムは、10.5質量%のシクロヘキサン溶液を含むため、sec−ブチルリチウムの実質的な添加量は13.9gである)。耐圧容器内を50℃に昇温した後、スチレン1.8kgを加えて1時間重合させ、引き続いてイソプレン13.2kgを加えて2時間重合させ、さらにスチレン1.8kgを加えて1時間重合させることにより、ポリスチレン−ポリイソプレン−ポリスチレントリブロック共重合体を含む反応液を得た。
【0254】
該反応液に、オクチル酸ニッケルおよびトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷および放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン−ポリイソプレン−ポリスチレントリブロック共重合体の水素添加物(以下、TPE−2とする)を得た。次いで、TPE−2とTPE−1とを質量比1:1で200℃にて溶融混錬して、TPE−3を得た。
【0255】
A層の主成分としてTPE−1の代わりにTPE−3を用い、A層の厚さを160μmとし、B層の厚さを300μmとした以外は、実施例1と同様の方法で、合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表2に、各種物性評価の結果を表3に示す。
【0256】
【表1】
【0257】
【表2】
【0258】
【表3】
【0259】
(実施例6)
A層において、CWOの面密度を0.25g/m2とする代わりに、CWOの面密度を0.16g/m2とし、さらにITO(三菱マテリアル電子化成社製:錫ドープ酸化インジウム)を添加して、ITOの面密度を0.75g/m2とした以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の構成および各種物性評価の結果を表4または表5に示す。
【0260】
(実施例7)
A層において、CWOの代わりにITOを用い、ITOの面密度を1.50g/m2とした以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の構成および各種物性評価の結果を表4または表5に示す。
【0261】
(実施例8)
A層において、ITOの面密度を4.70g/m2とした以外は、実施例7と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の構成および各種物性評価の結果を表4または表5に示す。
【0262】
【表4】
【0263】
【表5】
【0264】
(比較例1)
A層の主成分としてTPE−1の代わりにTPE−2を用い、A層の厚さを330μmとし、B層の厚さを215μmとした以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表6に、各種物性評価の結果を表7に示す。
【0265】
ここで、A層のスライス面の位相像を図4に示す。図4における位相像の中で、長径サイズが最大となる島成分は、島成分61である。島成分61の長径サイズは、119nmであった。また、長径サイズが最大となる島成分の長径サイズの平均値は、123nmであった。
【0266】
(比較例2)
A層の主成分としてTPE−1の代わりにTPE−2を用い、A層の厚さを330μmとし、B層の厚さを215μmとした以外は、実施例2と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表6に、各種物性評価の結果を表7に示す。
【0267】
【表6】
【0268】
【表7】
【0269】
(実施例9)
A層において、接着力調整剤を用いず、B層において、PVB−1を用いる代わりに、アイオノマー(デュポン社製、SentryGlas(R) Interlayer)を用いた以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表8に、各種物性評価の結果を表9に示す。
【0270】
(実施例10)
A層において接着力調整剤を用いず、B層においてPVB−1を用いる代わりに、アイオノマー(デュポン社製、SentryGlas(R) Interlayer)を用いた以外は、実施例5と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表8に、各種物性評価の結果を表9に示す。
【0271】
(実施例11)
TPE−1とTPE−2とを質量比1:3で200℃にて溶融混錬して、TPE−4を得た。A層において、TPE−1の代わりにTPE−4を用い、接着力調整剤を用いず、B層において、PVB−1の代わりにアイオノマー(デュポン社製、SentryGlas(R) Interlayer)を用い、A層の厚さを220μmとし、B層の厚さを270μmとした以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表8に、各種物性評価の結果を表9に示す。
【0272】
ここで、A層のスライス面の位相像を図3に示す。図3において、島成分51は海成分52の中に点在している。図3における位相像の中で、長径サイズが最大となる島成分は、島成分51である。島成分51の長径サイズは、末端51aと末端51bとを結ぶ線分の長さであり、89nmであった。また、長径サイズが最大となる島成分の長径サイズの平均値は、82nmであった。
【0273】
(実施例12)
A層においてCWOを配合する代わりに、B層においてCWOを配合して、B層における面密度が0.28g/m2となるようにした以外は、実施例11と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表8に、各種物性評価の結果を表9に示す。
【0274】
(比較例3)
A層において接着力調整剤を用いず、B層においてPVB−1の代わりにアイオノマー(デュポン社製、SentryGlas(R) Interlayer)を用いた以外は、比較例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表8に、各種物性評価の結果を表9に示す。
【0275】
(比較例4)
A層において接着力調整剤を用いず、B層においてPVB−1の代わりにアイオノマー(デュポン社製、SentryGlas(R) Interlayer)を用いた以外は、比較例2と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の組成および厚さを表8に、各種物性評価の結果を表9に示す。
【0276】
【表8】
【0277】
【表9】
【0278】
(実施例13)
窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤としてsec−ブチルリチウム90gを仕込み、ルイス塩基としてN,N,N’,N’−テトラメチルエチレンジアミン(以下、TMEDAという)30gを仕込んだ(sec−ブチルリチウムは、10.5質量%のシクロヘキサン溶液を含むため、sec−ブチルリチウムの実質的な添加量は9.5gである)。耐圧容器内を50℃に昇温した後、スチレン1.0kgを加えて1時間重合させ、引き続いてブタジエン14.6kgを加えて2時間重合させ、さらにスチレン1.0kgを加えて1時間重合させることにより、ポリスチレン−ポリブタジエン−ポリスチレントリブロック共重合体を含む反応液を得た。
【0279】
該反応液に、オクチル酸ニッケルおよびトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷および放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン−ポリブタジエン−ポリスチレントリブロック共重合体の水素添加物(以下、TPE−5とする)を得た。
【0280】
A層において、TPE−1の代わりにTPE−5を用い、接着力調整剤を用いず、B層において、PVB−1の代わりにアイオノマーを用いた以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の構成および各種物性評価の結果を表10または表11に示す。
【0281】
(実施例14)
窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤としてsec−ブチルリチウム82gを仕込み、ルイス塩基としてテトラヒドロフラン110gを仕込んだ(sec−ブチルリチウムは、10.5質量%のシクロヘキサン溶液を含むため、sec−ブチルリチウムの実質的な添加量は8.6gである)。耐圧容器内を50℃に昇温した後、スチレン0.5kgを加えて1時間重合させ、引き続いてイソプレン8.2kgおよびブタジエン6.5kgを加えて2時間重合させ、さらにスチレン1.5kgを加えて1時間重合させることにより、ポリスチレン−ポリ(イソプレン/ブタジエン)−ポリスチレントリブロック共重合体を含む反応液を得た。
【0282】
該反応液に、オクチル酸ニッケルおよびトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷および放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン−ポリ(イソプレン/ブタジエン)−ポリスチレントリブロック共重合体の水素添加物(以下、TPE−6とする)を得た。
【0283】
A層において、TPE−5の代わりにTPE−6を用いた以外は、実施例13と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の構成および各種物性評価の結果を表10または表11に示す。
【0284】
(比較例5)
窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤としてsec−ブチルリチウム217gを仕込み、ルイス塩基としてテトラヒドロフラン80gを仕込んだ(sec−ブチルリチウムは、10.5質量%のシクロヘキサン溶液を含むため、sec−ブチルリチウムの実質的な添加量は22.8gである)。耐圧容器内を50℃に昇温した後、スチレン2.5kgを加えて1時間重合させ、引き続いてブタジエン11.7kgを加えて2時間重合させ、さらにスチレン2.5kgを加えて1時間重合させることにより、ポリスチレン−ポリブタジエン−ポリスチレントリブロック共重合体を含む反応液を得た。
【0285】
該反応液に、オクチル酸ニッケルおよびトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷および放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン−ポリブタジエン−ポリスチレントリブロック共重合体の水素添加物(以下、TPE−7とする)を得た。
【0286】
A層において、TPE−5の代わりにTPE−7を用いた以外は、実施例13と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の構成および各種物性評価の結果を表10または表11に示す。
【0287】
(実施例15)
A層に用いるブロック共重合体に対する水添処理において、水素供給量をブロック共重合体の二重結合量に対して50モル%として、二重結合残存量が50モル%となる水素添加物(以下、TPE−8とする)とした以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の構成および各種物性評価の結果を表10または表11に示す。
【0288】
(実施例16)
A層に用いるブロック共重合体に対する水添処理において、水素圧力を1MPaとする代わりに、水素圧力を10MPaとして、二重結合残存量が1モル%の水素添加物(以下、TPE−9とする)とした以外は、実施例1と同様の方法で合わせガラス用中間膜および合わせガラスを作製し、各種物性評価を行った。合わせガラス用中間膜の構成および各種物性評価の結果を表10または表11に示す。
【0289】
【表10】
【0290】
【表11】
【符号の説明】
【0291】
1 A層
2a B層
2b B層
11 A層のtanδ
51 島成分
52 海成分
61 島成分
70 合わせガラス
71 ガラス
72 ガラス
73 合わせガラス用中間膜
80 合わせガラス
81 鉄板
91 スタンド
図1
図2
図3
図4
図5
図6
図7