(58)【調査した分野】(Int.Cl.,DB名)
第1検査対象の光学画像を取得する光学系と、前記第1検査対象のパターン形成の基となる描画パターンデータに基づいて、前記光学画像に対応する参照画像を生成する参照系と、前記光学画像を用いて前記第1検査対象の欠陥を検出する制御系とを備えたパターン検査装置を用いたパターン検査方法であって、
前記第1検査対象の前記光学画像を取得する工程と、
前記第1検査対象のパターン形成の基となる描画パターンデータに、フィルタ係数を演算して前記光学画像に対応する参照画像を前記参照系において生成する工程と、
前記光学画像と前記参照画像とを比較して前記第1検査対象の欠陥を前記制御系において検出する工程とを具備し、
前記参照画像の生成工程は、
前記描画パターン内において前記フィルタ係数を算出するために選択される少なくとも1か所以上の第1領域に、正常に完了した過去の検査において選択されていた領域に対応する前記第1検査対象の少なくとも1か所以上の第2領域を、含める工程と、
前記光学画像と前記描画パターンとが前記第1および第2領域のそれぞれにおいて略一致するように前記フィルタ係数を算出する工程とを含む、パターン検査方法。
前記第1領域の数と前記第2検査対象の領域に対して相関の高い前記第2領域の数との総数が所定値以上ある場合、前記第2領域は、前記総数が前記所定値未満となるように、相関の高い順に前記第1領域に含められる、請求項2または請求項3に記載のパターン検査方法。
【発明を実施するための形態】
【0008】
以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。
【0009】
図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
【0010】
(第1実施形態)
図1は、第1実施形態のパターン検査装置の一例を示す概略図である。パターン検査装置100は、例えば、半導体製造工程で用いられるマスクまたはテンプレートのパターンの欠陥を検査するために用いられる。以下の実施形態では、マスクのパターンの欠陥を検査する装置について説明する。
【0011】
(パターン検査装置の構成)
パターン検査装置100は、XYθテーブル2と、光源3と、偏光ビームスプリッタ4と、光学系5と、フォトダイオードアレイ7と、センサ回路8と、オートローダ9と、X軸モータ10A、Y軸モータ10Bおよびθ軸モータ10Cと、レーザ測長システム12とを備える。
【0012】
XYθテーブル2は、その上に検査対象としてのマスク1を載置可能であり、例えば、水平面内のX方向、Y方向、θ方向に移動可能である。マスク1は、半導体製造工程のフォトリソグラフィ工程に用いられるフォトマスクであり、ウェハやその上にある層に転写すべきパターンを有する。尚、マスク1に描画されている描画パターンは、光近接効果補正(OPC(Optical Proximity Correction))を含むパターンであるので、ウェハ等に転写される転写パターンとは異なる場合がある。
【0013】
光源3は、偏光ビームスプリッタ4に向けてレーザ光を出射する。なお、パターンの欠陥検査に使用する光すなわち検査光はレーザ光でよい。偏光ビームスプリッタ4は、光源3からの光を光学系5に向けて反射する。
【0014】
光学系5は、対物レンズを介してレーザ光をXYθテーブル2に向けて照射する。XYθテーブル2に載置されたマスク1は、光学系5からの光を反射する。マスク1からの反射光は、光学系5を介してフォトダイオードアレイ7に入射する。光学系5は、入射したマスク1の反射光を、マスク1の像としてフォトダイオードアレイ7に結像させる。フォトダイオードアレイ7は、マスク1の光学画像を光電変換する。光電変換されたマスク1の光学画像に基づいて、マスク1の欠陥が検査される。
【0015】
センサ回路8は、フォトダイオードアレイ7で光電変換された光学画像を取り込み、取り込まれた光学画像をA/D変換する。そして、センサ回路8は、A/D変換した光学画像を比較回路25に出力する。センサ回路8は、例えば、TDI(Time Delay Integration)センサの回路であってもよい。TDIセンサを用いることで、マスク1のパターンを高精度に撮像できる。
【0016】
オートローダ9は、オートローダ制御回路15からの指令に従って、XYθテーブル2上にマスク1を自動搬送し、あるいは、XYθテーブル2上のマスク1を自動回収する。X軸モータ10A、Y軸モータ10Bおよびθ軸モータ10Cは、それぞれ、XYθテーブル2をX方向、Y方向およびθ方向(X−Y面(略水平面)内における回転方向)に移動させる。これにより、XYθテーブル2上のマスク1に対して光源3の光がスキャンされる。レーザ測長システム12は、XYθテーブル2のX方向およびY方向の位置を検出する。
【0017】
また、パターン検査装置100は、制御計算機30と、オートローダ制御回路15と、テーブル制御回路17と、オートフォーカス制御回路18と、位置回路22と、比較回路25と、展開回路26と、参照回路27と、第1判断回路31と、第2判断回路32と、相関判定回路33と、パターン保存回路34と、記憶部35と、モニタ41と、プリンタ42とを備えている。位置回路22と、比較回路25と、制御計算機30と、オートローダ制御回路15と、テーブル制御回路17と、オートフォーカス制御回路18は、制御系として設けられている。展開回路26と、参照回路27と、第1判断回路31と、第2判断回路32と、相関判定回路33と、パターン保存回路34は、参照系として設けられている。制御系および参照系は、1つまたは複数のCPUで構成され得る。
参照系は、マスク1のパターン形成の基となる描画パターンデータに基づいて、マスク1の光学画像に対応する参照画像を生成する。制御系は、マスク1の光学画像と参照画像とを比較してマスク1の欠陥を検出する。
【0018】
制御計算機30は、バス20を介して上記回路に接続されており、マスク1の欠陥検査に関連する各種の制御を実行する。
【0019】
オートローダ制御回路15は、オートローダ9を制御する。テーブル制御回路17は、モータ10A〜10Cを駆動制御する。モータ10A〜10Cは、光源3の光がマスク1をスキャンするようにXYθテーブル2を移動させる。
【0020】
オートフォーカス制御回路18は、フォーカス合わせを行うようにXYθテーブル2を制御する。例えば、オートフォーカス制御回路18は、Zセンサ(図示せず)で検出されたセンサ面の高さに応じたフォーカス信号に基づいて、Z方向にXYθテーブル2を移動させる。
【0021】
レーザ測長システム12は、XYθテーブル2の移動位置を検出し、検出された移動位置を位置回路22に出力する。位置回路22は、レーザ測長システム12から入力された移動位置に基づいて、XYθテーブル2上でのマスク1の位置を検出する。位置回路22は、検出されたマスク1の位置を比較回路25に出力する。
【0022】
展開回路26は、マスク1の描画に用いられる描画パターンのデータを2値または多値の画像データに変換(展開)する。描画パターンのデータは、マスク1を表す図形の座標、辺の長さ、種類などの情報でよく、光近接効果を考慮した光近接効果補正(OPC)を含む設計データである。描画パターンは、記憶部35に予め格納されていてもよく、あるいは、設計データから光近接効果補正(OPC)を考慮して生成されてもよい。展開回路26は、展開された画像データを参照回路27に出力する。
【0023】
参照回路27は、展開回路26から入力された描画データに対して適切なフィルタ処理を施すことで、マスク1のパターンの欠陥検査に用いる参照画像を生成する。参照画像は、マスク1のパターンをウェハに転写する際の露光条件を用いて、ウェハへの転写パターンを描画データから模擬的に推定して得られる画像データである。即ち、参照画像は、転写パターンを描画データから露光工程をエミュレートして得られた画像である。参照回路27は、生成された参照画像を比較回路25に出力する。
【0024】
ここで、フィルタ処理は、描画パターンのデータに対してフィルタ係数を演算することであり、該フィルタ処理によって光学画像に対応する参照画像が得られる。フィルタ係数は、1つまたは複数の推定ポイントのパターンが光学画像および描画パターンで略一致するように制御計算機30において算出される。推定ポイントとは、フィルタ係数の算出に用いられる描画パターンの特徴点であり、例えば、1024画素×1024画素の画像領域である。描画パターンの特徴点は、例えば、最小線幅を有するラインパターン、スペースパターン、ホールパターン、コーナ部、先端部等のように、光近接効果の比較的大きな領域である。このような推定ポイント(特徴点)は、オペレータによって任意に選択されてもよく、あるいは、第1判断回路31、第2判断回路32および相関判定回路33において決定されてもよい。
【0025】
本実施形態において、フィルタ係数を算出するために選択されるマスク1の推定ポイントは、オペレータ等によって任意に選択されたポイント(第1領域)の他、少なくとも正常に完了した過去の検査において選択されていた過去の推定ポイントに対応するマスク1のポイント(第2領域)を自動で含める。正常な検査の完了とは、マスクのパターンの欠陥をほぼ正確に抽出することができ、擬似欠陥の少ない状態で検査が終了することを意味する。このような過去の正常な検査に用いられていたフィルタ係数は、描画パターンの適切な推定ポイントで算出されていると考えられる。従って、制御計算機30は、このようなフィルタ係数の算出時に選択されていた推定ポイント(以下、正常な過去の推定ポイントとも言う)に対応するマスク1のポイント(第2領域)を、任意に選択された推定ポイント(第1領域)に含める。これにより、今回検査対象となっているマスク1についても、適切なフィルタ係数を算出することができる。
【0026】
第1判断回路31は、適切なフィルタ係数を算出するために、第1検査対象としてのマスク1と同様のマスクを過去に検査したことがあるか否かについて判断する回路である。マスク1と同様のマスクとは、過去に検査した第2検査対象としてのマスク(以下、過去のマスクとも言う)のうち、例えば、マスク1のパターンの最小線幅と略同一であるパターンを含むマスク、材質がマスク1のそれと略同一であるマスク、あるいは、マスク1と同一半導体装置の製造に用いられるマスクでよい。
【0027】
例えば、第1判断回路31は、マスク1のパターンと過去のマスクのパターンとの最小線幅(即ち、テクノロジー・ノード)を比較してもよい。マスク1と過去のマスクとのテクノロジー・ノードが近いと、それらの光近接効果も近似していると考えられる。このため、マスク1のフィルタ係数も過去のマスクの推定ポイントを用いて算出可能と考えられる。また、マスク1と過去のマスクとのテクノロジー・ノードが近いと、後述する相関判定回路33が、過去の推定ポイントと相関の高いポイントをマスク1の検査領域から比較的容易に見つけることができる。
【0028】
マスク1および過去のマスクの材質を比較してもよい。マスクの材質は、光の反射率や透過率に関係する。従って、マスク1と過去のマスクとの材質は同じであることが好ましい。
【0029】
マスク1および過去のマスクが同一半導体装置の製造に用いられるマスクであるか否かを判断する。即ち、マスク1および過去のマスクのシリーズ番号を比較してもよい。マスク1および過去のマスクが同一半導体装置の製造に用いられる場合、マスク1および過去のマスクのそれぞれのパターンの形状が略等しくあるいは類似することが多い。従って、マスク1のフィルタ係数も過去のマスクの推定ポイントを用いて算出可能と考えられる。また、マスク1および過去のマスクが同一半導体装置の製造に用いられる場合、相関判定回路33が、過去の推定ポイントと相関の高いポイントをマスク1の検査領域から比較的容易に見つけることができる。
【0030】
このようにして、第1判断回路31は、マスク1と同様のマスクを過去に検査したことがあるか否かについて判断することができる。
【0031】
第2判断回路32は、第1判断回路31でマスク1と同様であると判断された過去のマスクについて、該マスクの過去の検査が正常に完了しているか否かを判断する回路である。パターン検査においては、フィルタ係数を算出するために選択される推定ポイントが適切でない場合、フィルタ係数を描画パターン全体に演算しても、適切な参照画像を得ることができない。この場合、比較回路25がパターン検査において光学画像と参照画像とを比較しても、パターンの欠陥を正確に検出することができない。つまり、フィルタ係数が適切でない場合、擬似欠陥が多発することになり、検査は正常に完了しない。擬似欠陥とは、実際にはマスク1に欠陥が無いにも関わらず、参照画像の不備によって欠陥として検出されてしまうことである。
【0032】
一方、フィルタ係数を算出するための推定ポイントが適切である場合、適切なフィルタ係数が得られる。この場合、比較回路25は、パターンの欠陥を正確に検出することができる。つまり、フィルタ係数が適切である場合、擬似欠陥が少なく、検査は正常に完了する。第2判断回路32は、マスク1の検査において適切なフィルタ係数を算出するために、過去のマスクの中で検査が正常に完了しているマスクを選択する。
【0033】
相関判定回路33は、第2判断回路32で選択された過去のマスクにおいて選択されていた過去の推定ポイントと形状、寸法および/または位置において相関の高いポイントをマスク1の描画パターン内で検索する回路である。過去の推定ポイントと相関が高いと判定されたマスク1の描画パターン上のポイント(第2領域)は、フィルタ係数を算出するための推定ポイントに含められる。尚、“相関が高い”とは、“類似する”、あるいは、“近似する”と換言してもよい。
【0034】
形状において相関が高いとは、例えば、ラインパターン、スペースパターン、ホールパターン等のような形状の種類が略同一であることを示す。過去の推定ポイント内に複数種類の形状が含まれている場合、形状において相関が高いとは、複数種類の形状全てがマスク1のポイントに含まれていることであってもよい。
【0035】
寸法において相関が高いとは、過去の推定ポイント内のパターンの寸法とマスク1のポイント内のパターンの寸法との寸法差が所定の閾値以内であることを示す。所定の閾値は、予め設定され、記憶部35に格納しておけばよい。また、推定ポイントの画像領域内で比較されるパターンは、推定ポイント(画像領域)の略中心であってもよく、あるいは、任意に指定された箇所であってもよい。
【0036】
さらに、位置において相関が高いとは、過去の推定ポイントの位置がマスク1の検査領域内にあることを示す。より詳細には、過去の推定ポイントの座標が今回検査対象となっているマスク1の検査領域内にある場合に、相関が高いと判断する。過去の推定ポイントの形状や寸法が、マスク1の或るポイントの形状や寸法と類似していても、過去の推定ポイントの位置がマスク1の検査領域外である場合には、検査領域の適切なフィルタ係数を演算することはできないからである。
【0037】
このように、相関判定回路33は、過去の推定ポイントと形状、寸法および/または位置において相関の高いマスク1の描画パターンを検索し、マスク1の描画パターンで相関の高いポイントを推定ポイントに含める。第1判断回路31、第2判断回路32および相関判定回路33は、それぞれ個別のCPUで構成されてもよく、あるいは、1つのCPUで構成されてもよい。また、第1判断回路31、第2判断回路32および相関判定回路33は、制御計算機30に組み込んでもよい。尚、推定ポイントのより詳細な選択方法は、後で
図2〜
図4を参照して説明する。
【0038】
制御計算機30は、第1判断回路31、第2判断回路32および相関判定回路33によって選択された推定ポイントにおいて、光学画像と描画パターンとが略一致するようにフィルタ係数を算出する。参照回路27は、展開回路26からの描画データに対してフィルタ係数を演算することによって参照画像を生成する。参照回路27は、生成された参照画像を比較回路25に出力する。このように、参照系は、正常な過去の推定ポイントに対して相関の高いマスク1の描画パターン上のポイントを任意に選択された推定ポイントに含めてフィルタ係数を算出し、マスク1の描画パターンのデータにそのフィルタ係数を演算して参照画像を生成する。
【0039】
比較回路25は、位置回路22から入力された位置情報を用いながら、センサ回路8から得た光学画像の各位置の線幅等を測定する。比較回路25は、測定された光学画像と、参照回路27から入力された参照画像について、両画像の線幅や階調値(明るさ)を比較する。そして、比較回路25は、例えば、光学画像のパターンと、参照画像のパターンとの誤差をマスク1の欠陥として検出する。
【0040】
パターン保存回路34は、パターン検査が正常に完了した場合に、フィルタ係数の算出に用いられた推定ポイントの画像や位置情報を比較回路25から受け取り、記憶部35へ格納する。これらの推定ポイントの画像は、過去の推定ポイントの画像として、その後のパターン検査においてフィルタ係数の算出の際に用いられる。
【0041】
制御計算機30は、バス20に接続された各構成部に対して、マスク1の欠陥検査に関連する各種の制御や処理を実行する。記憶部35は、欠陥検査に関連する各種の情報を記憶する。モニタ41は、欠陥検査に関連する各種の画像を表示する。プリンタ42は、欠陥検査に関連する各種の情報を印刷する。
【0042】
(マスク検査方法)
次に、マスク検査装置100を用いたマスク検査方法を説明する。
図2は、第1実施形態によるマスク検査方法の一例を示すフロー図である。本実施形態において、マスク検査装置100は、透過画像と参照画像との比較によってマスク1の欠陥を検査するD−DB(Die to DataBase)検査を行う。
【0043】
まず、オートローダ9がマスク1をXYθテーブル2上にロードし、XYθテーブル2がマスク1のアライメントを行う(S10)。
【0044】
次に、マスク1の光学画像を撮像する(S20)。例えば、マスク検査装置100は、マスク1の検査領域をストライプ状に仮想的に分割し、そのストライプに沿って光学系からの光をスキャンする。マスク1からの反射光は、フォトダイオードアレイ7で光電変換され、センサ回路8においてマスク1の光学画像が取得される。光学画像は、露光工程によってウェハへ転写された転写パターンに近い画像となる。即ち、光学画像は、描画パターンの外縁が幾分ぼやけ、角部が丸みを帯び、実際の転写パターンに近い画像となる。
【0045】
一方、ステップS10、S20と並行してあるいはその前後において、参照画像を生成するためのフィルタ係数を算出する。
【0046】
フィルタ係数の算出では、まず、第1判断回路31が、記憶部35からマスク1の描画パターンおよび過去の推定ポイントのパターンを受け取り、マスク1と同様の(類似する)マスクを過去に検査したことがあるか否かについて判断する(S30)。上述の様に、第1判断回路31は、マスク1のパターンと過去のマスクのパターンが最小線幅において略同一であるか否か、マスク1および過去のマスクの材質が略同一であるか否か、あるいは、マスク1および過去のマスクが同一半導体装置の製造に用いられるマスクであるか否かを判断する。
【0047】
例えば、マスク1および過去のマスクのテクノロジー・ノード、材質および/またはシリーズ番号が異なる場合(S30のNO)、第1判断回路31は、その過去のマスクがマスク1と同様でないと判断する。マスク1と同様でない過去のマスクの推定ポイントは、マスク1の推定ポイントの抽出には用いず、フィルタ係数の算出には用いない(S40)。
【0048】
一方、マスク1および過去のマスクのテクノロジー・ノード、材質および/またはシリーズ番号が同一である場合(S30のYES)、第1判断回路31は、その過去のマスクがマスク1と同様であると判断する。尚、第1判断回路31は、テクノロジー・ノード、材質およびシリーズ番号の全てが同一である場合に、過去のマスクがマスク1と同様であると判断してもよい。あるいは、第1判断回路31は、テクノロジー・ノード、材質またはシリーズ番号いずれか1つまたは2つが同一である場合に、過去のマスクがマスク1と同様であると判断してもよい。
【0049】
過去のマスクがマスク1と同様であると判断された場合(S30のYES)、第2判断回路32が該過去のマスクについて検査が正常に完了しているか否かを判断する(S60)。過去のマスクについて検査が正常に完了していない場合(S60のNO)、その過去のマスクの推定ポイントは、マスク1の推定ポイントの抽出には用いず、フィルタ係数の算出には用いられない(S40)。
【0050】
一方、過去のマスクについて検査が正常に完了している場合(S60のYES)、相関判定回路33が、該過去のマスクにおいて選択されていた推定ポイント(正常な過去の推定ポイント)と形状、寸法または位置において相関の高いポイントをマスク1の描画パターン内で検索する(S70)。
【0051】
ここで、相関の高いポイントをマスク1の描画パターン内で検索するために、ステップS30〜S60において選択された正常な過去のマスク内において、正常な過去の推定ポイントの中から基準となる推定ポイントを選択する必要がある。以下、基準となる正常な過去の推定ポイント(基準ポイント)の選択方法について説明する。
【0052】
まず、基準ポイントは、オペレータが正常な過去のマスク内における過去の推定ポイントから任意に選択してもよい。この場合、正常な過去の推定ポイントの画像をモニタ41に表示し、オペレータは、モニタ41に表示されたポイントから選択してもよい。あるいは、制御計算機30が正常な過去の推定ポイントから基準ポイントを自動で選択してもよい。基準ポイントは1つだけ選択されてもよいが、複数選択されてもよい。
【0053】
例えば、基準ポイントを自動で選択する場合、制御計算機30は、条件(1):検査日時が比較的新しい(最近の)推定ポイント、条件(2):比較的多くの種類のパターン形状を含む推定ポイント、条件(3):パターンの寸法が比較的小さい推定ポイント、条件(4):位置座標がマスク1の検査領域内にある推定ポイント、および/あるいは、条件(5):より先に指定された推定ポイント(推定ポイントの画像の番号が小さいもの)を選択する。
【0054】
図3は、基準ポイントを自動で選択する方法を示すフロー図である。上記条件(1)〜(5)は、この順番(優先順位)で自動選択に用いられる。例えば、制御計算機30は、まず、条件(1)を満たす正常な過去の推定ポイントを基準ポイントとして選択する(S100)。選択された基準ポイントの数が、予め設定された閾値以下の場合(S110のNO)、基準ポイントの選択は終了する。
【0055】
一方、選択された基準ポイントの数が、予め設定された閾値よりも多い場合(S110のYES)、次に、制御計算機30は、条件(1)で選択された基準ポイントのうち、条件(2)を満たす正常な過去の推定ポイントを基準ポイントとして選択する(S130)。条件(2)で選択された基準ポイントの数が、予め設定された閾値以下の場合(S140のNO)、基準ポイントの選択は終了する。
【0056】
一方、条件(2)で選択された基準ポイントの数が、予め設定された閾値よりも多い場合(S140のYES)、次に、制御計算機30は、条件(2)を用いて選択された基準ポイントのうち、条件(3)を満たす正常な過去の推定ポイントを基準ポイントとして選択する(S150)。条件(3)で選択された基準ポイントの数が、予め設定された閾値以下の場合(S160のNO)、基準ポイントの選択は終了する(S120)。
【0057】
一方、条件(3)で選択された基準ポイントの数が、予め設定された閾値よりも多い場合(S160のYES)、次に、制御計算機30は、条件(3)を用いて選択された基準ポイントのうち、条件(4)を満たす正常な過去の推定ポイントを基準ポイントとして選択する(S170)。条件(4)で選択された基準ポイントの数が、予め設定された閾値以下の場合(S180のNO)、基準ポイントの選択は終了する(S120)。
【0058】
一方、条件(4)で選択された基準ポイントの数が、予め設定された閾値よりも多い場合(S180のYES)、次に、制御計算機30は、条件(4)を用いて選択された基準ポイントのうち、条件(5)を満たす正常な過去の推定ポイントを基準ポイントとして選択する(S190)。条件(5)で選択された基準ポイントは、画像の番号が小さい順に閾値まで選択する。このように、1または複数の基準ポイントが選択される。
【0059】
次に、相関判定回路33は、上記のように選択された基準ポイントを用いて、その基準ポイントに対して相関の高いポイント(以下、単に、相関の高いポイントともいう)をマスク1の検査領域内において検索する。相関の高いポイントの検索は、
図5〜
図8を参照して後述する。
【0060】
尚、基準ポイントが複数ある場合、相関判定回路33は、条件(1)〜(5)の優先順位の順番で、基準ポイントを相関の高いポイントの検索に用いる。
図4は、相関の高いポイントの検索に用いる基準ポイントの優先順位を示すフロー図である。例えば、相関判定回路33は、まず条件(1)で選択された基準ポイントに対して相関の高いポイントをマスク1の検査領域内において検索する(S200)。検索の結果、相関の高いポイント数が閾値に達した場合(S210のYES)、相関の高いポイントの検索処理は終了する。尚、相関の高いポイント数の閾値は、オペレータによって任意に選択された推定ポイント数と相関の高いポイント数との総和が所定値を超えないように設定される。
【0061】
一方、検索の結果、相関の高いポイント数が閾値よりも少なかった場合(S210のNO)、次に、相関判定回路33は、条件(2)で選択された基準ポイントに対して相関の高いポイントをマスク1の検査領域内において検索する(S220)。検索の結果、相関の高いポイント数が閾値に達した場合(S230のYES)、相関の高いポイントの検索処理は終了する。
【0062】
一方、検索の結果、相関の高いポイントが閾値よりも少なかった場合(S230のNO)、次に、相関判定回路33は、条件(3)で選択された基準ポイントに対して相関の高いポイントをマスク1の検査領域内において検索する(S240)。検索の結果、相関の高いポイント数が閾値に達した場合(S250のYES)、相関の高いポイントの検索処理は終了する。
【0063】
一方、検索の結果、相関の高いポイントが閾値よりも少なかった場合(S250のNO)、次に、相関判定回路33は、条件(4)で選択された基準ポイントに対して相関の高いポイントをマスク1の検査領域内において検索する(S260)。検索の結果、相関の高いポイント数が閾値に達した場合(S270のYES)、相関の高いポイントの検索処理は終了する。
【0064】
一方、検索の結果、相関の高いポイントが閾値よりも少なかった場合(S270のNO)、次に、相関判定回路33は、条件(5)で選択された基準ポイントに対して相関の高いポイントをマスク1の検査領域内において検索する(S280)。検索の結果、相関の高いポイント数が閾値に達した場合(S290のYES)、相関の高いポイントの検索処理は終了する。
【0065】
もし、相関の高いポイント数が閾値よりも少なかった場合(S290のNO)、
図3で選択された他の基準ポイントがあるか否かについて判断する(S292)。他の基準ポイントがある場合(S292のYES)、基準ポイントを変更し(S293)、その基準ポイントについても同様に検索を実行する。
他の基準ポイントが無い場合(S292のNO)、制御計算機30は、すでに相関が高いと判断されたマスク1のポイントを推定ポイントに付加して、フィルタ係数を算出する(S295)。相関が高いと判断されたポイントが無い場合には、制御計算機30は、推定ポイントを付加せずに、オペレータによって選択された推定ポイントを用いてフィルタ係数を算出する。
尚、相関が高いポイント数が上限値を超える場合、制御計算機30は、相関が高いポイントを、相関の高い順に上限値まで推定ポイントに付加すればよい。
【0066】
図5〜
図7を参照して、相関の高いポイントの検索について、より詳細に説明する。
【0067】
図5〜
図7は、過去の推定ポイントと相関の高いポイントの検索方法の一例を示す概念図である。
図5は、正常な過去の推定ポイントから選択された基準ポイントの画像である。基準ポイントには、例えば、縦ラインパターンPL1、横ラインパターンPL2およびホールパターンPHが含まれている。相関判定回路33は、上述のように選択された基準ポイントの画像を取得し、該基準ポイントの画像をもとに、マスク1の描画パターンのポイントを検索する。
【0068】
相関判定回路33は、例えば、基準ポイントに含まれる全種類の形状(縦ラインパターンPL1、横ラインパターンPL2およびホールパターンPH)を含むポイントをマスク1の描画パターンにおいて検索する。基準ポイントに含まれる全種類の形状を含むポイントがマスク1の検索範囲内に5ポイントあったものとする。例えば、
図6(A)〜
図6(E)には、縦ラインパターンPL1、横ラインパターンPL2およびホールパターンPHの全てが含まれるマスク1のポイントが示されている。マスク1のこれらのポイントが、形状において基準ポイントと相関の高いポイントである。
【0069】
このとき、相関判定回路33は、例えば、乱数を用いてマスク1の描画パターンのポイントをランダムに検査してよい。検索範囲は、描画パターンの検査領域の範囲内である。検索数は、上限を設けてもよい。例えば、検索数は、100ポイント(即ち、100枚の画像領域)であってもよい。
【0070】
もし、形状において基準ポイントと相関の高いポイントが無い場合、制御計算機30は、ポイントを推定ポイントに追加せず、オペレータによって選択された推定ポイント(第1領域)を用いてフィルタ係数を算出する(S45)。
【0071】
次に、相関判定回路33は、形状において相関の高い5つのポイントから、寸法において相関が高いポイントを検索する。例えば、相関判定回路33は、5つのポイントのそれぞれの中心枠Cにあるパターンの寸法差(基準ポイントの中心枠C内にあるパターンとマスク1のポイントの中心枠C内のポイントのパターンとの寸法差)が閾値以内であるポイントを検索する。
【0072】
図6(B)、
図6(D)および
図6(E)における中心枠Cのパターンの寸法は、
図5における中心枠Cのパターンの寸法と大きく異なり、それらの寸法差は、閾値以上であるとする。例えば、
図6(B)の中心枠C内のパターンの寸法は、
図5のそれよりもかなり小さく、それらの寸法差は閾値以上である。
図6(D)の中心枠C内のパターンの寸法は、
図5のそれよりもかなり大きく、それらの寸法差は閾値以上である。
図6(E)の中心枠C内には、パターンがない。この場合、相関判定回路33は、
図6(B)、
図6(D)および
図6(E)に示すポイントを選択しない。
【0073】
一方、
図6(A)および
図6(C)における中心枠Cのパターンの寸法は、
図5における中心枠Cのパターンの寸法に近く、それらの寸法差は、閾値未満であるとする。例えば、
図6(A)および
図6(C)の中心枠C内のパターンの寸法は、
図5のそれに近く、それらの寸法差は閾値未満である。この場合、
図6(A)
図6(A)および
図6(C)に示す2つのポイントを選択する。
【0074】
次に、相関判定回路33は、寸法において相関の高い2つのポイントから、位置において相関が高いポイントを検索する。例えば、相関判定回路33は、
図7(A)および
図7(B)の2つのポイントのうち、位置座標がマスク1の検査領域の範囲内にあるポイントを検索する。
【0075】
図7(B)のポイントは、マスク1の検査領域外であるとする。この場合、相関判定回路33は、
図7(B)に示すポイントを選択しない。一方、
図7(A)のポイントは、マスク1の検査領域内であるとする。この場合、相関判定回路33は、
図7(A)に示すポイントを選択する。即ち、
図8に示すポイントが、基準ポイントと相関の高いポイントとして選択される。
【0076】
図8は、基準ポイントと相関の高いポイントとして選択されたポイントを示す。マスク1の検査領域の描画パターンのうち、相関判定回路33において選択された
図8に示すポイントは、フィルタ係数の算出に用いられる推定ポイントに含められる。
【0077】
このように、本実施形態によるパターン検査装置100は、マスク1と類似する過去のマスクの正常な検査結果から推定ポイントを記憶部35から読み出し、この正常な過去の推定ポイント(基準ポイント)と相関の高いポイントをマスク1の描画パターン内において検索する。
【0078】
上記実施形態では、相関判定回路33は、形状、寸法および位置の全てにおいて相関の高いパターンを検索している。しかし、相関判定回路33は、形状、寸法または位置のいずれか一部において相関の高いパターンを検索してもよい。
【0079】
尚、
図5〜
図8では、相関の高いポイントは、1つだけ抽出されている。しかし、相関の高いポイントは、複数抽出されてもよい。また、
図5には、基準ポイントが1つだけ示されている。しかし、第1判断回路31、第2判断回路32および相関判定回路33は、複数の基準ポイントのそれぞれに対して、ステップS70を実行してもよい。
【0080】
図2のステップS70の検索は、マスク1の検査領域の全てについて実行してもよい。この場合、相関の高いポイントがかなり多数になることがある。従って、オペレータが任意に選択した推定ポイント(第1領域)の数と正常な過去の推定ポイントに対して相関の高いポイント(第2領域)の数との総数が所定値以上の場合、相関判定回路33は、その総和が所定値未満となるように、相関の高いポイントから相関の高い順にいくつか(例えば、3つ)のポイントを選択して推定ポイントに含めてもよい。このように相関の高い順にポイントを推定ポイントに含めることによって、制御計算機30は、より適切なフィルタ係数を短時間で算出することができる。尚、任意選択の推定ポイント数と相関の高いポイント数との総数が所定値未満の場合、相関判定回路33は、相関の高いポイントの全てを推定ポイントとして選択してよい。相関の高いポイントが抽出されなかった場合には、制御計算機30は、オペレータによって任意に選択された推定ポイントのみを用いてフィルタ係数を算出すればよい。
【0081】
あるいは、ステップS70の検索は、任意選択の推定ポイント数と相関の高いポイント数との総数が所定値に達した時点で終了させてもよい。この場合、相関判定回路33は、マスク1の検査領域の一部分について検索すれば足りる可能性がある。従って、適切なフィルタ係数を算出しつつ、ステップS70の検索時間を短縮することができる。
【0082】
図2を再度参照する。次に、過去の推定ポイントに対して相関の高いポイントを、マスク1の推定ポイントに含める(S80)。制御計算機30は、ステップS70における検索の結果、選択された
図8に示すポイントを自動でマスク1の推定ポイントに含める。あるいは、オペレータが
図8に示すポイントを手動でマスク1の推定ポイントに含めるか否かを判断してもよい。
【0083】
複数の相関の高いポイントが抽出される場合、制御計算機30は、抽出された複数のポイントの全てを、マスク1の推定ポイントに含めてもよい。あるいは、制御計算機30は、抽出された複数のポイントのうち、他の条件で選択したポイントを、マスク1の推定ポイントに含めてもよい。さらに、オペレータが、抽出された複数のポイントのうち任意で選択したポイントを、マスク1の推定ポイントに含めてもよい。
【0084】
次に、制御計算機30が、上述のように選択された推定ポイントのそれぞれにおいて、光学画像と描画パターンとが略一致するようにフィルタ係数を算出する(S85)。参照回路27が、マスク1の検査領域内の描画パターンにフィルタ係数を演算して描画パターンから参照画像を生成する(S90)。これにより、露光条件をエミュレートした参照画像を作成することができる。エミュレートは、フォトダイオードアレイ7がマスク1上の或るストライプを撮像している期間中に、その箇所の参照画像をリアルタイムで作成してもよい。
【0085】
描画パターンは、OPCを含む設計パターンであり、マスク1に実際に描画されるべきパターンである。即ち、描画パターンのデータは、OPCを含まない設計データ(pre−OPCデータ)ではなく、OPCを含む設計データ(post−OPCデータ)である。pre−OPCデータに従ったパターン(pre−OPCパターン)は、OPCを含まないため、露光工程でウェハに転写すべき転写パターンにほぼ等しい。一方、post−OPCデータに従ったパターン(post−OPCパターン)は、露光工程における光近接効果を考慮してマスク1に描画された描画パターンである。このため、マスク1の描画パターンは、ウェハへの転写パターンとは異なる。
【0086】
そこで、展開回路26および参照回路27は、ウェハの露光工程における露光条件をエミュレート(模擬)するために、描画パターンのデータを上記フィルタ係数で処理することによって参照画像を生成する。このフィルタ処理は、参照画像学習工程とも呼ばれる。このように参照画像学習工程によって露光条件をエミュレートすることによって、転写パターン(pre−OPCパターン)に近い参照画像が得られる。
【0087】
その後、比較回路25が、光学画像と参照画像とを比較してマスク1の欠陥を検出する(S95)。
【0088】
マスク1の欠陥検査が正常に完了した場合、フィルタ係数の算出に用いられた推定ポイントの画像データおよび座標は、パターン保存回路34を介して記憶部35へ格納される。これらの推定ポイントのデータは、その後、他のマスクの検査時に、過去の推定ポイント(即ち、基準ポイント)として利用され得る。
【0089】
また、推定ポイントは、その領域の画像のまま記憶部35に格納されても良い。あるいは、推定ポイントは、その領域のパターンの情報および座標等のデータ形式で記憶部35に格納されてもよい。パターンの情報とは、パターンの形状の特徴や種類を示す情報であり、例えば、推定ポイントにある縦ラインパターンの線幅および個数、横ラインパターンの線幅および個数、縦スペースパターンの線幅および個数、横スペースパターンの線幅および個数、ホールパターンの径および個数等の情報でよい。
【0090】
このように、本実施形態によるパターン検査装置100は、マスク1の参照画像を生成する際に、フィルタ係数を算出するために選択される少なくとも1カ所以上の推定ポイント(第1領域)に、正常な過去の推定ポイントと相関の高い少なくとも1カ所以上のポイント(第2領域)を自動で含める。これにより、参照回路27は、マスク1の描画パターンに対して適切なフィルタ係数を演算することができる。このようなフィルタ係数を用いて描画パターンから得られた参照画像は、擬似欠陥の少ない適切な参照画像となる。その結果、本実施形態によるパターン検査装置100は、適切なフィルタ係数を正確かつ短時間に算出することができ、擬似欠陥の少ないマスク検査を行うことができる。
【0091】
また、マスク1の推定ポイントは、正常に完了した過去の検査で用いられた推定ポイントに基づいて自動で選択される。そのような推定ポイントは、オペレータが任意に選択する推定ポイントに比べて、より精度の高い適切な参照画像を得ることができるため、信頼性が高いと言える。よって、フィルタ係数の算出のやり直しや擬似欠陥の多発による検査エラーが抑制され、検査時間の短縮に繋がる。
【0092】
本実施形態によるパターン検査装置におけるデータ処理方法の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、データ処理方法の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD−ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。また、データ処理方法の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。
【0093】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。