(58)【調査した分野】(Int.Cl.,DB名)
エポキシ樹脂、ジシアンジアミド、及び、平均粒径が15μm以下である2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンが配合されたエポキシ樹脂組成物を調製する調製工程と、
前記調製工程で調製したエポキシ樹脂組成物を強化繊維に含浸させる含浸工程と、
前記含浸工程で強化繊維に含浸させたエポキシ樹脂組成物を増粘させる増粘工程と、
を含む、シートモールディングコンパウンドの製造方法。
前記調製工程で調製するエポキシ樹脂組成物に配合される全エポキシ樹脂の70〜100質量%が、25℃で液状のビスフェノール型エポキシ樹脂である、請求項1に記載の製造方法。
前記含浸工程では、前記調製工程で調製したエポキシ樹脂組成物を一対のフィルムの塗布面に塗布し、該一対のフィルムの片方の塗布面上に強化繊維の短繊維又は短繊維束を撒いたうえで、該塗布面を、該一対のフィルムの他方の塗布面と貼り合わせる、請求項1〜5のいずれか一項に記載の製造方法。
【発明を実施するための形態】
【0031】
<第1の発明>
第1の発明に係るシートモールディングコンパウンドは、熱硬化性樹脂組成物の増粘物と強化繊維束とを含むシートモールディングコンパウンドであり、当該熱硬化性樹脂組成物が、成分(A):25℃における粘度が1Pa・s以上である液状のエポキシ樹脂、成分(B):エポキシ樹脂硬化剤、及び、成分(D):ビニル重合体粒子を含有し、前記成分(D)の含有量が、前記熱硬化性樹脂組成物に含まれるエポキシ樹脂の総量100質量部に対して10質量部以上、30質量部以下であり、前記熱硬化性樹脂組成物の増粘物の、到達粘度が150Pa・s以上20000Pa・s以下であり、最低粘度が2Pa・s以上600Pa・s以下であり、到達粘度は、最低粘度よりも高いものである。
【0032】
なお「エポキシ樹脂」という用語は熱硬化性樹脂の一つのカテゴリーの名称、或いは分子内にエポキシ基を有する化合物という化学物質のカテゴリーの名称として用いられるが、第1の発明においては後者の意味で用いられる。
【0033】
<シートモールディングコンパウンド>
第1の発明に係るシートモールディングコンパウンド(SMC)は、熱硬化性樹脂組成物の増粘物と強化繊維束とを含み、当該熱硬化性樹脂組成物の増粘物(以下「樹脂増粘物」と称することがある)の到達粘度が150Pa・s以上20000Pa・s以下であり、最低粘度が2Pa・s以上600Pa・s以下であり、かつ到達粘度が最低粘度よりも高いものである。
【0034】
ここで樹脂増粘物の到達粘度とは、SMC中に含まれる樹脂増粘物の30℃における粘度に相当する。
【0035】
第1の発明のSMCは、後述するように、熱硬化性樹脂組成物を強化繊維束に含浸させ、該熱硬化性樹脂組成物を増粘させることにより得られる。該熱硬化性樹脂組成物の増粘は、後述する成分(D)の働きにより生じる。より具体的には、成分(D)を含む熱硬化性樹脂組成物を、該成分(D)がエポキシ樹脂に溶解するか、該成分(D)がエポキシ樹脂により膨潤する温度以上に加熱することにより、熱硬化性樹脂組成物の粘度を上昇させる。樹脂組成物の粘度は最初急激に上昇し、ある値まで上昇した後、ほぼ一定となる。製品として出荷されるSMCに含まれる樹脂増粘物は、この粘度がほぼ一定となった状態に相当する。
【0036】
樹脂増粘物の到達粘度は、レオメーターを用いて以下のように測定される。
【0037】
まず、レオメーターのプレート温度を80℃以上90℃以下に設定する。温度が安定したことを確認した後、プレート上に増粘前の熱硬化性樹脂組成物を適量分取する。プレート間のギャップを0.5mmに調節し、80℃以上90℃以下で30分間保持し、その後30℃まで冷却する。冷却後、30℃における粘度を測定し、これを到達粘度とする。なお、測定時の条件は以下のとおりである。
【0038】
測定モード:応力一定、応力値300Pa
周波数:1.59Hz
プレート径:25mm
プレートタイプ:パラレルプレート
プレートギャップ:0.5mm
第1の発明に係るSMCに含まれる樹脂増粘物の到達粘度の下限値は150Pa・s以上であればよく、350Pa・s以上であることが好ましく、1000Pa・s以上であることがより好ましい。到達粘度の上限値は、20000Pa・s以下であればよく、15000Pa・s以下であることが好ましく、10000Pa・s以下であることがより好ましい。到達粘度が150Pa・s以上であることにより、十分な形態保持性を有し、切断及び成形型内への配置の際に取り扱いがし易いSMCとなり、20000Pa・s以下であることにより、プレス成形時の金型内での流動性が良好となる。したがって、到達粘度の下限値が150Pa・s以上であり、上限値が20000Pa・s以下であることにより、樹脂増粘物は成形性に優れる。
【0039】
第1の発明に係るSMCに含まれる樹脂増粘物の最低粘度の下限値は2Pa・s以上であればよく、5Pa・s以上であることが好ましく、10Pa・s以上であることがより好ましい。最低粘度の上限値は、600Pa・s以下であればよく、500Pa・s以下であることが好ましく、300Pa・s以下であることがより好ましい。樹脂増粘物の最低粘度の下限値が2Pa・s以上であることにより、プレス成形時における樹脂の流動を抑制するという効果があり、最低粘度の下限値が600Pa・s以下であることにより、複雑な形状の製品を成形する際に、成形型の細部まで樹脂組成物が流れこむため、良好な賦形性が得られる。樹脂増粘物の最低粘度とは、SMCが加熱加圧成形される際の、該SMC中の樹脂増粘物の最も低い粘度に相当する。なお、到達粘度は、最低粘度より高ければよいが、最低粘度より150Pa・s以上高いとプレス成形における成形性に優れるため好ましい。
【0040】
樹脂増粘物の最低粘度は、レオメーターを用いて2℃/分で昇温粘度測定した際に得られる、最も低い粘度である。なお測定時の測定モード、周波数、プレート径、プレートタイプ及びプレートギャップは、上述した到達粘度測定時と同様である。
【0041】
上述のような粘度特性を有する樹脂増粘物を得るために、第1の発明に係るシートモールディングコンパウンドに含まれる増粘前の熱硬化性樹脂組成物は、成分(A):25℃における粘度が1Pa・s以上である液状のエポキシ樹脂、成分(B):エポキシ樹脂硬化剤、及び、成分(D):ビニル重合体粒子を含有し、該成分(D)の含有量が、前記熱硬化性樹脂組成物に含まれるエポキシ樹脂の総量100質量部に対して10質量部以上、30質量部以下である。
【0042】
また、該成分(D)が、後述するように、エポキシ当量190±6g/eqのビスフェノールA型エポキシ樹脂に分散させて得られる分散体の増粘率d
1/d
0(ただし、d
0は、前記ビスフェノールA型エポキシ樹脂100質量部に対し、成分(D)30質量部を30℃で分散させて得られた分散体の調製直後の粘度、d
1は当該分散体を60℃に加温し、加温後に60℃のまま1時間保持した後の粘度を表す。)が1.0以下であることが好ましい。
【0043】
換言すると、熱硬化性樹脂組成物の増粘物と強化繊維束とを含むシートモールディングコンパウンドであり、当該熱硬化性樹脂組成物が、成分(A):25℃における粘度が1Pa・s以上である液状のエポキシ樹脂、成分(B):エポキシ樹脂硬化剤、及び、成分(D):ビニル重合体粒子を含有し、前記成分(D)の含有量が、前記熱硬化性樹脂組成物に含まれるエポキシ樹脂の総量100質量部に対して10質量部以上、30質量部以下であり、前記成分(D)は、エポキシ当量190±6g/eqのビスフェノールA型エポキシ樹脂に分散させて得られる分散体の増粘率d
1/d
0(ただし、d
0は、前記ビスフェノールA型エポキシ樹脂100質量部に対し、成分(D)30質量部を30℃で分散させて得られた分散体の調製直後の粘度、d
1は当該分散体を60℃に加温し、加温後に60℃のまま1時間保持した後の粘度を表す。)が1.0以下である、シートモールディングコンパウンドは、これに含まれる樹脂増粘物の到達温度及び最低温度が前述の範囲となりやすいため好ましい。
【0044】
第1の発明に用いられる熱硬化性樹脂組成物は、後述するように、強化繊維束への含浸に適した粘度を有するためSMCのマトリクス樹脂組成物として適している。また、比較的低温で増粘するため、増粘工程で組成物中のエポキシ樹脂の反応が促進されず、貯蔵安定性が良好なSMCを得ることができる。また、第1の発明に係る熱硬化性樹脂組成物は、SMCの成形時の加熱温度付近で適度に増粘するため、良好なタック性を有するSMCが得られる。
【0045】
<成分(A)>
第1の発明に用いられる熱硬化性樹脂組成物は、成分(A):25℃における粘度が1Pa・s以上である液状のエポキシ樹脂を含有する。このようなエポキシ樹脂を含むことにより、後述する成分(D):ビニル重合体粒子の熱硬化性樹脂組成物への溶解が生じる温度、又は、成分(D)の熱硬化性樹脂組成物による膨潤が生じる温度が低くなりすぎない。その結果、第1の発明に用いられる熱硬化性樹脂組成物をSMCの製造に用いる場合、熱硬化性樹脂組成物を強化繊維束へ含浸させる工程では、成分(D)が粒子形状を保つため、熱硬化性樹脂組成物は高い含浸性を有し、かつ、得られるSMCのタック性を適切な範囲に制御することができる。
【0046】
成分(A)は、25℃における粘度が1Pa・s以上である液状のエポキシ樹脂であればよいが、分子内に芳香族環を有するエポキシ樹脂であることが好ましい。硬化させた物の機械的特性を所望の範囲に調整できるからである。さらに、成分(A)は、2官能エポキシ樹脂であることがより好ましい。所望の耐熱性と靱性とが得られるからである。ここでいう「2官能エポキシ樹脂」とは、分子内に2個のエポキシ基を有する化合物を意味する。以下、「3官能エポキシ樹脂」等についても同様である。
【0047】
25℃における粘度が1Pa・s以上である液状の、芳香族環を有する2官能エポキシ樹脂としては、jER825、jER827、jER828、jER828EL、jER828XA、jER806、jER806H、jER807、jER4004P、jER4005P、jER4007P、jER4010P(以上、三菱化学株式会社製)、エピクロン840、エピクロン840−S、エピクロン850、エピクロン850−S、エピクロンEXA−850CRP、エピクロン850−LC、エピクロン830、エピクロン830−S、エピクロン835、エピクロンEXA−830CRP、エピクロンEXA−830LVP、エピクロンEXA−835LV(以上、DIC株式会社製)、エポトートYD−115、エポトートYD−115G、エポトートYD−115CA、エポトートYD−118T、エポトートYD−127、エポトートYD−128、エポトートYD−128G、エポトートYD−128S、エポトートYD−128CA、エポトートYDF−170、エポトートYDF−2001、エポトートYDF−2004、エポトートYDF−2005RL(以上、新日鉄住金化学株式会社製)等が挙げられる。さらに2種以上のエポキシ樹脂を併用してもよい。
【0048】
第1の発明に用いられる熱硬化性樹脂は、成分(A)以外のエポキシ樹脂を含んでもよい。成分(A)以外のエポキシ樹脂としては、25℃で半固形又は固形状態であるものが挙げられ、中でも芳香族環を有するものが好ましく、2官能エポキシ樹脂がさらに好ましい。
【0049】
25℃で半固形又は固形状態である芳香族環を有する2官能エポキシ樹脂としては、jER834、jER1001、jER1002、jER1003、jER1055、jER1004、jER1004AF、jER1007、jER1009、jER1010、jER1003F、jER1004F、jER1005F、jER1009F、jER1004FS、jER1006FS、jER1007FS、4004P、4005P、4007P、4010P(以上、三菱化学株式会社製)、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM−091、エピクロンHM−101(以上、DIC株式会社製)、エポトートYD−134、エポトートYD−011、エポトートYD−012、エポトートYD−013、エポトートYD−014、エポトートYD−017、エポトートYD−019、エポトートYD−020G、エポトートYD−7011R、エポトートYD−901、エポトートYD−902、エポトートYD−903N、エポトートYD−904、エポトートYD−907、エポトートYD−6020(以上、新日鉄住金化学株式会社製)等が挙げられる。さらに2種以上のエポキシ樹脂を併用しても良い。
【0050】
これらエポキシ樹脂の中でも25℃で液状のビスフェノール型エポキシ樹脂は、後述するようにSMCのマトリクス樹脂組成物として使用する場合に、強化繊維束への含浸に適した粘度に調整しやすく、かつ、SMC等を硬化して得られる成形体の機械的特性を、所望の範囲に調整しやすい点から好ましい。
【0051】
中でも特に、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂が好ましい。なおビスフェノールA型エポキシ樹脂は、これを含む熱硬化性樹脂組成物の硬化性、及び当該熱硬化性樹脂組成物の硬化物の耐熱性及び耐薬品性が良好である点が好ましく、ビスフェノールF型エポキシ樹脂は、同程度の分子量を有するビスフェノールA型エポキシ樹脂よりも粘度が低く、またこれを含む熱硬化性樹脂組成物の硬化物の弾性率が高いため好ましい。
【0052】
成分(A)以外のエポキシ樹脂として、2官能エポキシ樹脂以外にも、耐熱性向上及び粘度調整を目的として、様々なエポキシ樹脂を第1の発明に用いられる熱硬化性樹脂組成物に含有させることができる。耐熱性を向上させるためには多官能タイプ、ノボラック型、ナフタレン骨格のエポキシ樹脂が有効である。例として、jER152、154、157S70、1031S、1032H60、604、630、630LSD、YX4000、YX4000H、YL6121H、YX7399(以上、三菱化学株式会社製)、YDPN−638、YDCN−700−3、YDCN−700−5、YDCN−700−7、YDCN−700−10、YDCN−704、YDCN−704A(以上、新日鉄住金化学株式会社製)、N−660、N−665、N−670、N−673、N−680、N−690、N−695、N−665−EXP、N−672−EXP、N−655−EXP−S、N−662EXP−2、N−665−EXP−S、N−670−EXP−S、N−685−EXP−S、N−673−80M、N−680−75M、N−690−75M(以上、DIC株式会社製)が挙げられる。
【0053】
なお、熱硬化性樹脂組成物の粘度を調整するために、第1の発明の効果を損なわない範囲でいわゆる反応性希釈剤を混合することができる。なお本明細書において「反応性希釈剤」とは25℃における粘度が1Pa・s未満のエポキシ樹脂をいう。反応性希釈剤の例として、jER819(三菱化学株式会社製)、ジグリシジルアニリン(GAN、日本化薬株式会社製)、ジグリシジルトルイジン(GOT、日本化薬株式会社製)、ED−502、ED−509E、ED−509S、ED−529、ED−503、ED−503G、ED−506、ED−523T、ED−505(以上、株式会社ADEKA製)、EX−512、EX−411、EX−421、EX―313、EX―314、EX−321、EX−201、EX−211、EX−212、EX−810、EX−811、EX−850、EX−851、EX−821、EX−830、EX−911、EX−941、EX−920、EX−141、EX−145、EX−146(以上、ナガセケムテックス株式会社製)等が挙げられる。
【0054】
第1の発明に用いられる熱硬化性樹脂組成物における成分(A)の含有量は、該熱硬化性樹脂組成物の30℃における粘度が1Pa・s以上50Pa・s以下となるように定めることが好ましい。当該含有量は、成分(A)の種類により異なるが、該熱硬化性樹脂組成物に含まれるエポキシ樹脂の全量100質量部のうち、通常、下限値は20質量部以上であり、好ましくは60質量部以上である。また、上限値は、通常、100質量部以下であり、好ましくは100質量部以下である。含有量を上述の範囲とすることにより熱硬化性樹脂組成物を前記粘度範囲に容易に調整することができる。このような熱硬化性樹脂組成物をSMCの製造に使用した場合に、高い含浸性が得られる。また、前記範囲であれば、SMCを成形することにより、高靱性かつ高耐熱性の繊維強化複合材料が得られるため好ましい。
【0055】
<成分(B)>
第1の発明に用いられる熱硬化性樹脂組成物は、成分(B):エポキシ樹脂硬化剤を含む。
【0056】
成分(B)エポキシ樹脂硬化剤の種類としては、エポキシ樹脂を硬化させ得るものである限り限定されるものではないが、例えば、アミン、酸無水物(カルボン酸無水物等)、フェノール(ノボラック樹脂等)、メルカプタン、ルイス酸アミン錯体、オニウム塩、イミダゾール等が挙げられる。また、その形態は、マイクロカプセル型、アダクト等の様々な形態を採用し得る。
【0057】
例示した成分(B)の中でも、アミン型の硬化剤が好ましい。アミン型の硬化剤としては、例えばジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、及びこれらの異性体、変成体等がある。これらの中でも、これを含む熱硬化性樹脂組成物の貯蔵安定性が良好であるため、ジシアンジアミドが特に好ましい。成分(B)は、1種単独で使用してもよいし、2種以上を併用してもよい。
【0058】
成分(B)の含有量は、第1の発明に用いられる熱硬化性樹脂組成物に含まれるエポキシ樹脂の全量100質量部に対して、5質量部以上、20質量部以下で添加することがより好ましい。5質量部以上で硬化性がより向上し、20質量部以下で未反応硬化剤がより減少し、機械的特性が良好となる。
【0059】
<成分(C)>
第1の発明に用いられる熱硬化性樹脂組成物は、成分(C):エポキシ樹脂硬化促進剤を含むことがより好ましい。
【0060】
SMCとしては、貯蔵安定性があり、かつ、短時間で硬化できることが望まれる。貯蔵安定性の高い硬化剤を用いる場合、短時間での硬化をより容易とするために硬化促進剤を添加することが好ましい。
【0061】
硬化促進剤としては、硬化剤を活性化し得るものであれば限定されないが、例えば、3−フェニル−1,1−ジメチル尿素、3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素(DCMU)、3−(3−クロロ−4−メチルフェニル)−1,1−ジメチル尿素、2,4−ビス(3,3−ジメチルウレア)トルエン、1,1’−(4−メチル−1,3−フェニレン)ビス(3,3−ジメチル尿素)等の尿素誘導体が好ましい。ここに例示したものは、特に成分(B)として、ジシアンジアミドを採用する場合に、特に好ましい。中でも、成分(B)がジシアンジアミドであり、成分(C)を2,4−ビス(3,3−ジメチルウレア)トルエンとすることで硬化時間を大きく短縮することができる。
【0062】
成分(C)の含有量は、第1の発明に用いられる熱硬化性樹脂組成物に含まれるエポキシ樹脂の全量100質量部に対して、3質量部以上、10質量部以下の範囲で添加することがより好ましい。この範囲は成分(C)を2,4−ビス(3,3−ジメチルウレイド)トルエンとするときにさらに好ましい。3質量部以上で効率的に速硬化性を促進し、10質量部以下で耐熱性を損なうことなく硬化する。
【0063】
<成分D>
第1の発明に用いられる熱硬化性樹脂組成物は、成分(D):ビニル重合体粒子を含有する。
【0064】
成分(D)は、エポキシ当量190±6g/eqのビスフェノールA型エポキシ樹脂に分散させて得られる分散体の増粘率d
1/d
0が1.0以下となることが好ましい(ただし、d
0は、前記ビスフェノールA型エポキシ樹脂100質量部に対し、成分(D)30質量部を30℃で分散させて得られた分散体の調製直後の粘度、d
1は当該分散体を60℃に加温し、加温後に60℃のまま1時間保持した後の粘度を表す。)。
【0065】
成分(D)はマトリクス樹脂組成物中において、常温(すなわち10℃〜30℃程度)以上、60℃以下では粒子として分散して存在するため、これを含む熱硬化性樹脂組成物の粘度は、時間経過によりごく僅かに上昇するだけである。しかし、例えば80℃以上90℃以下の高温では成分(D)が成分(A)に溶解するか、又は成分(A)により成分(D)が膨潤することで、これを含む熱硬化性樹脂組成物の粘度が著しく高くなる。第1の発明に用いられる熱硬化性樹脂組成物は、このような性質を有する成分(D)を熱硬化性樹脂に含有させることによって、強化繊維束への含浸に適した粘度であることと、SMC等に成形したときに良好なタック性及び取り扱い性を得ることとを両立している。
【0066】
従来、マトリクス樹脂組成物が強化繊維束への含浸に適した粘度であることと、該マトリクス樹脂組成物を用いて得られるSMCが良好なタック性を有することは、トレードオフの関係にあった。強化繊維束に効率的に含浸させようとすると、マトリクス樹脂組成物には低粘度であることが求められるが、低粘度の樹脂組成物を用いてSMCを作製すると、良好なタック性が得られなかったからである。しかし、第1の発明に用いられる熱硬化性樹脂組成物はこの2点を両立している。つまり、成分(D)が溶解又は膨潤する前は低粘度であり、強化繊維束に含浸させることが容易である。加温により成分(D)を成分(A)に溶解させるか、成分(A)により成分(D)を膨潤させることにより、熱硬化性樹脂組成物の粘度を短時間に上昇させることができ、このような熱硬化性樹脂組成物を含むSMCは、表面のタックが抑制され、かつ、良好な取り扱い性も兼ね備えている。
【0067】
そのため、上述した熱硬化性樹脂組成物は、厚目付のプリプレグ、SMC、BMC等のマトリクス樹脂組成物に適している。
【0068】
特に、SMCに使用されるマトリクス樹脂組成物には、強化繊維束への含浸時には、プリプレグに通常使用されるマトリクス樹脂組成物よりも大幅に低い粘度であることが求められ、一方、得られたSMCの表面のタック性の観点から高い粘度であることが求められるため、その両方を満たすことは非常に困難である。しかし、第1の発明に用いられる熱硬化性樹脂組成物を使用することにより、それを達成することができる。
【0069】
さらにSMCの場合、SMCに含まれるマトリクス樹脂組成物の粘度が高くなることで、プレス成形時にマトリクス樹脂組成物の流動に伴い繊維も流動するため、強化繊維の濃度が均一な繊維強化複合材料を得ることができる。
【0070】
前述の、成分(D)の溶解又は膨潤による、熱硬化性樹脂組成物の増粘の程度(増粘後の粘度)は特定の範囲であることが好ましい。
【0071】
すなわち、60℃以下で1時間保持後の粘度は10Pa・s以下程度が好ましく、80℃以上で1時間保持後の粘度は100Pa・s以上程度であることが好ましい。
【0072】
このような粘度特性を実現するために、成分(D)の増粘率は1.0以下であることが好ましく、また成分(D)の含有量は、熱硬化性樹脂組成物に含まれる全エポキシ樹脂100質量部に対して10質量部以上30質量部以下であることが必要である。
【0073】
成分(D)の含有量を10質量部以上とすることにより、成分(D)の膨潤又は溶解によって、熱硬化性樹脂組成物の粘度が短時間で大幅に上昇するため、SMCのマトリクス樹脂組成物として使用することにより、表面のタック性を適切な値に制御することができる。
【0074】
また、成分(D)の含有量を30質量部以下とすることにより、これを含む熱硬化性樹脂組成物の十分な硬化性と、硬化後に得られる繊維強化複合材料等の成形体の良好な機械的特性とが得られるため好ましい。
【0075】
なお、本明細書において「増粘率」とは、d
1/d
0(d
0及びd
1は前述の通り。)を意味し、成分(D)の増粘率が1.0以下であることが好ましい。
【0076】
成分(D)として、d
1/d
0が1.0以下であるビニル重合体粒子を使用した場合、これを含む熱硬化性樹脂組成物の調製時に、撹拌時のせん断発熱による組成物の増粘が起こり難く、また得られた熱硬化性樹脂組成物を用いてSMCを製造する場合に、強化繊維束への含浸性が良好になるため好ましい。もし含浸不良のSMCを成形した場合、得られる成形体(繊維強化複合材料)における未含浸箇所が膨れること、及び、機械的強度が極端に低くなることがあり、良好な成形物が得られ難い。
【0077】
また、成分(D)は、エポキシ当量168±8g/eqのビスフェノールF型エポキシ樹脂に分散させて得られる分散体の増粘率d
1’/d
0’(ただし、d
0’は、前記ビスフェノールF型エポキシ樹脂100質量部に対し、前記成分(D)30質量部を30℃で分散させて得られた分散体の調製直後の粘度、d
1’は当該分散体を60℃に加温し、加温後に60℃のまま1時間保持した後の粘度を表す。)が1.0以下であることがより好ましい。
【0078】
また、成分(D)の体積平均一次粒子径は、400nm以上が好ましく、500nm以上がより好ましく、600nm以上が特に好ましく、また、2000nm以下が好ましく、1000nm以下がより好ましく、900nm以下が特に好ましい。体積平均一次粒子径を400nm以上とすることにより、粒子自体の熱的な安定性が高くなり、また2000nm以下とすることにより、これを含む熱硬化性樹脂組成物を強化繊維束に含浸させる際に、粒子が濾し取られて表面に偏在化することなく、強化繊維束の内部にまで進入することができ、機械的特性及び物理的特性が均一かつ高い繊維強化複合材料を得ることができる。
【0079】
なお、体積平均一次粒子径は、例えば、レーザー回折散乱式粒度分布測定装置等の従来公知の測定装置で測定することができる。
【0080】
成分(D)はビニル重合体粒子であり、ラジカル重合可能なビニル単量体を重合して得られる。
【0081】
成分(D)の原料となるラジカル重合可能なビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロ[5.2.1.02.6]デカン−8−イル−メタクリレート、ジシクロペンタジエニル(メタ)アクリレート等の(メタ)アクリレート;スチレン、α−メチルスチレン、ビニルトルエン等の芳香族ビニル単量体;ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の水酸基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、N−メチル−2,2,6,6−テトラメチルピペリジル(メタ)アクリレート等の、その他の官能基含有(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、フマル酸、イソクロトン酸、サリチル酸、ビニロキシ酢酸、アリロキシ酢酸、2−(メタ)アクリロイルプロパン酸、3−(メタ)アクリロイルブタン酸、4−ビニル安息香酸等のカルボキシ基含有ビニル単量体;(メタ)アクリロニトリル等のシアン化ビニル単量体;(メタ)アクリルアミド;モノメチルイタコネート、モノエチルイタコネート、モノプロピルイタコネート、モノブチルイタコネート、ジメチルイタコネート、ジエチルイタコネート、ジプロピルイタコネート、ジブチルイタコネート等のイタコン酸エステル;モノメチルフマレート、モノエチルフマレート、モノプロピルフマレート、モノブチルフマレート、ジメチルフマレート、ジエチルフマレート、ジプロピルフマレート、ジブチルフマレート等のフマル酸エステル;モノメチルマレート、モノエチルマレート、モノプロピルマレート、モノブチルマレート、ジメチルマレート、ジエチルマレート、ジプロピルマレート、ジブチルマレート等のマレイン酸エステル;及びビニルピリジン、ビニルアルコール、ビニルイミダゾール、ビニルピロリドン、酢酸ビニル、1−ビニルイミダゾール等の、その他のビニル単量体;が挙げられる。なお、本明細書において(メタ)アクリレートとは、アクリレート又はメタクリレートを示す。これらの単量体は、1種を単独で使用、又は2種以上を併用することができる。
【0082】
これらの単量体の中では、ラジカル重合が容易であり、かつ乳化重合が容易であることから、(メタ)アクリレート、前記その他の官能基含有(メタ)アクリレート、及びカルボキシ基含有ビニル単量体が好ましい。得られる熱硬化性樹脂組成物の貯蔵安定性を向上させることができる。
【0083】
尚、塩化ビニル及び塩化ビニリデンのようなハロゲン原子を含有する単量体は、金属腐食を引き起こす場合があることから、用いないことが望ましい。
【0084】
ビニル重合体粒子は、例えば、国際公開公報第2010/090246号パンフレット等に記載の方法に準じて製造することができる。
【0085】
また、前述のような増粘率を有するためには、成分(D)はコアシェル構造を有する粒子であることが好ましい。特に、各種(メタ)アクリレート及びカルボキシ基含有ビニル単量体からなる群から選択される少なくとも1つの単量体を重合させてなる、アクリル系樹脂からなるコアシェル粒子が好ましい。また、加温時に粘度の上昇が小さくなるという理由から、該単量体の総量における、分子中にエチレン性不飽和基を2個以上有する化合物の含有量が0.5質量%以下であることが好ましい。ビニル重合体粒子のコアを構成するモノマーとしては、エポキシ樹脂中で膨潤し、加熱時に粘度を上昇させやすいという理由から、(メタ)アクリレートが好ましく、シェルを構成するモノマーとしては、常温でエポキシ樹脂に対して貯蔵安定性を確保できるという理由から、(メタ)アクリレート、前記その他の官能基含有(メタ)アクリレート、及びカルボキシ基含有ビニル単量体が好ましい。
【0086】
成分(D)がコアシェル構造を有していることを確認する方法としては、例えば、重合過程でサンプリングされる重合体粒子の粒子径が確実に成長していること、及び重合過程でサンプリングされる重合体粒子の最低造膜温度(MFT)及び各種溶剤への溶解度が変化していることを同時に満足することを確認する方法が挙げられる。成分(D)を透過型電子顕微鏡(TEM)により観察して、同心円状の構造の有無を確認する方法、又は凍結破断された凝集物として回収されたビニル重合体粒子の切片を走査型電子顕微鏡(クライオSEM)で観察して、同心円状の構造の有無を確認してもよい。
【0087】
常温において、エポキシ樹脂中での安定性が高いビニル重合体粒子を得られる理由から、シェルを構成するポリマーはガラス転移温度(Tg)が高いポリマーが好ましい。具体的には、シェルを構成するポリマーのTgは60℃以上が好ましく、80℃以上がさらに好ましく、また、150℃以下が好ましく、140℃以下がさらに好ましい。シェルのTgが60℃以上であれば、常温で、成分(D)のエポキシ樹脂中での貯蔵安定性が良好となる。シェルのTgが150℃以下であれば、成分(D)がエポキシ樹脂の硬化物中で十分に膨潤又は溶解するため、粒子状で残存せず、高い機械的特性を有する繊維強化複合材料が得られる。
【0088】
また、加温時に膨潤又は溶解しやすいビニル重合体粒子を得られることから、コアを構成するポリマーのTgは、30℃以上が好ましく、50℃以上がさらに好ましく、また、130℃以下が好ましく、110℃以下がさらに好ましい。コアのTgが30℃以上であれば、成分(D)のエポキシ樹脂中での貯蔵安定性が良好となる。コアのTgが130℃以下であれば、成分(D)がエポキシ樹脂の硬化物中で十分に膨潤又は溶解するため、粒子状で残存せず、高い曲げ強度を有する繊維強化複合材料が得られる。
【0089】
またビニル重合体粒子のシェルの溶解度パラメータ(SP値)は、20以上であることが好ましい。このような粒子は、増粘率d
1/d
0 1.0以下を容易に実現することができる。
【0090】
ここでSP値は、国際公開公報第2013/077293号パンフレットに記載のように、重合体を構成する単量体単位の単量体のSp値(Sp(Ui))を式(1)に代入して求める。Sp(Ui)は、polymer Engineering and Science, Vol.14,147(1974)に記載されているFedorsの方法にて求めることができる。
【0091】
【数1】
(式(1)中、Miは単量体単位i成分のモル分率を示し、ΣMi=1である。)
以上の説明によって、当業者は成分(D)を容易に得ることができる。つまり、当業者は、以上の説明に基づき、また、国際公開公報第2010/090246号パンフレット及び国際公開公報第2013/077293号パンフレットも参考にすることで、体積平均一次粒子径、Tg及びSp値等を調整することで、増粘率を1.0以下のビニル重合体粒子を得ることができる。
【0092】
<成分E>
第1の発明に用いられる熱硬化性樹脂組成物は、成分(E):離型剤を含有していてもよい。
【0093】
一般的な離型剤(内部離型剤)としては、ステアリン酸等の高級脂肪酸及びその塩、フルオロアルキル基や長鎖アルキル基等を含む化合物等が挙げられる。
【0094】
第1の発明に用いられる熱硬化性樹脂組成物は、成分(D)を含むことにより、得られるSMCの表面のタック性と、成形時の樹脂フロー量を適正な範囲に制御することができる。しかし、成分(D)を過剰に含有する熱硬化性樹脂組成物は、硬化速度が低下したり、硬化後に得られる成形体の靱性が低下したりする傾向がある。成分(E)を併用することにより、熱硬化性樹脂組成物の硬化性の低下を抑制し、また、硬化後に得られる成形体の靱性の低下を抑制し、SMCの表面のタック性、及び、成形時の樹脂フロー量を、より容易に、より好ましい範囲に制御することができる。なお、低添加量で、適切なタック性を有する熱硬化性樹脂組成物が得られるため、成分(E)はフッ素原子を含有する化合物が好ましい。
【0095】
成分(E)の市販品としては、ケムリースIC−35(ケムリースジャパン株式会社製)、アルフローH−50TF、アルフローAD−281F、アルフローE−10(以上、日油株式会社製)、スリパックスE、スリパックスO、スリパックスC10(以上、日本化成株式会社製)、ダイフリーFB961、ダイフリーFB962(以上、ダイキン工業株式会社製)、サーフロンS−611、サーフロンS−651(以上、AGCセイミケミカル株式会社製)等がある。
【0096】
成分(E)の含有量は、第1の発明に用いられる熱硬化性樹脂組成物に含まれる全エポキシ樹脂100質量部に対して、0.1質量部以上、10質量部以下が好ましい。10質量部以下とすることにより、得られるSMCにおける、強化繊維と第1の発明に用いられる熱硬化性樹脂組成物との接着性が向上し、また当該SMCを用いて得られる繊維強化複合材料が高い耐熱性を得ることができる。
【0097】
<任意成分>
第1の発明に用いられる熱硬化性樹脂組成物は、必要に応じて、第1の発明の効果を損なわない範囲で、周知の各種添加剤を含んでいてもよい。添加剤とは、熱可塑性エラストマー、エラストマー微粒子、コアシェル型エラストマー微粒子、シリカ等の無機粒子、カーボンナノチューブ等の炭素質成分、リン化合物等の難燃剤、脱泡剤等であるがこれらに限られない。
【0098】
<粘度>
第1の発明に用いられる熱硬化性樹脂組成物の粘度は、30℃で1Pa・s以上50Pa・s以下であることが好ましい。1Pa・s以上であれば、成分(D)の膨潤又は溶解の制御が容易となる。例えば熱硬化性樹脂組成物の調製工程、又は該熱硬化性樹脂組成物の強化繊維束への含浸前に、成分(D)が膨潤又は溶解することを防ぐことができるので、含浸不良の発生を抑制できる。50Pa・s以下であれば、成分(D)を十分に膨潤又は溶解させることができ、十分な機械的特性(曲げ強度)を有する繊維強化複合材料が得られる。より好ましい粘度は15Pa・s以上であり、また、30Pa・s以下である。
【0099】
<強化繊維束>
第1の発明に係るSMC及び繊維強化複合材料に含有される強化繊維束としては、SMC及び繊維強化複合材料の用途に応じて様々なものを採用することができるが、3000本以上、60000本以下の範囲の単繊維からなる繊維束であって、束の長さが1cm以上10cm以下の短繊維が好ましい。特に、第1の発明に係るSMC及びこれから得る繊維強化複合材料においては、強化繊維束として、前記長さを有する前記範囲の数の短繊維からなる繊維束が二次元ランダムに積み重なったシート状物であることがより好ましい。
【0100】
強化繊維束を構成する強化繊維の具体例としては、炭素繊維、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維等が挙げられるが、中でも炭素繊維、ガラス繊維が好ましく、比強度及び比弾性率等の力学的特性に優れるという理由から炭素繊維がより好ましい。強化繊維の形態は、ロービング、ロービングクロス、チョップドストランド及びチョップドストランドマット等があり、特に限定はされないが、チョップドストランドが好ましい。
【0101】
<熱硬化性樹脂組成物の調製方法>
第1の発明に用いられる熱硬化性樹脂組成物は既知の方法で調製可能であり、例えば三本ロールミル、プラネタリーミキサー、ニーダ等の混合機を用いる方法が挙げられる。なお、成分(D):ビニル重合体粒子の膨潤や溶解を熱硬化性樹脂組成物の調製工程にて促さないために、加温は避ける方が好ましい。調製中の熱硬化性樹脂組成物の温度は60℃以上にならないよう制御することが好ましい。
【0102】
<SMC>
第1の発明に係るSMCは、上述した熱硬化性樹脂組成物及び強化繊維束を含有する。例えば、第1の発明に係るSMCは、前述した繊維束のシート状物に、当該熱硬化性樹脂組成物を十分に含浸したものであることが好ましい。
【0103】
繊維束のシート状物に第1の発明に用いられる熱硬化性樹脂組成物を含浸させる方法については、公知の様々な方法を採用することができる。
【0104】
例えば、上述した熱硬化性樹脂組成物を均一に塗布したフィルムを一対製造し、片方のフィルムの樹脂組成物塗布面に強化繊維束を無秩序に撒き、もう一方のフィルムの樹脂組成物塗布面と貼り合わせ、シート状にしたものを圧着含浸し、その後、当該熱硬化性樹脂組成物に含まれる増粘剤で室温又は加温下で増粘して、タック性を低下させる方法を採用することができる。
【0105】
上述した第1の発明の熱硬化性樹脂組成物を強化繊維束に含浸させた後、加温することで、SMCに含まれる成分(D)が短時間で溶解又は膨潤し、当該熱硬化性樹脂組成物を増粘させることができる。成分(D)の溶解又は膨潤による熱硬化性樹脂組成物の増粘は、湿度及び気温に大きく影響されず、膨潤後の粘度値が制御しやすい。
【0106】
熱硬化性樹脂組成物を増粘することで、SMCのタックが抑制され、成形作業に適したSMCを得ることができる。成分(D)を溶解又は膨潤させる温度(増粘温度)は60℃以上、120℃以下が好ましく、更にはエポキシ硬化剤のシェルフライフを考慮して70℃以上、90℃以下が好ましい。また増粘に要する時間は、増粘温度及び成分(D)の種類等により異なるが、通常80℃程度で約30分間である。
【0107】
<繊維強化複合材料>
第1の発明に係る繊維強化複合材料は、第1の発明に係るSMCを加熱硬化させることで得られる。
【0108】
SMCを用いた繊維強化複合材料は、例えば、1枚のSMCあるいは複数枚のSMCを重ねて、1対の成形型の間にセットし、120℃以上230℃以下で2分間以上60分間以下加熱して、熱硬化性樹脂組成物を硬化させ、成形品である繊維強化複合材料を得る。また、第1の発明のSMCは、ダンボール等のハニカム構造体を芯材とし、その両面又は片面にSMCを配して製造される成形品にも適用できる。
【0109】
<第2の発明>
第2の発明に係る成形材料は、強化繊維と、下記成分(F)〜(H)を含むエポキシ樹脂組成物とを含む。
(F)エポキシ樹脂
(G)ジシアンジアミド
(H)平均粒径が15μm以下である2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン。
【0110】
以下に第2の発明の好ましい実施の形態について説明するが、第2の発明はこれらの形態のみに限定されるものではない。
【0111】
第2の発明における「エポキシ樹脂」とは、分子内に一つ以上のエポキシ基を有する化合物をいう。また、「エポキシ樹脂組成物」という用語は、エポキシ樹脂及び硬化剤、場合により他の添加剤を含む組成物を意味する。
【0112】
「平均粒径」とは、特に断りに無い場合、レーザー回折法にて体積基準の粒度分布を測定して得られた、該粒度分布における累積頻度50%の粒径(D50)を表す。
「強化繊維基材」とは強化繊維の集合体であり、その形態については後述する。
【0113】
<成形材料>
第2の発明の成形材料は、強化繊維と、下記成分(F)〜(H)を含むエポキシ樹脂組成物とを含む。
(F)エポキシ樹脂
(G)ジシアンジアミド
(H)平均粒径が15μm以下である2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン。
【0114】
<エポキシ樹脂組成物>
(成分(F))
第2の発明における成分(F)エポキシ樹脂は、1種類でも複数種の混合物でもよい。
【0115】
成分(F)は、2官能以上のエポキシ樹脂からなることにより、これを含むエポキシ樹脂組成物の硬化物、ひいては当該硬化物を含む繊維強化複合材料が高い耐熱性を有することができるため好ましい。ここでいう「2官能以上のエポキシ樹脂」とは、分子内に2個以上のエポキシ基を有する化合物のことをいう。
【0116】
また成分(F)100質量部のうち、70質量部〜100質量部が液状のビスフェノール型エポキシ樹脂であると、これを含むエポキシ樹脂組成物の硬化物、ひいては当該硬化物を含む繊維強化複合材料が高い機械特性を有することができるため好ましい。さらに、後述する成分(I):ビニル重合体粒子のエポキシ樹脂組成物への溶解、又は成分(I)のエポキシ樹脂組成物による膨潤が生じる温度を、適度に高い温度に保つことができるため、該成分(F)及び(I)を含むエポキシ樹脂組成物を用いてSMC又はBMCを製造する場合、エポキシ樹脂組成物の強化繊維基材への含浸工程では、成分(I)が粒子形状を保つため高い含浸性が得られ、かつ、得られるSMC及びBMCのタック性を適切な範囲に制御することができる。
【0117】
2官能のビスフェノール型エポキシ樹脂としては、jER825、jER827、jER828、jER828EL、jER828XA、jER806、jER806H、jER807、jER4004P、jER4005P、jER4007P、jER4010P(以上、三菱化学株式会社製)、エピクロン840、エピクロン840−S、エピクロン850、エピクロン850−S、エピクロンEXA−850CRP、エピクロン850−LC、エピクロン830、エピクロン830−S、エピクロン835、エピクロンEXA−830CRP、エピクロンEXA−830LVP、エピクロンEXA−835LV(以上、DIC株式会社製)、エポトートYD−115、エポトートYD−115G、エポトートYD−115CA、エポトートYD−118T、エポトートYD−127、エポトートYD−128、エポトートYD−128G、エポトートYD−128S、エポトートYD−128CA、エポトートYDF−170、エポトートYDF−2001、エポトートYDF−2004、エポトートYDF−2005RL(以上、新日鉄住金化学株式会社製)等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。
【0118】
また成分(F)が多官能エポキシ樹脂を含有すると、得られるエポキシ樹脂組成物の硬化物、ひいては該硬化物を含む繊維強化複合材料の耐熱性を更に向上することができる。多官能エポキシ樹脂の例としては、jER152、jER154、jER157S70、jER1031S、jER1032H60、jER604、jER630、jER630LSD(以上、三菱化学株式会社製)、N−730A、N−740、N−770、N−775、N−740−80M、N−770−70M、N−865、N−865−80M、N−660、N−665、N−670、N−673、N−680、N−690、N−695、N−665−EXP、N−672−EXP、N−655−EXP−S、N−662−EXP−S、N−665−EXP−S、N−670−EXP−S、N−685−EXP−S、HP−5000(以上、DIC株式会社製)等が挙げられる。これらは単独で使用しても、2種以上を併用してもよい。
【0119】
(成分(G))
成分(G)はジシアンジアミドである。ジシアンジアミドは、非常に優れた貯蔵安定性を有するエポキシ樹脂組硬化剤である。また、ジシアンジアミドは強化繊維として炭素繊維を使用した繊維強化複合材料において、エポキシ樹脂組成物の硬化物と炭素繊維との高い接着性を実現するため、高い機械的特性を有する繊維強化複合材料を得ることができる。ただし、ジシアンジミアド単独で使用しても、120〜150℃の温度でエポキシ樹脂を短時間硬化させることはできず、成分(G)と後述する成分(H)を併用することで、短時間硬化が可能であり、かつ優れた貯蔵安定性を有するエポキシ樹脂組成物が得られる。
【0120】
成分(G)の含有量は、成分(F)100質量部に対して、2質量部以上、8質量部以下が好ましい。2質量部以上であれば、後述する成分(H)と併用することで、より短時間でエポキシ樹脂組成物を硬化することができる。一方、成分(G)が8質量部以下であればより高い耐熱性を有する硬化物が得られる。
【0121】
また、成分(G)の粒子径も、第2の発明に用いるエポキシ樹脂組成物の特性に影響する。例えば、粒子径が小さい場合、表面積が大きくなり、少ない添加量であっても短時間で硬化できる。また、繊維強化複合材料の場合、強化繊維基材への樹脂組成物の含浸時に、成分(G)が強化繊維基材の内部まで侵入する必要があるが、粒径が小さい場合、内部まで侵入する成分(G)粒子の割合が大きくなり、結果的に第2の発明に係る成形材料、SMC及びBMCの硬化時間が短くなる。そのような理由から成分(G)の平均粒子径は20μm以下が好ましく、更に10μm以下が好ましい。
【0122】
成分(G)ジシアンジアミドの市販品としては、DICY7、DICY15,DICY50(以上、三菱化学社製)、AmicureCG−NA、AmicureCg−325G、AmicureCG−1200G,Dicyanex1400F(以上、エアープロダクツ社製)等があるが、エポキシ樹脂組成物の短時間硬化を実現し、また強化繊維基材への良好な含浸性を得るためには、成分(D)の平均粒子径は小さいほど好ましい。
【0123】
(成分(H))
第2の発明における成分(H)は、平均粒径が15μm以下の2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンであり、イミダゾール系の硬化剤の中でも、室温でのエポキシ基との反応性が非常に低く、これを含むエポキシ樹脂組成物は貯蔵安定性に優れている。貯蔵安定性には優れているが、成分(H)単独では120〜150℃の温度でエポキシ樹脂組成物を短時間硬化させることはできず、前述の成分(G)と成分(H)を併用することで、短時間硬化が可能であり、かつ優れた貯蔵安定性を有するエポキシ樹脂組成物が得られる。
【0124】
成分(H)の含有量は、成分(F)100質量部に対して、4質量部以上、10質量部以下が好ましく、4質量部以上、8質量部以下がもっとも好ましい。4質量部以上の場合、成分(G)を併用すると速硬化性が得られる。また、10質量部以下の場合、十分な耐熱性を有する繊維強化複合材料が得られる。
【0125】
また、成分(H)の粒子径は第2の発明に用いられるエポキシ樹脂組成物の特性に、大きな影響を与える。例えば、粒子径が小さい場合、表面積が大きくなり、少ない配合量であっても、短時間でエポキシ樹脂組成物を硬化させることができる。また、繊維強化複合材料の場合、強化繊維基材への樹脂組成物の含浸時に、成分(H)が強化繊維基材の内部まで侵入する必要があるが、粒径が小さい場合、内部まで侵入する成分(H)粒子の割合が大きくなり、結果的に第2の発明に係る成形材料、SMC及びBMCの硬化時間が短くなる。そのような理由から成分(H)の平均粒子径は、15μm以下が好ましい。更に好ましくは12μm以下である。
【0126】
前述したように、成分(G)及び成分(H)はそれぞれ単独で使用した場合、エポキシ樹脂組成物中の貯蔵安定性は非常に良いが、短時間でエポキシ樹脂組成物を硬化させることは難しい。成分(G)と成分(H)を併用することで、はじめて貯蔵安定性を維持しながら、エポキシ樹脂組成物を短時間で硬化させることができ、また高い耐熱性を有する硬化物が得られる。
【0127】
(成分(I))
第2の発明のエポキシ樹脂組成物は、成分(I):コア部分のガラス転移温度が30〜130℃であり、シェル部分のガラス転移温度が60〜150℃以下である、コアシェル構造を有するビニル重合粒子体、を含有することが好ましい。成分(I)を含有することにより、これを含むエポキシ樹脂組成物の強化繊維基材への良好な含浸性と、結果として得られる成形材料、SMC及びBMCの良好な取扱性及び適度なタックとを、両立することができる。
【0128】
成分(I)は、常温〜60℃程度ではエポキシ樹脂組成物中に溶解または膨潤せず、粒子として分散して存在しており、これを含むエポキシ樹脂組成物の粘度は時間経過によりごく僅かに上昇するだけであるが、例えば80〜90℃程度の高温では成分(F)に溶解するか、又は成分(F)により膨潤することで、これを含むエポキシ樹脂組成物の粘度が著しく高くなる。このような性質を有する成分(I)をエポキシ樹脂組成物に含有させることによって、比較的低温におけるエポキシ樹脂組成物の強化繊維基材への良好な含浸性を実現し、かつSMC、BMCや成形材料(例えば厚目付けのプリプレグ)に使用した場合の良好なタック性と取り扱い性を実現することができる。つまり、従来トレードオフの関係にあった、エポキシ樹脂組成物の強化繊維基材への含浸性と、結果的に得られる成形材料やSMC、BMC等の取扱性・タック性とを、両立させることができる。
【0129】
さらにSMCの場合、SMCに含まれるマトリクス樹脂組成物(エポキシ樹脂組成物)の粘度が高くなることで、プレス成形時に金型内でマトリクス樹脂組成物の流動に伴い繊維も流動するため、強化繊維の濃度が均一な繊維強化複合材料を得ることができるため好ましい。
【0130】
このような粘度特性を実現するために、常温において、エポキシ樹脂中での安定性が高いビニル重合体粒子を得られる理由から、シェルを構成するポリマーはガラス転移温度(Tg)が高いポリマーが好ましい。具体的には、シェルを構成するポリマーのTgは60℃以上が好ましく、80℃以上がさらに好ましく、また、150℃以下が好ましく、130℃以下がさらに好ましい。シェルのTgが60℃以上であれば、成分(I)の常温におけるエポキシ樹脂組成物中での貯蔵安定性が良好となる。シェルのTgが150℃以下であれば、このような成分(I)を含むSMC、BMC及び成形材料の増粘時や成形時の加熱工程において、成分(I)は成分(F)により十分に膨潤又は溶解するため、粒子状で残存せず、機械的特性が高い繊維強化複合材料が得られる。
【0131】
また、成分(I)のコアを構成するポリマーのTgは、30℃以上が好ましく、50℃以上がさらに好ましく、また、130℃以下が好ましく、110℃以下がさらに好ましい。コアのTgが30℃以上であれば、成分(I)はエポキシ樹脂組成物中で粒子として安定して存在し、これを含むエポキシ樹脂組成物の貯蔵安定性が良好となる。コアのTgが130℃以下であれば、このような成分(I)を含むSMC、BMC及び成形材料の増粘時や成形時の加熱工程において、成分(I)は成分(F)により十分に膨潤又は溶解するため、粒子状で残存せず、曲げ強度が高い繊維強化複合材料が得られる。
【0132】
成分(I)の含有量は、成分(F)100質量部に対して10〜30重量部であることが好ましい。成分(I)の含有量を10質量部以上とすることにより、成分(I)の膨潤又は溶解によって、エポキシ樹脂組成物の粘度が短時間で大幅に上昇するため、SMCやBMCのマトリクス樹脂組成物として使用した場合に、表面のタック性を適切な値に容易に調整することができる。
【0133】
また、成分(I)の含有量を30質量部以下とすることにより、これを含むエポキシ樹脂組成物の十分な硬化性と、硬化後に得られる繊維強化複合材料の良好な機械的特性が得られるため好ましい。
【0134】
成分(I)の体積平均一次粒子径は、400nm以上が好ましく、500nm以上がより好ましく、600nm以上が特に好ましく、また、2000nm以下が好ましく、1000nm以下がより好ましく、900nm以下が特に好ましい。体積平均一次粒子径を400nm以上とすることにより、粒子自体の熱的な安定性が高くなり、また2000nm以下とすることにより、これを含むエポキシ樹脂組成物を強化繊維束に含浸させる際に、粒子が濾し取られて表面に局在化することなく、強化繊維束の内部にまで進入することができ、機械的特性や物理的特性が均一かつ高い繊維強化複合材料を得ることができる。
【0135】
なお、体積平均一次粒子径は、例えば、レーザー回折散乱式粒度分布測定装置等の従来公知の測定装置で測定することができる。
【0136】
成分(I)はビニル重合体粒子であり、ラジカル重合可能なビニル単量体を重合して得られる。
【0137】
成分(I)の原料となるラジカル重合可能なビニル単量体としては、例えば、国際公開公報第2010/090246号パンフレット等に記載の各種ビニル単量体から選択することができる。
【0138】
中でも、ラジカル重合が容易であり、且つ乳化重合が容易であることから、(メタ)アクリル酸、アルキル(メタ)アクリレート、及び水酸基含有アルキル(メタ)アクリレートが好ましい。このようなビニル単量体を用いて作製された成分(I)を用いることにより、得られるエポキシ樹脂組成物の貯蔵安定性を向上させることができる。
【0139】
尚、塩化ビニルや塩化ビニリデンのようなハロゲン原子を含有する単量体は、金属腐食を引き起こす場合があることから、用いないことが望ましい。
【0140】
ビニル重合体粒子は、例えば、国際公開公報第2010/090246号パンフレット等に記載の方法に準じて製造することができる。
【0141】
成分(I)は、コアシェル構造を有しているため、常温にてエポキシ樹脂組成物中での分散状態の安定性が高く、また加温により速やかにエポキシ樹脂(成分(F))に溶解またはエポキシ樹脂により膨潤する。
【0142】
成分(I)がコアシェル構造を有していることを確認する方法としては、例えば、重合過程でサンプリングされる重合体粒子の粒子径が確実に成長していること、及び重合過程でサンプリングされる重合体粒子の最低造膜温度(MFT)や各種溶剤への溶解度が変化していることを同時に満足することを確認する方法が挙げられる。成分(I)を透過型電子顕微鏡(TEM)により観察して、同心円状の構造の有無を確認する方法、又は凍結破断された凝集物として回収されたビニル重合体粒子の切片を走査型電子顕微鏡(クライオSEM)で観察して、同心円状の構造の有無を確認してもよい。
【0143】
<その他の成分>
第2の発明に用いられるエポキシ樹脂組成物は、成分(F)〜(I)以外の成分を含有していてもよく、例えば熱可塑性樹脂、熱可塑性エラストマー及びエラストマーからなる群から選ばれる1種以上の樹脂を含有していてもよい。このような樹脂は、エポキシ樹脂組成物の粘弾性を変化させて、粘度、貯蔵弾性率及びチキソトロープ性を適正化するだけでなく、エポキシ樹脂組成物の硬化物の靭性を向上させる役割がある。熱可塑性樹脂、熱可塑性エラストマー、及びエラストマーからなる1種以上の樹脂は、単独で使用してもよく、2種以上を併用してもよい。
【0144】
その他にもエポキシ樹脂組成物には、強化繊維複合材料の取扱性を向上させる添加剤、たとえばフィルムの離形性を向上させる界面活性剤や、成形型からの脱型性を向上させる内部離型剤などを添加しても良い。
【0145】
<エポキシ樹脂組成物の調製方法>
第2の発明のエポキシ樹脂組成物は既知の方法で調製可能であり、例えば三本ロールミル、プラネタリーミキサー、ニーダ等の混合機を用いる方法が挙げられる。なお、成分(I)を含むエポキシ樹脂組成物を調製する場合には、成分(I)の膨潤を促さないために、加温は避ける方が好ましく、調製中の樹脂組成物の温度は80℃以上にならないよう制御することが好ましく、更に60℃以上にならないよう制御することが好ましい。
【0146】
<強化繊維基材>
第2の発明に係る成形材料、SMC及びBMCは、前述のエポキシ樹脂組成物と強化繊維を含有するが、具体的には、エポキシ樹脂組成物を強化繊維からなる繊維基材(以下「強化繊維基材」と称す)に含浸させて作製する。
【0147】
強化繊維基材の形態としては、例えば織布、不織布、または連続繊維を一方向に引き揃えてなるシート状の形態、及び、連続繊維を一定の長さに切り揃えた短繊維(束)などが挙げられる。例えば成形材料がプリプレグである場合は、強化繊維基材の形態は、連続繊維を一方向に引き揃えてなるシート状の形態、連続繊維を経緯にして織物とした形態、トウを一方向に引き揃えて横糸(補助糸)で保持した形態、連続繊維を一方向に引き揃えてなる強化繊維のシートを複数枚、互いに異なる方向に重ねて補助糸で留め、マルチアキシャルワープニットとした形態、または不織布等が挙げられる。なかでもプリプレグの製造し易さの観点から、強化繊維基材の形態は、連続繊維を一方向に引き揃えてなるシート状の形態、連続繊維を経緯にして織物とした形態、トウを一方向に引き揃えて横糸(補助糸)で保持した形態、連続繊維を一方向に引き揃えてなる強化繊維のシートを複数枚、互いに異なる方向に重ねて補助糸で留め、マルチアキシャルワープニットとした形態が好ましい。得られる繊維強化複合材料の強度発現の観点からは、連続繊維を一方向に引き揃えてなるシート状の形態がさらに好ましい。
【0148】
また、SMC及びBMCの強化繊維基材としては、連続繊維を一定の長さに切り揃えた短繊維または短繊維束からなる強化繊維基材が用いられる。SMCの場合は、当該短繊維または短繊維束が二次元ランダムに積み重なったシート状物であることが好ましい。
【0149】
強化繊維の種類としては、炭素繊維(黒鉛繊維を含む)、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維等が挙げられる。これら強化繊維基材は、単独で使用してもよいし、二種以上を組み合わせて使用してもよい。このなかでも、比強度、比弾性率に優れる点、即ち、繊維方向弾性率が200GPa以上の成形品(繊維強化複合材料)が得られ、成形品の軽量化に大きな効果が認められることから、炭素繊維が好適である。
【0150】
<成形材料>
第2の発明における成形材料は、強化繊維と前述のエポキシ樹脂組成物を含有する。成形材料として、具体的にはプリプレグや、後述する増粘操作前のSMC(以下「SMC前駆体」と称することがある)や、同じく増粘操作前のBMC(以下「BMC前駆体」と称することがある)等が挙げられる。
【0151】
<SMC>
第2の発明に係るSMCは、強化繊維と、前述のエポキシ樹脂組成物の増粘物を含有する。より具体的には、連続した強化繊維を一定の長さに切り揃えた短繊維または短繊維束が、二次元ランダムに積み重なったシート状物に、前述のエポキシ樹脂組成物が含浸し増粘したものであることが好ましい。
【0152】
強化繊維のシート状物にエポキシ樹脂組成物を含浸させる方法については、公知の方法が種々挙げられる。例えば、第2の発明に係るエポキシ樹脂組成物を均一に塗布したフィルムを一対製造し、片方のフィルムの樹脂組成物塗布面に強化繊維の短繊維または短繊維束を無秩序に撒き、もう一方のフィルムの樹脂組成物塗布面と貼り合わせ、シート状にしたものを圧着含浸し、その後、加温下で増粘して、タック性を低下させる方法を採用することができる。
【0153】
第2の発明のSMCは、前述のように、成分(I)を含むエポキシ樹脂組成物を用いて作製されることが好ましい。成分(I)を含むエポキシ樹脂組成物は、強化繊維基材に含浸させた後、加温することで、速やかに成分(I)が成分(F)に溶解するか又は成分(F)により膨潤するため短時間で増粘する。成分(I)の溶解又は膨潤によるエポキシ樹脂組成物の増粘は、湿度及び気温に大きく影響されず、膨潤後の粘度値が制御しやすいため好ましい。
【0154】
エポキシ樹脂組成物を増粘させることで、SMCのタックが抑制され、成形作業時の取扱性が良好なSMCを得ることができる。成分(I)を溶解又は膨潤させる温度は、成分(I)の溶解性又は膨潤性の点から60℃以上が好ましく、エポキシ樹脂組成物の硬化反応を生じさせないためには130℃以下が好ましく、100℃以下がより好ましい。
【0155】
なお、増粘後のエポキシ樹脂組成物の粘度は、好ましくは30℃で300Pa・s以上であり、より好ましくは1000Pa・s以上、100,000Pa・s以下である。300Pa・s以上であれば、十分に粘度が高いため、SMCの切断作業等が容易になる。100,000Pa・s以下であると粘度が高すぎないため、プレス成形の際にエポキシ樹脂組成物が成形型内で良好な流動性を有する。
【0156】
<BMC>
第2の発明に係るBMCは、強化繊維と、前述のエポキシ樹脂組成物の増粘物を含有する。より具体的には、連続した強化繊維を一定の長さに切り揃えた短繊維または短繊維束と、前述のエポキシ樹脂組成物とを十分に混合してバルク状にした後、増粘させたものであることが好ましい。
【0157】
短繊維または短繊維束と第2の発明に係るエポキシ樹脂組成物とを混合してバルク状にする方法については、従来公知の様々な方法を採用することができ、特に限定されるものではないが、繊維への樹脂の含浸性、繊維の分散性など、生産性の点から加圧ニーダによって行うことが好ましい。この際、必要に応じて加熱しながら行っても良いが、樹脂が硬化を始める温度以下、好ましくは10℃以上、35℃以下で行うことが望ましい。またこの際、圧力は大気圧以上にかける必要は特にないが、エポキシ樹脂組成物の粘度が高い場合、該樹脂組成物が空気を取り込み混練され、繊維への樹脂含浸が困難になる場合は大気圧以上の圧力をかけて行っても良い。
【0158】
第2の発明に用いるエポキシ樹脂組成物を、強化繊維の短繊維または短繊維束と混合した後、加温することで、BMCに含まれる成分(I)が短時間で溶解又は膨潤し、当該エポキシ樹脂組成物を増粘することができる。成分(I)の溶解又は膨潤による増粘は、湿度及び気温に大きく影響されず、膨潤後の粘度値が制御しやすい。
【0159】
エポキシ樹脂組成物を増粘することで、BMCのタックが抑制され、成形作業時の取扱性が良好なBMCを得ることができる。成分(I)を溶解又は膨潤させる温度は、成分(I)の溶解性又は膨潤性の観点から60℃以上が好ましく、エポキシ樹脂組成物の硬化反応を生じさせないためには130℃以下が好ましく、100℃以下がより好ましい。
【0160】
なお、増粘後のエポキシ樹脂組成物の粘度は、好ましくは25℃で500Pa・s以上であり、より好ましくは1000Pa・s以上、また、好ましくは100,000Pa・s以下である。
【0161】
<繊維強化複合材料>
第2の発明に係る繊維強化複合材料は、第2の発明に係る成形材料、SMC又はBMCを加熱硬化させることで得られる。
【0162】
例えば、成形材料の一つであるプリプレグを硬化させることにより、繊維強化複合材料を得る場合、オートクレーブ成形、真空バッグ成形、プレス成形等の方法が挙げられるが、第2の発明に用いられるエポキシ樹脂組成物の特徴を活かして、生産性が高く、良質な繊維強化複合材料が得られるという観点から、プレス成形が好ましい。プレス成形で繊維強化複合材料を作製する場合における製造方法は、第2の発明のプリプレグ、または第2の発明のプリプレグを積層してなるプリフォームを、予め硬化温度に調整した金型に挟んで加熱加圧する工程を含むことが好ましい。
【0163】
プレス成形時の金型内の温度は、100〜150℃であることが好ましい。また、プレス成形時においては、プリプレグまたはプリフォームを、前記温度及び圧力1〜15MPaの条件下で、1〜20分間硬化させることが好ましい。
【0164】
前記条件のプレス成形を行うことによって繊維強化複合材料を製造する場合には、プレス成形後、繊維強化複合材料を金型から取り出すときに望ましくない変形を避けるために、硬化後の繊維強化複合材料のガラス転移温度、特に、貯蔵剛性率(G’)が低下し始める温度として決定されるG’−Tgが、成形時の金型内の温度よりも高いことが望ましい。例えば、エポキシ樹脂組成物を強化繊維基材に含浸して得られるプリプレグを140℃に予熱した金型で挟んで1MPaに加圧し、5分間保持して作製される繊維強化複合材料のG’−Tgは、150℃以上であることが好ましい。ここで、G’−Tgとは、エポキシ樹脂組成物の硬化物(硬化樹脂)の動的粘弾性測定によって得られる貯蔵剛性率(G’)の温度依存性により、後述の方法によって決定されるガラス転移温度のことを意味する。
【0165】
SMCを用いた繊維強化複合材料は、例えば、1枚のSMCあるいは複数枚のSMCを重ねて、1対の成形型の間にセットし、120〜180℃で2〜10分間加熱して、エポキシ樹脂組成物を硬化させることにより得られる。また、第2の発明のSMCは、ダンボール等のハニカム構造体を芯材とし、その両面又は片面にSMCを配して製造される成形品にも適用できる。
【0166】
BMCを用いた繊維強化複合材料は、圧縮成形、移送成形、射出成形等のいずれの成形方法によっても得ることができるが、第2の発明で用いられる樹脂は室温付近で樹脂粘度が高い場合が多いことから、所定の形状の金型などに第2の発明のBMCを圧入した後、金型を加熱及び加圧することで硬化せしめる圧縮成形を用いることで、複雑な形状の成形品であっても短時間で得ることが可能である。
【0167】
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【0168】
〔付記事項〕
第1の発明に係るシートモールディングコンパウンドは、熱硬化性樹脂組成物の増粘物と強化繊維束とを含むシートモールディングコンパウンドであり、当該熱硬化性樹脂組成物が、成分(A):25℃における粘度が1Pa・s以上である液状のエポキシ樹脂、成分(B):エポキシ樹脂硬化剤、及び、成分(D):ビニル重合体粒子を含有し、前記成分(D)の含有量が、前記熱硬化性樹脂組成物に含まれるエポキシ樹脂の総量100質量部に対して10質量部以上、30質量部以下であり、前記熱硬化性樹脂組成物の増粘物の、到達粘度が150Pa・s以上20000Pa・s以下であり、最低粘度が2Pa・s以上600Pa・s以下であり、到達粘度は、最低粘度よりも高いことを特徴としている。
【0169】
また、第1の発明に係るシートモールディングコンパウンドでは、前記成分(D)は、エポキシ当量190±6g/eqのビスフェノールA型エポキシ樹脂に分散させて得られる分散体の増粘率d
1/d
0(ただし、d
0は、前記ビスフェノールA型エポキシ樹脂100質量部に対し、成分(D)30質量部を30℃で分散させて得られた分散体の調製直後の粘度、d
1は当該分散体を60℃に加温し、加温後に60℃のまま1時間保持した後の粘度を表す。)が1.0以下であることがより好ましい。
【0170】
また、第1の発明に係るシートモールディングコンパウンドでは、前記成分(D)は、エポキシ当量168±8g/eqのビスフェノールF型エポキシ樹脂に分散させて得られる分散体の増粘率d
1’/d
0’(ただし、d
0’は、前記ビスフェノールF型エポキシ樹脂100質量部に対し、前記成分(D)30質量部を30℃で分散させて得られた分散体の調製直後の粘度、d
1’は当該分散体を60℃に加温し、加温後に60℃のまま1時間保持した後の粘度を表す。)が1.0以下であることがより好ましい。
【0171】
また、第1の発明に係るシートモールディングコンパウンドは、熱硬化性樹脂組成物の増粘物と強化繊維束とを含むシートモールディングコンパウンドであり、当該熱硬化性樹脂組成物が、成分(A):25℃における粘度が1Pa・s以上である液状のエポキシ樹脂、成分(B):エポキシ樹脂硬化剤、及び、成分(D):ビニル重合体粒子を含有し、前記成分(D)の含有量が、前記熱硬化性樹脂組成物に含まれるエポキシ樹脂の総量100質量部に対して10質量部以上、30質量部以下であり、前記成分(D)は、エポキシ当量190±6g/eqのビスフェノールA型エポキシ樹脂に分散させて得られる分散体の増粘率d
1/d
0(ただし、d
0は、前記ビスフェノールA型エポキシ樹脂100質量部に対し、成分(D)30質量部を30℃で分散させて得られた分散体の調製直後の粘度、d
1は当該分散体を60℃に加温し、加温後に60℃のまま1時間保持した後の粘度を表す。)が1.0以下であることを特徴としている。
【0172】
また、第1の発明に係るシートモールディングコンパウンドでは、前記熱硬化性樹脂組成物の30℃における粘度が1Pa・s以上50Pa・s以下であることがより好ましい。
【0173】
また、第1の発明に係るシートモールディングコンパウンドでは、前記成分(D)がアクリル系樹脂からなる粒子であることがより好ましい。
【0174】
また、第1の発明に係るシートモールディングコンパウンドでは、前記成分(D)がコアシェル粒子であることがより好ましい。
【0175】
また、第1の発明に係るシートモールディングコンパウンドでは、前記コアシェル粒子におけるコアのガラス転移温度が30℃以上であることがより好ましい。
【0176】
また、第1の発明に係るシートモールディングコンパウンドでは、前記コアシェル粒子におけるシェルのガラス転移温度が60℃以上であることがより好ましい。
【0177】
また、第1の発明に係るシートモールディングコンパウンドでは、前記コアシェル粒子におけるシェルの溶解度パラメータ(SP値)が20以上であることがより好ましい。
【0178】
また、第1の発明に係るシートモールディングコンパウンドでは、前記コアシェル粒子におけるシェルが、アクリレート、メタクリレート、及びカルボン酸含有ビニル単量体からなる群なる群から選択される少なくとも1つの単量体の重合体であり、該単量体の総量における、分子中にエチレン性不飽和基を2個以上有する化合物の含有量が0.5質量%以下であることがより好ましい。
【0179】
また、第1の発明に係るシートモールディングコンパウンドでは、前記成分(D)の体積平均一次粒子径が500nm以上、1000nm以下であることがより好ましい。
【0180】
また、第1の発明に係るシートモールディングコンパウンドでは、前記成分(A)がビスフェノールA型エポキシ樹脂であることがより好ましい。
【0181】
また、第1の発明に係るシートモールディングコンパウンドでは、前記熱硬化性樹脂組成物が、成分(C):エポキシ樹脂硬化促進剤をさらに含むことがより好ましい。
【0182】
また、第1の発明に係るシートモールディングコンパウンドでは、前記熱硬化性樹脂組成物が、成分(E):離型剤をさらに含有することがより好ましい。
【0183】
また、第1の発明に係るシートモールディングコンパウンドでは、前記熱硬化性樹脂組成物が、成分(C):エポキシ樹脂硬化促進剤をさらに含み、前記成分(B)がジシアンジアミドであり、前記成分(C)が2,4−ビス(3,3−ジメチルウレア)トルエンであることがより好ましい。
【0184】
また、第1の発明に係るシートモールディングコンパウンドでは、前記強化繊維束が炭素繊維束であることがより好ましい。
【0185】
また、第1の発明に係る繊維強化複合材料は、上記シートモールディングコンパウンドの硬化物であることを特徴としている。
【0186】
また、第2の発明に係る成形材料は、強化繊維と、下記成分(F)〜(H)を含むエポキシ樹脂組成物とを含むことを特徴としている。(F)エポキシ樹脂、(G)ジシアンジアミド、(H)平均粒径が15μm以下である2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン。
【0187】
また、第2の発明に係る成形材料は、前記エポキシ樹脂組成物において、成分(F)は、25℃で液状のビスフェノール型エポキシ樹脂を70〜100質量%含み、前記成分(G)の含有量は、前記成分(F)100質量部に対して2〜8質量部であり、前記成分(H)の含有量は、前記成分(F)100質量部に対して4〜10質量部であることがより好ましい。
【0188】
また、第2の発明に係る成形材料は、さらに成分(I):コア部分のガラス転移温度が30〜130℃であり、シェル部分のガラス転移温度が60〜150℃以下である、コアシェル構造を有するビニル重合粒子体を含み、該成分(I)の含有量が、前記成分(F)100質量部に対して10〜30質量部であることがより好ましい。
【0189】
また、第2の発明に係る成形材料は、前記強化繊維が炭素繊維であることがより好ましい。
【0190】
また、第2の発明に係るシートモールディングコンパウンドは、強化繊維と、下記成分(F)〜(I)を含むエポキシ樹脂組成物の増粘物とを含むことを特徴としている。成分(F)エポキシ樹脂、成分(G)ジシアンジアミド、成分(H)平均粒径が15μm以下である2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、成分(I)コア部分のガラス転移温度が30〜130℃であり、シェル部分のガラス転移温度が60〜150℃以下である、コアシェル構造を有するビニル重合粒子体。
【0191】
また、第2の発明に係るシートモールディングコンパウンドは、前記強化繊維が炭素繊維であることがより好ましい。
【0192】
また、第2の発明に係る繊維強化複合材料は、前記成形材料の硬化物であることがより好ましい。
【0193】
また、第2の発明に係る繊維強化複合材料は、前記シートモールディングコンパウンドの硬化物であることがより好ましい。
【0194】
また、第2の発明に係るバルクモールディングコンパウンドは、強化繊維と、下記成分(F)〜(I)を含むエポキシ樹脂組成物の増粘物とを含むことを特徴としている。成分(F)エポキシ樹脂、成分(G)ジシアンジアミド、成分(H)平均粒径が15μm以下である2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、成分(I)コア部分のガラス転移温度が30〜130℃であり、シェル部分のガラス転移温度が60〜150℃以下である、コアシェル構造を有するビニル重合粒子体。
【0195】
また、第2の発明に係るバルクモールディングコンパウンドは、前記強化繊維が炭素繊維であることがより好ましい。
【0196】
また、第2の発明に係る繊維強化複合材料は、前記バルクモールディングコンパウンドの硬化物であることがより好ましい。
【実施例】
【0197】
<第1の発明に係る実施例>
【0198】
以下、第1の発明に係る実施例により第1の発明を具体的に説明するが、第1の発明はこれらの実施例に限定されるものではない。
【0199】
[原料]
<成分A>
・ビスフェノールA型液状エポキシ樹脂(三菱化学株式会社製、製品名「jER828」)
・ビスフェノールF型液状エポキシ樹脂(三菱化学株式会社製、製品名「jER807」)
<成分B>
・ジシアンジアミド(三菱化学株式会社製、製品名「DICY15」)
・ジシアンジアミド(エアプロダクツ社製、製品名「DICYANEX 1400F」)・2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン(四国化成株式会社製、製品名「2MZA−PW」)
<成分C>
・2,4−ビス(3,3−ジメチルウレア)トルエン(Emerald Performance Materials社製、製品名「Omicure U−24」)
<成分D>
ビニル重合粒子を以下の条件で製造した。
【0200】
〔ビニル重合体粒子A,B,Dの製造(組成表1)〕
温度計、窒素ガス導入管、撹拌棒、滴下漏斗及び冷却管を装備した2リットルの4つ口フラスコに純水を入れた。各ビニル重合体粒子を製造するために使用した純水の重量は、組成表1の2行目に示すとおりである。次に、30分間、窒素ガスを十分に通気し、純水中の溶存酸素を置換した。窒素ガスの通気を停止した後、200rpmで撹拌しながら80℃に昇温した。内温が80℃に達した時点で単量体混合物(M1)、開始剤として過硫酸カリウム及び純水を所定量それぞれ添加し、1時間重合を行った。引き続き単量体混合物(M2)を所定量滴下によって投入した。
【0201】
次に、単量体混合物(M2)の重合による発熱が見られなくなった後、1時間保持し、単量体混合物(M3)を所定量投入した。単量体混合物(M3)投入後、80℃にて1時間撹拌を継続して、各ビニル重合体粒子の重合体粒子分散液を得た。各ビニル重合体粒子の重合体粒子分散液をL−8型スプレードライヤー(大河原化工機(株)製)を用いて噴霧乾燥し(入口温度/出口温度=150/65℃、ディスク回転数25000rpm)、ビニル重合体粒子を得た。
【0202】
〔ビニル重合体粒子Cの製造(組成表1)〕
温度計、窒素ガス導入管、撹拌棒、滴下漏斗及び冷却管を装備した2リットルの4つ口フラスコに、純水544gを入れ、30分間、窒素ガスを十分に通気し、純水中の溶存酸素を置換した。窒素ガスの通気を停止した後、200rpmで撹拌しながら80℃に昇温した。内温が80℃に達した時点で単量体混合物(M1)、開始剤として過硫酸カリウム0.16g及び純水20.0gを添加し、1時間重合を行った。引き続き単量体混合物(M2)を滴下によって投入した。
【0203】
次に、単量体混合物(M2)の重合による発熱が見られなくなった後、1時間保持し、KPS1.60g及び純水40.0gを投入後、単量体混合物(M3)を投入した。続いて、単量体混合物(M3)の重合による発熱が見られなくなった後、単量体混合物(M4)を所定量投入した。さらに単量体混合物(M4)投入後、80℃にて1時間撹拌を継続して、ビニル重合体粒子Cの重合体粒子分散液を得た。L−8型スプレードライヤー(大河原化工機(株)製)を用いて、ビニル重合体粒子Cの重合体粒子分散液を噴霧乾燥し(入口温度/出口温度=150/65℃、ディスク回転数25000rpm)、ビニル重合体粒子Cを得た。
【0204】
【表1】
【0205】
組成表1中の略号は以下の化合物を示す。
MMA :メチルメタクリレート
n−BMA :n−ブチルメタクリレート
i−BMA :i−ブチルメタクリレート
t−BMA :t−ブチルメタクリレート
MAA :メタクリル酸
2−HEMA :2−ヒドロキシエチルメタクリレート
GMA :メタクリル酸グリシジル
AAEM :メタクリル酸2−アセトアセトキシエチル
ペレックスOT−P :ジアルキルスルホコハク酸ナトリウム(商品名、花王(株)製)KPS :過硫酸カリウム
エマルゲン106 :ポリオキシエチレンラウリルエーテル(商品名、花王(株)製)
AIBN :アゾビスイソブチロニトリル
V−65 :2,2’−アゾビス(2,4−ジメチルバレロニトリル)(商品名、和光純薬工業(株)製)
OTG :チオグリコール酸−2−エチルヘキシル(商品名、淀化学(株)製)。
【0206】
<成分E>
・FB−962:「ダイフリー FB−962」(フッ素含有ノンシリコーン系離型剤、ダイキン工業株式会社製、商品名)
・MOLD WIZ INT−1882(脂肪酸エステル系離型剤、AXEL社、商品名)。
【0207】
<強化繊維束>
・炭素繊維束:引張強度4.9GPa、引張弾性率240GPa、フィラメント数15000本、目付1.0g/m(三菱レイヨン株式会社製、製品名「TR50S15L」)
・炭素繊維束:引張強度4.9GPa、引張弾性率240GPa、フィラメント数12000本、目付0.8g/m(三菱レイヨン株式会社製、製品名「TR50S12L」)
【0208】
[硬化剤マスターバッチの調製]
エポキシ樹脂とエポキシ樹脂硬化剤とを質量比1:1の割合で容器に計量し、撹拌及び混合した。これを三本ロールミルにてさらに細かく混合して、硬化剤マスターバッチを得た。
【0209】
[熱硬化性樹脂組成物調製法]
ガラスフラスコに成分(A)〜成分(E)をそれぞれ所定量分取した。その後、50℃程度のウォーターバス中で均一になるまで撹拌翼を用いて撹拌して、熱硬化性樹脂組成物を調製した。
【0210】
[粘度測定法]
レオメーターVAR−100(Reologica Instruments AB社製)で粘度を測定した。測定条件を以下に示す。
測定モード:応力一定。応力値300Pa
周波数:1.59Hz
プレート径:25mm
プレートタイプ:パラレルプレート
プレートギャップ:0.5mm
測定時のプレート温度:30℃又は60℃
【0211】
[SMCの製造法と、ドレープ性、フィルム離型性、タック、含浸性の評価法]
ポリエチレンフィルムに、塗布量が750g/m
2となるように熱硬化性樹脂組成物を均一に塗布し、樹脂フィルムを2枚作製した。そのうちの1枚の樹脂フィルムにおける熱硬化性樹脂組成物塗布面に、繊維量が1500g/m
2となるように約2.5cmにチョップした炭素繊維(TR50S12L)をランダムに真上からばらまいた。当該樹脂フィルムにおける熱硬化性樹脂組成物塗布面に、他方のもう1枚の樹脂フィルムにおける熱硬化性樹脂組成物塗布面を、真上から貼り合わせ、合計3000g/m
2となる未含浸・未増粘のSMCを作製した。当該未含浸・未増粘のSMCを加温・加圧下で十分に熱硬化性樹脂組成物を含浸させた後、80℃のオーブンに30分間投入し増粘させ、SMCを得た。
【0212】
[成分Dの体積平均一次粒子径の求め方]
ビニル重合体粒子のエマルションをイオン交換水で希釈し、レーザー回折散乱式粒度分布測定装置((株)堀場製作所製LA−910W)を用い、エマルション粒子径として体積平均一次粒子径を測定した。
【0213】
[成分Dのシェル及びコアのTgの求め方]
Tgは以下のFOXの式(2)から求められる値とする。具体的には重合体が単独重合体の場合は、高分子学会編「高分子データハンドブック」に記載されている標準的な分析値を採用し、n種類の単量体の共重合体である場合は、各単量体のTgから算出した。表2に、代表的な単独重合体のTgの文献値を示した。
【0214】
【数2】
式中のTgはビニル重合体粒子のガラス転移温度(℃)、Tgiはi成分の単独重合体のガラス転移温度(℃)、Wiはi成分の質量比率、ΣWi=1を示す。
【0215】
【表2】
【0216】
[成分Dのシェル及びコアのSP値の求め方]
SP値は、シェル及びコアを構成するポリマーにおける繰り返し単位の、単量体のSP値(Sp(Ui))を以下の式(3)に代入して求めた。Sp(Ui)はpolymer
Engineering and Science,Vol.14,147(1974)に記載されているFedorsの方法にて求めた。なお表2に、代表的な単量体のSP値(Sp(Ui))を示した(但し、GMAのSP値については特開2000−1633号公報に記載の値を採用した。)。
【0217】
【数3】
式中、Miは単量体単位i成分のモル分率を示し、ΣMi=1である。
【0218】
<樹脂増粘物の到達粘度測定法>
得られた熱硬化性樹脂組成物につき、その増粘物の到達粘度を、以下の方法にて測定した。
【0219】
まずレオメーターのプレート温度を80℃以上90℃以下に設定した。オーブン内の温度が安定したことを確認した後、プレート上に増粘前の熱硬化性樹脂組成物を適量分取した。プレート間のギャップを0.5mmに調節し、80℃又は90℃で30分間保持し、その後30℃までスポットクーラーを用いて冷却した。冷却後、30℃における粘度を測定し、これを到達粘度とした。なお、測定時の測定モード、周波数、プレート径、プレートタイプ及びプレートギャップは、[粘度測定法]の項に記載した通りである。
【0220】
<樹脂増粘物の最低粘度測定法>
得られた熱硬化性樹脂組成物につき、レオメーターを用いて2℃/分で120℃まで昇温粘度測定した。その際に得られる最も低い粘度を、その増粘物の最低粘度とした。なお測定時の測定モード、周波数、プレート径、プレートタイプ及びプレートギャップは、上述した到達粘度測定時と同様である。
【0221】
<ドレープ性>
室温23℃下で作製した直後のSMCと、そのまま23℃で2週間保持したSMCのドレープ性を、触感で評価した。評価基準を以下に示す。
○:作業に適した柔軟性を有し、取り扱い性が良い。
×:作業に適した柔軟性が無く、取り扱い性が悪い。
【0222】
<フィルム離型性>
室温23℃下で、作製したSMCのフィルムを手で剥がして評価した。評価基準を以下に示す。
◎:問題なく、きれいに剥がれる。
○:作業は可能であるが、フィルムに樹脂の跡が微かに残っていた。
×:剥がすことが困難。
【0223】
<タック>
室温23℃下で作製した直後のSMCのフィルムを手で剥がして、触感を評価した。また同様に作製後、23℃で2週間保持した後のSMCについても、同様に触感を評価した。評価基準を以下に示す。
◎:適度なタックを有する。問題なし。
○:作業は可能であるが、タックが若干強い。
×:タックが強く作業が困難。
【0224】
<含浸性>
室温23℃下で、作製したSMCを切断し、炭素繊維束への熱硬化性樹脂組成物の含浸度合いを目視で確認した。評価基準を以下に示す。
○:熱硬化性樹脂組成物が炭素繊維束全体に含浸している。
×:含浸性が乏しく、ドライな炭素繊維束が散見され、含浸不足であった。
【0225】
<参考例1>
清潔な容器にjER828を100質量部分取し、ビニル重合体粒子Aを30質量部添加して、クラボウ社製の脱泡撹拌機「マゼルスターKK−2000」のプログラムCH10で分散させた。前述の粘度測定法に従い、ビニル重合体粒子Aを分散させた熱硬化性樹脂組成物の30℃での粘度を測定した。また、同測定法で60℃に設定し、熱硬化性樹脂組成物を1時間加温した後の粘度も測定した。その結果を表3に示す。測定した結果、30℃における粘度は14Pa・sであり、60℃で1時間加温したときの粘度は0.9Pa・sであり、その比は0.06であった。
【0226】
<参考例2〜4>
ビニル重合体粒子Aの代わりに、表1に記載のビニル重合体を使用した以外は、参考例1と同様にして熱硬化性樹脂組成物を調製し、粘度測定を行った。その結果を表3に示す。
【0227】
<参考例5>
清潔な容器にjER807を100質量部分取し、ビニル重合体粒子Aを30質量部添加して脱泡撹拌機マゼルスターのプログラムCH10で分散させた。レオメーターVAR−100で、ビニル重合体粒子を分散させた樹脂組成物の30℃での粘度を測定した。また、同装置で60℃に設定し、樹脂組成物を1時間加温した後の粘度も測定した。その結果を表3に示す。測定した結果、30℃における粘度は5.3Pa・sであり、60℃で1時間加温したときの粘度は3.5Pa・sであり、その比は0.66であった。
【0228】
<参考例6〜8>
ビニル重合体粒子Aの代わりに、表3に記載のビニル重合体を使用した以外は、参考例5と同様にして樹脂組成物を調製し、粘度測定を行った。その結果を表3に示す。
【0229】
【表3】
【0230】
参考例1〜8は粘度の上昇が小さく、SMC製造工程中に粘度が上昇する可能性は低い。
【0231】
以下は、実際にSMCを作製して評価を行った例を示す。
【0232】
<実施例1>
表4に記載の各成分を含有する熱硬化性樹脂組成物を調製した。
【0233】
まず、エポキシ樹脂硬化剤であるDICY15と、エポキシ樹脂であるjER828を用いて、前述の[硬化剤マスターバッチの調製]に従って硬化剤マスターバッチを調製した。次いでjER828の残部(92質量部)、ビニル重合体微粒子A 30質量部、Omicure24 5質量部及びFB−962 1質量部を反応容器に分取し、前述の[熱硬化性樹脂組成物調製法]に従って熱硬化性樹脂組成物を調製した。
【0234】
得られた熱硬化性樹脂組成物を、ポリエチレンフィルムに、塗布量が750g/m
2となるように均一に塗布し、樹脂フィルムを2枚作製した。そのうちの1枚の樹脂フィルムにおける熱硬化性樹脂組成物塗布面に、繊維量が1500g/m
2となるように約2.5cmにチョップした炭素繊維束(TR50S12L)をランダムに真上からばらまいた。当該樹脂フィルムにおける熱硬化性樹脂組成物塗布面に、他方のもう1枚の樹脂フィルムにおける熱硬化性樹脂組成物塗布面を、真上から貼り合わせ、合計3000g/m
2となる未含浸・未増粘のSMCを作製した。フュージングプレスJR−600LTSW(アサヒ繊維機械工業株式会社製)を用い、当該未含浸・未増粘のSMCにおける熱硬化性樹脂組成物を炭素繊維束に含浸させた。フュージングプレスの条件は、プレスロールの温度設定を90℃、プレスロールの設定圧力を0.05MPa、ライン速度を1.5m/分とした。フュージングプレスを通した後、未増粘のSMCを設定温度80℃のオーブンに30分間投入して増粘させ、SMCを得た。
【0235】
得られたSMCにつき、ドレープ性、フィルム離型性、タック及び含浸性を評価した。結果を表4に示す。また調製した熱硬化性樹脂組成物つき、前述の到達粘度測定法及び最低粘度測定法に従い、樹脂増粘物の到達粘度及び最低粘度を測定した。また、前述の粘度測定法に従い、参考例1と同様に30℃及び60℃における粘度を測定した。結果を表4に示す。なお、表4における「増粘温度」とは、前述の到達粘度測定法において、30分間保持する温度のことを意味する。
【0236】
<実施例2〜20、23〜25、比較例1〜9>
実施例1と同様にして、表4〜表9に記載の熱硬化性樹脂組成物を調製し、これを用いてSMCを製造した。得られたSMCにつき、ドレープ性、フィルム離型性、タック及び含浸性を評価した。また調製した各熱硬化性樹脂組成物つき、樹脂増粘物の到達粘度及び最低粘度を測定した。また、30℃及び60℃における粘度を測定した。結果を表4〜表9に示す。
【0237】
【表4】
【0238】
【表5】
【0239】
【表6】
【0240】
【表7】
【0241】
【表8】
【0242】
【表9】
【0243】
以上の表に示すように、実施例1〜25にて得られたSMCは、良好なタック性及び優れたドレープ性を有していた。また、優れたドレープ性を有しており、増粘後最低粘度が所望の範囲内であることから、実施例1〜25のSMCが、優れた成形性を有していることは明らかである。また、比較例1〜9にて得られたSMCは、フィルム離形性が非常に悪く、タック性も著しく強かった。
【0244】
<実施例21、22>
[SMCの製造]
実施例1と同様にして、表10に示す熱硬化性樹脂組成物を調製した。これを用いて、以下の条件以外は実施例1と同様にして、SMCを作製した。
・強化繊維束:三菱レイヨン株式会社製、炭素繊維束「TR50S15L」
・繊維長さ :約2.5cm
・繊維量 :1400g/cm
2
・樹脂量 :1400g/cm
2
・樹脂含有量:50質量%
[繊維強化複合材料の成形]
上記[SMCの製造]に従って作製したSMCを、140℃の金型内で10分間、8MPaで加熱及び加圧し、厚さ2mmの繊維強化複合材料を作製した。
【0245】
[曲げ試験測定法]
上記[繊維強化複合材料の成形]で得られた繊維強化複合材料を用い、厚さ2mm、長さ60cm、幅25cmの試験片を12個作製した。これらにつき、5kNロードセルを備えた万能試験機(Instron社製、Instron(登録商標)4465)を用い、圧子R=5.0R、サポートR=3.2R、L/D=16の条件で曲げ強度、及び曲げ弾性率を測定し、平均値を求めた。
【0246】
[ガラス転移温度の測定法]
上記[繊維強化複合材料の成形]にて得られた繊維強化複合材料を用い、厚さ2mm、長さ55mm、幅12.7mmの試験片を作製した。該試験片につき、測定器ARES−RDA(TAインスツルメント社製)を用い、昇温速度5℃/分、周波数1Hz、歪0.05%、測定温度範囲は室温〜180℃で、Tg及びtanδmaxを測定した。
【0247】
[硬化時間評価]
TAインスツルメント社製示差走査熱量計(DSC)「Q1000」を用い、熱硬化性樹脂組成物の硬化時間の評価を行った。熱硬化性樹脂組成物を装置専用のアルミニウムのパンに秤量して充填し、密封し試料を作製した。測定条件は、温度制御プログラムを30℃から140℃まで200℃/分で昇温した後、140℃の等温で30分間保持する設定にした。一連の制御温度下での熱硬化性樹脂組成物の発熱量測定を行った。そして、140℃に到達した時点から、発熱量が0になった時点までの差を硬化時間として算出して評価を行った。ただし、発熱量の小数点第3位以下は四捨五入した。
【0248】
[評価結果]
実施例21で得られた繊維強化複合材料は、曲げ強度が224MPa、曲げ弾性率が20GPa、Tgが107℃、tanδ maxが123℃であった。実施例22で得られた繊維強化複合材料は、曲げ強度が273MPa、曲げ弾性率が20GPa、Tgが121℃、tanδ maxが141℃であった。
【0249】
また上記[硬化時間評価]に従って測定した熱硬化性樹脂組成物の硬化時間は、実施例21が8分27秒間、実施例22が7分51秒間であり、素早く硬化可能な樹脂組成物であった。
【0250】
【表10】
【0251】
<実施例26〜32、比較例10〜15>
[樹脂板の製造]
実施例1と同様にして、表11〜13に記載の熱硬化性樹脂組成物を調製した。
【0252】
得られた熱硬化性樹脂組成物70〜90gを低圧脱泡した後、厚さ2mmのテフロン(登録商標)製スペーサと共にガラス板で挟み、周囲をクリップで固定した。これを70℃に保持したオーブン(DP−43、ヤマト科学株式会社)の中央に置き、ガラス板の表面に熱電対をセットした。熱電対の温度が70℃になったら、140℃まで10℃/分で昇温し、140℃で40分間保持した。その後、室温まで冷却し、樹脂板を得た。
【0253】
[曲げ試験測定法]
前記[樹脂板の製造]で得られた樹脂板から長さ60mm、幅8mmの試験片を切り出し、切り出した面をサンドペーパー#1200で研磨した。この試験片を6本準備した。全ての試験片について、万能試験機(Instron社製、Instron(登録商標)4465)及び解析ソフトBluehillを用い、温度23℃、湿度50%RHの環境下で、3点曲げ治具(圧子R=3.2mm、サポートR=1.6mm)を用い、サポート間距離(L)と試験片との厚み(D)の比L/D=16、クロスヘッド速度 2.0mm/分の条件で試験片を曲げ、曲げ強度、曲げ弾性率及び破断歪みを測定した。なお、6本の試験片の測定値の平均値を測定値とした。
【0254】
なお、得られた樹脂曲げ強度、樹脂曲げ弾性率、及び破断歪みは、エポキシ樹脂100質量部に対してビニル重合体粒子を30質量部含有する熱硬化性樹脂組成物を使用した場合(すなわち実施例28、29及び32)における樹脂曲げ強度、樹脂曲げ弾性率、及び破断歪みの値をそれぞれ100としたときの相対値として表現し、強度保持率、弾性率保持率、及び破断歪み保持率として表11〜13に記載した。
【0255】
[ガラス転移点の測定方法]
前記[樹脂板の製造]で得られた厚さ2mmの樹脂板を試験片(長さ55mm×幅12.5mm)に加工し、レオメーター(製品名:ARES−RDATA、インストルメンツ社製)を用いて、測定周波数1Hz、昇温速度5℃/分で、logG’を温度に対してプロットし、logG’の平坦領域の近似直線と、G’が転移する領域の近似直線との交点の温度をガラス転移温度(G’−Tg)とした。
【0256】
【表11】
【0257】
【表12】
【0258】
【表13】
【0259】
<第2の発明に係る実施例>
【0260】
以下、第2の発明に係る実施例により第2の発明を具体的に説明するが、第2の発明はこれらの実施例に限定されるものではない。
(成分(F))
・ビスフェノールA型液状エポキシ樹脂(三菱化学株式会社製、製品名「jER828」)
・4官能グリシジルアミン型エポキシ樹脂(三菱化学社製、製品名「jER604」)
・フェノールノボラック型固形エポキシ樹脂(DIC社製、製品名「N−775」)
・フェノールノボラック型液状エポキシ樹脂(三菱化学社製、製品名「jER152」)・ビスフェノールA型固形エポキシ樹脂(三菱化学社製、製品名「jER1001」)
・変性エポキシ樹脂
ビスフェノールA型液状エポキシ樹脂(三菱化学株式会社製、製品名「jER828」)と4,4’−ジアミノジフェニルスルフォンとの反応物である。ビスフェノールA型液状エポキシ樹脂(三菱化学株式会社製、製品名「jER828」)と4,4’−ジアミノジフェニルスルフォン(和歌山精化工業(株)製、商品名:セイカキュアーS)とを質量比100/9で室温にて混合した後、150℃にて混合加熱して得た生成物である。該変性エポキシ樹脂のエポキシ当量は266g/eqである。
【0261】
(成分(G))
・ジシアンジアミド (エアープロダクツ社製、製品名「DICYANEX 1400F」)
(成分(H))
・2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン (四国化成株式会社製、製品名「2MZA−PW」)
・2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン (四国化成株式会社製、製品名「2MZ−A」)
・2フェニル―4―メチルイミダゾール (四国化成株式会社製、「2P4MZ」)
・2フェニルイミダゾール (四国化成株式会社製、「2PZ−PW」)
・2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(四国化成株式会社製、製品名「2P4MHZ−PW」)
・2−フェニル−4,5−ジヒドロキシメチルイミダゾール(四国化成株式会社製、製品名「2PHZ−PW」)
・1シアノエチル−2−フェニルイミダゾール(四国化成株式会社製、製品名「2PZ−CN」)
(成分(I):ビニル重合体粒子E及びFの製造)
ビニル重合粒子E及びFを以下の条件で製造した。
【0262】
温度計、窒素ガス導入管、撹拌棒、滴下漏斗、冷却管を装備した2リットルの4つ口フラスコに純水を入れた。各ビニル重合体粒子を製造するために使用した純水の重量は、表14の2行目に示すとおりである。次に、30分間、窒素ガスを十分に通気し、純水中の溶存酸素を置換した。窒素ガスの通気を停止した後、200rpmで撹拌しながら80℃に昇温した。内温が80℃に達した時点で単量体混合物(M1)、開始剤として過硫酸カリウム及び純水を所定量それぞれ添加し、1時間重合を行った。引き続き単量体混合物(M2)を所定量滴下によって投入した。
【0263】
次に、単量体混合物(M2)の重合による発熱が見られなくなった後、1時間保持し、単量体混合物(M3)を所定量投入した。単量体混合物(M3)投入後、80℃にて1時間撹拌を継続して、各ビニル重合体粒子の重合体粒子分散液を得た。各ビニル重合体粒子の重合体粒子分散液をL−8型スプレードライヤー(大河原化工機(株)製)を用いて噴霧乾燥し(入口温度/出口温度=150/65℃、ディスク回転数25000rpm)、ビニル重合体粒子を得た。
【0264】
【表14】
【0265】
表14中の略号は以下の化合物を示す。
MMA :メチルメタクリレート
n−BMA :n−ブチルメタクリレート
t−BMA :t−ブチルメタクリレート
2−HEMA :2−ヒドロキシエチルメタクリレート
MAA :メタクリル酸
KPS :過硫酸カリウム
ペレックスOT−P :ジアルキルスルホコハク酸ナトリウム(商品名、花王(株)製)エマルゲン106 :ポリオキシエチレンラウリルエーテル(商品名、花王(株)製)
(その他の添加剤)
・フッ素系ポリマー(商品名「FB−962」、ダイキン工業株式会社)
【0266】
<マスターバッチの調製>
粉体である成分(G)、成分(H)、成分(I)のマスターバッチを調整した。
【0267】
まず成分(F)のうちビスフェノールA型液状エポキシ樹脂と、成分(G)、成分(H)及び成分(I)をそれぞれ質量比1:1の割合で容器に計量し、撹拌・混合した。これを三本ロールミルにてさらに細かく混合して、成分(G)、成分(H)、及び成分(I)のマスターバッチを各々調製した。
【0268】
<エポキシ樹脂組成物の調製法>
ガラスフラスコに成分(F)を所定量分取し、90℃程度のウォーターバス中で均一になるまで撹拌翼を用いて撹拌した。その後、ウォーターバスを40℃まで降温し、成分(G)、成分(H)、成分(I)のマスターバッチ及びその他の成分をガラスフラスコに所定量分取し、均一になるまで撹拌翼を用いて撹拌して、エポキシ樹脂組成物を調製した。
【0269】
<エポキシ樹脂組成物の短時間硬化試験>
TAインスツルメント社製示差走査熱量計(DSC)「Q1000」を用い、等温DSC測定を行った。
【0270】
まずエポキシ樹脂組成物を装置標準のアルミニウムハーメチックパンに秤量し、装置標準のアルミニウムリッドで蓋をして試料を作成した。測定装置の設定条件は、温度制御プログラムを30℃から140℃まで200℃/分で昇温した後、140℃の等温で30分間保持し、一連の制御温度下での樹脂組成物のDSC発熱曲線を得た。
図1に示すように、横軸を時間(図中1:時間)、縦軸を熱流量(図中2:熱流量)としたグラフにおいて、前記DSC発熱曲線上の熱流量が収束に向かう曲線の勾配が最大になる点(図中3:曲線の勾配が最大になる点)における接線と、硬化反応による発熱が終息した点(図中4:終息点)の接線との交点(図中5:変曲点)の時間から、エポキシ樹脂組成物の硬化性を評価した。
評価基準:
○:変曲点の時間が、測定開始から6分以内の場合、短時間硬化が可能であると判断。
×:変曲点の時間が、測定開始から6分よりも長い場合は短時間硬化が不可であると判断。
【0271】
<エポキシ樹脂組成物の貯蔵安定性試験>
エポキシ樹脂組成物をアルミ皿に2g分取し、23℃で2週間保管した。2週間経過後、前記アルミ皿中のエポキシ樹脂組成物の流動性・硬化状態から、貯蔵安定性評価を行った。
評価基準:
○:2週間経過後も樹脂組成物の流動性が失われておらず、貯蔵安定性に優れると判断。×:2週間経過後、樹脂組成物の流動性が低下、又は、半硬化状態である場合、貯蔵安定性が悪いと判断。
【0272】
<エポキシ樹脂組成物の増粘性評価>
エポキシ樹脂組成物の増粘性を、レオメーターVAR−100(Reologica Instruments AB社製)による粘度測定にて評価した。
測定条件:
測定モード:応力一定。応力値300Pa
周波数:1.59Hz
プレート径:25mm
プレートタイプ:パラレルプレート
プレートギャップ:0.5mm。
【0273】
予めレオメーターの設定温度を80℃とし、レオメーターのオーブン内が80℃に安定したことを確認してから、エポキシ樹脂組成物を測定プレートに分取した。ギャップを調整し、再度80℃で安定させた後、上記条件にて粘度を測定した(80℃初期粘度)。次いで、その30分後の粘度を測定し(80℃30分後粘度)、両者の差からエポキシ樹脂組成物の速やかな増粘の有無を確認した。
【0274】
<硬化樹脂板の作成>
エポキシ樹脂組成物を真空中で脱泡し、2mm厚のポリテトラフルオロエチレンのスペーサーを挟んだ2枚の4mm厚のガラス板の間に注入し、ガラス表面の温度が140℃となる条件で、10分間熱風循環式恒温炉にて加熱した後、冷却して硬化樹脂板を得た。
【0275】
<硬化樹脂板の3点曲げ試験>
万能試験機(Instron社製、Instron(登録商標)4465)を用い、硬化樹脂板の3点曲げ試験を行った。
【0276】
前記<硬化樹脂板の作成>で得られた硬化樹脂板から、幅8mm、長さ60mmの試験片を6枚切り出し、Instron(登録商標)4465を用いて曲げ強度、曲げ弾性率及び曲げ破断伸度を測定し、6個の試験片の平均値を求めた。試験条件は、クロスヘッドスピードが2mm/分、スパン間距離は硬化樹脂板の厚みを実測し、(厚み×16)mmとした。
【0277】
<エポキシ樹脂組成物の耐熱性測定試験>
TAインストルメンツ社製レオメーター「ARES−RDA」を用いて、硬化樹脂板のガラス転移温度を測定した。
【0278】
前記<硬化樹脂板の作成>で得られた硬化樹脂板を、試験片(長さ55mm×幅12.5mm)に加工し、測定周波数1Hz、昇温速度5℃/分で、logG’を温度に対してプロットし、logG’の平坦領域の近似直線と、logG’が急激に低下する領域の近似直線との交点の温度をガラス転移温度(G’Tg)とした。
評価基準:
○:ガラス転移温度が140℃以上の場合、耐熱性に優れると判断。
×:ガラス転移温度が140℃未満の場合、耐熱性に優れると判断。
【0279】
<SMCの製造法>
エポキシ樹脂組成物をポリエチレンフィルムに、塗布量が750g/m
2となるように均一に塗布し、樹脂フィルムを2枚作成した。そのうちの1枚の樹脂フィルムにおける樹脂組成物塗布面に、繊維量が1500g/m
2となるように長さ約2.5cmにチョップした炭素繊維束(三菱レイヨン社製、「TR50S15L」)を真上からランダムにばらまいた。もう1枚の樹脂フィルムを、樹脂組成物塗布面が散布した炭素繊維に対向するように貼り合わせ、これをフュージングプレス(アサヒ繊維機械工業(株)製、JR−600S、処理長1340mm、設定圧力はシリンダー圧。)を用いて加熱及び加圧し、エポキシ樹脂組成物を炭素繊維層に含浸させ、SMC前駆体を得た。フュージングプレスの設定温度は85℃、設定圧力は0.01MPaとした。その後、得られたSMC前駆体を80℃のオーブンに30分間投入し、エポキシ樹脂組成物を増粘させて、SMCを得た。
【0280】
<ドレープ性>
前記<SMCの製造法>にて得られたSMCの、室温(約23℃)におけるドレープ性を、触感で評価した。評価基準を以下に示す。
評価基準:
○:成形型への載置・積層作業に適した柔軟性を有し、取り扱い性が良い。
×:成形型への載置・積層作業に適した柔軟性が無く、取り扱い性が悪い。
【0281】
<含浸性>
前記<SMCの製造法>にて得られたSMCを、室温(約23℃)で切断し、断面における炭素繊維層へのエポキシ樹脂組成物の含浸状態を目視で確認した。評価基準を以下に示す。
評価基準:
○:エポキシ樹脂組成物が、炭素繊維層全体に含浸している。
×:切断面に、ドライな炭素繊維束が散見され、含浸不足である。
【0282】
<フィルム剥離性>
前記<SMCの製造法>にて得られたSMCに付着しているポリエチレンフィルムを、室温(約23℃)で手で剥がして評価した。評価基準を以下に示す。
評価基準:
○:フィルムの剥離が可能であった。
×:フィルムの剥離が困難であった。
【0283】
<タック>
前記<SMCの製造法>にて得られたSMCに付着しているポリエチレンフィルムを、室温(約23℃)で手で剥がして、SMC表面の触感を評価した。評価基準を以下に示す。
評価基準:
◎:適度なタックを有する。
○:成形型内への載置・積層作業は可能であるが、タックが若干強い。
×:タックが強く、成形型内への載置・積層作業が困難である。
【0284】
<プレス成形における短時間硬化性>
前記<SMCの製造法>にて得られたSMCを、以下の条件でプレス成形して厚さ2mmの成形品(繊維強化複合材料)を作製し、これを用いて短時間硬化性を評価した。
プレス条件:
金型形状:正方形の平板金型
金型温度:約140℃(金型の4隅の温度の平均値が約140℃となるよう加熱した。)成形圧力:8MPa
成形時間:5分
評価基準:
○:上記プレス条件で十分に硬化し、金型からの取り出し時に成形品(繊維強化複合材料)の変形が見られなかった。
×:上記プレス条件で硬化が不十分で、金型からの取り出し時に成形品(繊維強化複合材料)が変形した。
【0285】
<プレス成形硬化物の耐熱性測定試験>
前記<プレス成形における短時間硬化性>にて得られた成形品(繊維強化複合材料)の耐熱性を、前記<エポキシ樹脂組成物の耐熱性測定試験>と同様の方法及び基準で評価した。
評価基準:
○:ガラス転移温度が140℃以上の場合、耐熱性に優れると判断。
×:ガラス転移温度が140℃未満の場合、耐熱性に優れると判断。
【0286】
<参考例9:成分(H)の粒径>
成分(H)である2MZ−A及び2MZA−PWを各々空気中に分散させ、日機装株式会社製AEROTRAC SPR MDEL:7340を用いてレーザー回折法にて体積基準の粒度分布を測定した。該粒度分布における累積頻度50%の粒径(D50)を、各々の平均粒径とした。
【0287】
【表15】
【0288】
<実施例33〜45及び比較例16〜22>
前記<エポキシ樹脂組成物の調製法>に従い、表16及び表17に記載の各成分を含有するエポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物を用い、短時間硬化試験、貯蔵安定性試験を行った。次いで、前記<硬化樹脂板の作成>に従い硬化樹脂板を作製し、これを用いて3点曲げ試験及び耐熱性測定試験を行った。結果を表16及び17に示す。
【0289】
【表16】
【0290】
【表17】
【0291】
実施例33〜実施例45の樹脂組成物は全て短時間硬化が可能であり、かつ、貯蔵安定性に優れている。また、これら実施例33〜実施例45はG’−Tgが140℃以上であり、高い耐熱性を有していることがDMA測定の結果から分かる。
【0292】
一方、比較例16〜比較例18の結果から分かるように成分(G)、成分(H)をそれぞれ単独で用いても短時間硬化ができないことが分かる。
【0293】
比較例19〜比較例22は成分(H)を他のイミダゾールに置き換えた結果を示しているが、短時間硬化と貯蔵安定性が両立できていないことが分る。実施例35と比較例19を比べると、短時間硬化に要する時間が5分以上違った。これは表15に示した平均粒子径から分かるように、成分(H)の粒径の差の影響だと考える。つまり、成分(H)の粒径が短時間硬化に大きく影響することを示している。
【0294】
<実施例46〜58>
前記<エポキシ樹脂組成物の調製法>に従い、表18に記載の各成分を含有するエポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物を用い、短時間硬化試験、貯蔵安定性試験、及び増粘性評価を行った。次いで、前記<硬化樹脂板の作成>に従い硬化樹脂板を作製し、これを用いて耐熱性測定試験を行った。
【0295】
更に、前記<SMCの製造法>に従ってSMCを作製し、得られたSMCを用いて、ドレープ性、含浸性、フィルム剥離性、タック、プレス成形における短時間硬化性、及びプレス成形硬化物の耐熱性評価を行った。結果を表18に示す。
【0296】
【表18】
【0297】
表18に示したように、成分(I)を含むエポキシ樹脂組成物を用いたSMCも、実施例33〜45にて使用した成分(I)を含まないエポキシ樹脂組成物と同様に、短時間硬化性、耐熱性が非常に優れていることが分かる。
【0298】
SMCの場合、実施例46〜実施例56にあるように、ビニル重合体粒子Eまたはビニル重合体粒子Fを含むことで増粘することができ、また、添加剤FB−962を含むことにより、タックが抑制され、非常に良好なフィルム剥離効果も得られた。また、短時間硬化性、耐熱性も大きく損なわれず良好な結果が得られた。