(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
以下、例示物及び実施形態を挙げて本発明について詳細に説明するが、本発明は以下に挙げる例示物及び実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
【0011】
以下の説明において、「長尺状」のフィルムとは、幅に対して、少なくとも5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。
【0012】
以下の説明において、長尺状のフィルムの「配向角」とは、別に断らない限り、そのフィルムの幅方向に対してそのフィルムの遅相軸がなす角度をいう。
【0013】
以下の説明において、固有複屈折値が正の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。また、固有複屈折値が負の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。
【0014】
以下の説明において、別に断らない限り、ある膜の面内レターデーションReは、Re=(nx−ny)×dで表される値を示し、ある膜の厚み方向のレターデーションRthは、Rth=[{(nx+ny)/2}−nz]×dで表される値を示す。ここで、nxは、その膜の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表し、nyは、その膜の前記面内方向であってnxの方向に垂直な方向の屈折率を表し、nzは、その膜の厚み方向の屈折率を表し、dは、その膜の厚みを表す。
【0015】
以下の説明において、要素の方向が「平行」及び「垂直」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°、好ましくは±3°、より好ましくは±1°の範囲内での誤差を含んでいてもよい。
【0016】
以下の説明において、「偏光板」、「1/2波長板」、「1/4波長板」及び「位相差板」といった板状の形状を有する部材は、別に断らない限り、剛直な部材に限られるものではなく、フィルム状の、可撓性を有するものとしうる。
【0017】
[1.複層フィルムの概要]
本発明の複層フィルムは、第一の基材と、第一の基材上に直接に形成された、硬化液晶分子を含む光学異方性層とを備える。第一の基材は、通常、長尺状又は枚葉のフィルムとなっていて、このフィルムの表面に光学異方性層が形成されている。ここで、「硬化液晶分子」とは、液晶相を呈しうる化合物を、液晶相を呈した状態のまま固体とした際の当該化合物の分子を意味する。硬化液晶分子の例としては、重合性液晶化合物を重合させてなる重合体が挙げられる。
【0018】
[2.第一の基材の構成]
第一の基材は、配向規制力を有する。第一の基材の配向規制力とは、第一の基材上に塗布された液晶組成物中の重合性液晶化合物を配向させうる、第一の基材の性質をいう。第一の基材が配向規制力を有することにより、第一の基材上に光学異方性層を直接に形成することができる。
【0019】
第一の基材の配向規制力は、任意の処理によって生じたものであり得る。第一の基材に配向規制力を生じさせる処理としては、例えば、光配向処理(特許第2980558号公報、特開平11−153712号公報参照)、ラビング処理(特開平08−160430号公報、特開2000−267105号公報、特開2002−6322号公報、特開2000−298210号公報、特開2002−328371号公報)、イオンビーム照射処理(特開平3−83017号公報、特開平8−313912号公報、特開2006−047724号公報、特許第3823962号公報、特許第4775968号公報)、蒸着膜形成処理(特開昭56−66826号公報、特開平7−33885号公報、特開2007−017890号公報)、延伸処理などが挙げられる。中でも、異物の付着による配向欠陥の発生を効果的に抑制でき、且つ、第一の基材に配向規制力を素早く付与できることから、延伸処理が好ましい。よって、第一の基材の配向規制力は、延伸により生じたものであることが好ましい。そして、第一の基材は、延伸基材であることが好ましい。
【0020】
第一の基材の23℃における引張弾性率は、通常2500MPa以上、好ましくは2700MPa以上、より好ましくは3000MPa以上であり、好ましくは5000MPa以下、より好ましくは4500MPa以下、特に好ましくは3500MPa以下である。第一の基材がこのように大きい引張弾性率を有することにより、当該第一の基材上に形成された光学異方性層の表面におけるシワの形成を抑制することができる。
【0021】
また、第一の基材の引張弾性率は、その面内方向の全てで均一でありうるが、その面内方向で不均一であることもありうる。ここで、第一の基材の面内方向とは、第一の基材の厚み方向に垂直な方向を示す。第一の基材の引張弾性率がその面内方向で不均一である場合、第一の基材の全ての方向において、引張弾性率が前記の範囲に収まることが好ましい。通常、第一の基材が遅相軸を有する場合には、第一の基材の遅相軸方向及び前記遅相軸方向に垂直な面内方向のうち、一方において第一の基材の引張弾性率は最大となり、他方において第一の基材の引張弾性率は最小となる。よって、第一の基材の遅相軸方向及び前記遅相軸方向に垂直な面内方向の両方において引張弾性率が前記の範囲に収まれば、第一の基材の全ての方向において引張弾性率が前記の範囲に収まっていると認めうる。
【0022】
第一の基材が前記のように大きい引張弾性率を有することにより光学異方性層のシワの形成を抑制できる理由は、下記のように推察される。ただし、本発明の技術的範囲は、下記の理由によって制限されるものではない。
通常、基材上に形成された液晶組成物の層に含まれる重合性液晶化合物を配向又は重合させる際には、基材は加熱される。例えば、配向の促進又は熱重合の進行のために熱が加えられると、前記の熱によって基材が加熱される。また、例えば、光重合の進行のために光が照射されると、前記の光を基材が吸収し、その結果、基材が加熱される。このような加熱により、従来の基材は、熱収縮又は熱膨張による寸法変化を生じ、この寸法変化が光学異方性層におけるシワの原因となっていた。これに対し、第一の基材は、大きな引張弾性率を有するので、加熱によって熱収縮又は熱膨張しようとする応力が第一の基材内に生じても、寸法が変化し難いので、光学異方性層におけるシワの形成が抑制されている。
【0023】
第一の基材の引張弾性率は、下記の方法によって測定しうる。
第一の基材において、引張弾性率を測定しようとする測定方向を設定する。そして、前記第一の基材から、第一の基材の測定方向に平行な長辺を有する矩形の試験片(幅10mm×長さ250mm)を切り出す。この試験片を長辺方向に引っ張って歪ませる際の応力を、JIS K7113に基づき、引張試験機を用いて、温度23℃、湿度60±5%RH、チャック間距離115mm、引張速度100mm/minの条件で、測定する。このような測定を、3回行う。そして、測定された応力とその応力に対応した歪みの測定データから、試験片の歪みが0.6%〜1.2%の範囲で0.2%毎に測定データを選択する。すなわち、試験片の歪みが0.6%、0.8%、1.0%及び1.2%の時の測定データを選択する。この選択された3回分の測定データから、最小二乗法を用いて、第一の基材の測定方向における引張弾性率を計算する。
【0024】
第一の基材の材料としては、第一の基材の表面に配向規制力を付与しうる任意の材料を用いうる。通常、第一の基材の材料としては、樹脂を用いる。樹脂としては、各種の重合体を含む樹脂を用いうる。当該重合体としては、脂環式構造含有重合体、セルロースエステル、ポリエチレンテレフタレート、ポリビニルアルコール、ポリイミド、UV透過アクリル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、エポキシ重合体、ポリスチレン、及びこれらの組み合わせが挙げられる。
【0025】
特に、第一の基材の材料としての樹脂は、正の固有複屈折値を有することが好ましい。正の固有複屈折値を有する樹脂を材料として用いた場合、配向規制力の高さ、強度の高さ、コストの低さ等の良好な特性を備えた第一の基材を、容易に得ることができる。
【0026】
さらに、第一の基材の材料としては、結晶性の重合体を含む樹脂が好ましい。結晶性の重合体とは、融点を有する重合体をいう。すなわち、結晶性の重合体とは、示差走査熱量計(DSC)で融点を観測することができる重合体をいう。結晶性の重合体を含む樹脂は、引張弾性率が大きい傾向がある。そのため、結晶性の重合体を含む樹脂からなる第一の基材を用いることで、光学異方性層におけるシワの形成を効果的に抑制できる。以下の説明において、結晶性の重合体を含む樹脂を、適宜「結晶性樹脂」ということがある。
【0027】
結晶性の重合体としては、結晶性の脂環式構造含有重合体、及び、結晶性のポリスチレン系重合体(特開2011−118137号公報参照)などが挙げられる。中でも、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、結晶性の脂環式構造含有重合体が好ましい。
【0028】
脂環式構造含有重合体とは、分子内に脂環式構造を有する重合体であって、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素添加物をいう。脂環式構造含有重合体が有する脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる第一の基材が得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。
【0029】
脂環式構造含有重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造含有重合体における脂環式構造を有する構造単位の割合を前記のように多くすることにより、耐熱性を高めることができる。
また、脂環式構造含有重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
【0030】
結晶性の脂環式構造含有重合体の融点Tmは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Tmを有する脂環式構造含有重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた第一の基材を得ることができる。
【0031】
結晶性の脂環式構造含有重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する脂環式構造含有重合体は、成形加工性と耐熱性とのバランスに優れる。
【0032】
結晶性の脂環式構造含有重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する脂環式構造含有重合体は、成形加工性に優れる。
脂環式構造含有重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。
【0033】
結晶性の脂環式構造含有重合体のガラス転移温度Tgは、特に限定されないが、通常は85℃以上、通常170℃以下である。
【0034】
前記の脂環式構造含有重合体としては、例えば、下記の重合体(α)〜重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる第一の基材が得られ易いことから、結晶性の脂環式構造含有重合体としては、重合体(β)が好ましい。
重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
重合体(β):重合体(α)の水素添加物であって、結晶性を有するもの。
重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
重合体(δ):重合体(γ)の水素添加物であって、結晶性を有するもの。
【0035】
具体的には、脂環式構造含有重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは100重量%の重合体をいう。
【0036】
以下、重合体(α)及び重合体(β)の製造方法を説明する。
重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体は、炭素原子で形成された環構造を有し、該環中に炭素−炭素二重結合を有する化合物である。環状オレフィン単量体の例としては、ノルボルネン系単量体等が挙げられる。また、重合体(α)が共重合体である場合には、環状オレフィン単量体として、単環の環状オレフィンを用いてもよい。
【0037】
ノルボルネン系単量体は、ノルボルネン環を含む単量体である。ノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト−2−エン(慣用名:ノルボルネン)、5−エチリデン−ビシクロ[2.2.1]ヘプト−2−エン(慣用名:エチリデンノルボルネン)及びその誘導体(例えば、環に置換基を有するもの)等の、2環式単量体;トリシクロ[4.3.0.1
2,5]デカ−3,7−ジエン(慣用名:ジシクロペンタジエン)及びその誘導体等の、3環式単量体;7,8−ベンゾトリシクロ[4.3.0.1
2,5]デカ−3−エン(慣用名:メタノテトラヒドロフルオレン:1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレンともいう)及びその誘導体、テトラシクロ[4.4.0.1
2,5.1
7,10]ドデカ−3−エン(慣用名:テトラシクロドデセン)、8−エチリデンテトラシクロ[4.4.0.1
2,5.1
7,10]−3−ドデセン及びその誘導体等の、4環式単量体;などが挙げられる。
【0038】
前記の単量体において置換基としては、例えば、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;プロパン−2−イリデン等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;などが挙げられる。また、前記の置換基は、1種類を単独で有していてもよく、2種類以上を任意の比率で有していてもよい。
【0039】
単環の環状オレフィンとしては、例えば、シクロブテン、シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン、シクロヘプテン、シクロオクテン等の環状モノオレフィン;シクロヘキサジエン、メチルシクロヘキサジエン、シクロオクタジエン、メチルシクロオクタジエン、フェニルシクロオクタジエン等の環状ジオレフィン;等が挙げられる。
【0040】
環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。環状オレフィン単量体を2種以上用いる場合、重合体(α)は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
【0041】
環状オレフィン単量体には、エンド体及びエキソ体の立体異性体が存在するものがありうる。環状オレフィン単量体としては、エンド体及びエキソ体のいずれを用いてもよい。また、エンド体及びエキソ体のうち一方の異性体のみを単独で用いてもよく、エンド体及びエキソ体を任意の割合で含む異性体混合物を用いてもよい。中でも、脂環式構造含有重合体の結晶性が高まり、耐熱性により優れる第一の基材が得られ易くなることから、一方の立体異性体の割合を高くすることが好ましい。例えば、エンド体又はエキソ体の割合が、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。また、合成が容易であることから、エンド体の割合が高いことが好ましい。
【0042】
重合体(α)の合成には、通常、開環重合触媒を用いる。開環重合触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。このような重合体(α)の合成用の開環重合触媒としては、環状オレフィン単量体を開環重合させ、シンジオタクチック立体規則性を有する開環重合体を生成させうるものが好ましい。好ましい開環重合触媒としては、下記式(1)で示される金属化合物を含むものが挙げられる。
【0043】
M(NR
1i)X
i4−a(OR
2i)
a・L
b (1)
(式(1)において、
Mは、周期律表第6族の遷移金属原子からなる群より選択される金属原子を示し、
R
1iは、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又は、−CH
2R
3i(R
3iは、水素原子、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。)で表される基を示し、
R
2iは、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示し、
X
iは、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、及び、アルキルシリル基からなる群より選択される基を示し、
Lは、電子供与性の中性配位子を示し、
aは、0又は1の数を示し、
bは、0〜2の整数を示す。)
【0044】
式(1)において、Mは、周期律表第6族の遷移金属原子からなる群より選択される金属原子を示す。このMとしては、クロム、モリブデン及びタングステンが好ましく、モリブデン及びタングステンがより好ましく、タングステンが特に好ましい。
【0045】
式(1)において、R
1iは、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又は、−CH
2R
3iで表される基を示す。
R
1iの、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基の炭素原子数は、好ましくは6〜20、より好ましくは6〜15である。また、前記置換基としては、例えば、メチル基、エチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基;などが挙げられる。これらの置換基は、1種類を単独で有していてもよく、2種類以上を任意の比率で有していてもよい。さらに、R
1iにおいて、3位、4位及び5位の少なくとも2つの位置に存在する置換基が互いに結合し、環構造を形成していてもよい。
【0046】
3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基としては、例えば、無置換フェニル基;4−メチルフェニル基、4−クロロフェニル基、3−メトキシフェニル基、4−シクロヘキシルフェニル基、4−メトキシフェニル基等の一置換フェニル基;3,5−ジメチルフェニル基、3,5−ジクロロフェニル基、3,4−ジメチルフェニル基、3,5−ジメトキシフェニル基等の二置換フェニル基;3,4,5−トリメチルフェニル基、3,4,5−トリクロロフェニル基等の三置換フェニル基;2−ナフチル基、3−メチル−2−ナフチル基、4−メチル−2−ナフチル基等の置換基を有していてもよい2−ナフチル基;等が挙げられる。
【0047】
R
1iの、−CH
2R
3iで表される基において、R
3iは、水素原子、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。
R
3iの、置換基を有していてもよいアルキル基の炭素原子数は、好ましくは1〜20、より好ましくは1〜10である。このアルキル基は、直鎖状であってもよく、分岐状であってもよい。さらに、前記置換基としては、例えば、フェニル基、4−メチルフェニル基等の置換基を有していてもよいフェニル基;メトキシ基、エトキシ基等のアルコキシル基;等が挙げられる。これらの置換基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
R
3iの、置換基を有していてもよいアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ネオペンチル基、ベンジル基、ネオフィル基等が挙げられる。
【0048】
R
3iの、置換基を有していてもよいアリール基の炭素原子数は、好ましくは6〜20、より好ましくは6〜15である。さらに、前記置換基としては、例えば、メチル基、エチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基;等が挙げられる。これらの置換基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
R
3iの、置換基を有していてもよいアリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、2,6−ジメチルフェニル基等が挙げられる。
【0049】
これらの中でも、R
3iで表される基としては、炭素原子数が1〜20のアルキル基が好ましい。
【0050】
式(1)において、R
2iは、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。R
2iの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基としては、それぞれ、R
3iの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基として示した範囲から選択されるものを任意に用いうる。
【0051】
式(1)において、X
iは、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、及び、アルキルシリル基からなる群より選択される基を示す。
X
iのハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子が挙げられる。
X
iの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基としては、それぞれ、R
3iの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基として示した範囲から選択されるものを任意に用いうる。
X
iのアルキルシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基等が挙げられる。
式(1)で示される金属化合物が1分子中に2以上のX
iを有する場合、それらのX
iは、互いに同じでもよく、異なっていてもよい。さらに、2以上のX
iが互いに結合し、環構造を形成していてもよい。
【0052】
式(1)において、Lは、電子供与性の中性配位子を示す。
Lの電子供与性の中性配位子としては、例えば、周期律表第14族又は第15族の原子を含有する電子供与性化合物が挙げられる。その具体例としては、トリメチルホスフィン、トリイソプロピルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン等のホスフィン類;ジエチルエーテル、ジブチルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;トリメチルアミン、トリエチルアミン、ピリジン、ルチジン等のアミン類;等が挙げられる。これらの中でも、エーテル類が好ましい。また、式(1)で示される金属化合物が1分子中に2以上のLを有する場合、それらのLは、互いに同じでもよく、異なっていてもよい。
【0053】
式(1)で示される金属化合物としては、フェニルイミド基を有するタングステン化合物が好ましい。即ち、式(1)において、Mがタングステン原子であり、且つ、R
1iがフェニル基である化合物が好ましい。さらに、その中でも、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体がより好ましい。
【0054】
式(1)で示される金属化合物の製造方法は、特に限定されない。例えば、特開平5−345817号公報に記載されるように、第6族遷移金属のオキシハロゲン化物;3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニルイソシアナート類又は一置換メチルイソシアナート類;電子供与性の中性配位子(L);並びに、必要に応じて、アルコール類、金属アルコキシド及び金属アリールオキシド;を混合することにより、式(1)で示される金属化合物を製造することができる。
【0055】
前記の製造方法では、式(1)で示される金属化合物は、通常、反応液に含まれた状態で得られる。金属化合物の製造後、前記の反応液をそのまま開環重合反応の触媒液として用いてもよい。また、結晶化等の精製処理により、金属化合物を反応液から単離及び精製した後、得られた金属化合物を開環重合反応に供してもよい。
【0056】
開環重合触媒は、式(1)で示される金属化合物を単独で用いてもよく、式(1)で示される金属化合物を他の成分と組み合わせて用いてもよい。例えば、式(1)で示される金属化合物と有機金属還元剤とを組み合わせて用いることで、重合活性を向上させることができる。
【0057】
有機金属還元剤としては、例えば、炭素原子数1〜20の炭化水素基を有する周期律表第1族、第2族、第12族、第13族又は14族の有機金属化合物が挙げられる。このような有機金属化合物としては、例えば、メチルリチウム、n−ブチルリチウム、フェニルリチウム等の有機リチウム;ブチルエチルマグネシウム、ブチルオクチルマグネシウム、ジヘキシルマグネシウム、エチルマグネシウムクロリド、n−ブチルマグネシウムクロリド、アリルマグネシウムブロミド等の有機マグネシウム;ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛等の有機亜鉛;トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムイソブトキシド、エチルアルミニウムジエトキシド、イソブチルアルミニウムジイソブトキシド等の有機アルミニウム;テトラメチルスズ、テトラ(n−ブチル)スズ、テトラフェニルスズ等の有機スズ;等が挙げられる。これらの中でも、有機アルミニウム又は有機スズが好ましい。また、有機金属還元剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0058】
開環重合反応は、通常、有機溶媒中で行われる。有機溶媒は、開環重合体及びその水素添加物を、所定の条件で溶解もしくは分散させることが可能であり、かつ、開環重合反応及び水素化反応を阻害しないものを用いうる。このような有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタン等の脂環族炭化水素溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン系脂肪族炭化水素溶媒;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素溶媒;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒;これらを組み合わせた混合溶媒;等が挙げられる。これらの中でも、有機溶媒としては、芳香族炭化水素溶媒、脂肪族炭化水素溶媒、脂環族炭化水素溶媒、エーテル溶媒が好ましい。
【0059】
開環重合反応は、例えば、環状オレフィン単量体と、式(1)で示される金属化合物と、必要に応じて有機金属還元剤とを混合することにより、開始させることができる。これらの成分を混合する順序は、特に限定されない。例えば、環状オレフィン単量体を含む溶液に、式(1)で示される金属化合物及び有機金属還元剤を含む溶液を混合してもよい。また、有機金属還元剤を含む溶液に、環状オレフィン単量体及び式(1)で示される金属化合物を含む溶液を混合してもよい。さらに、環状オレフィン単量体及び有機金属還元剤を含む溶液に、式(1)で示される金属化合物の溶液を混合してもよい。各成分を混合する際は、それぞれの成分の全量を一度に混合してもよいし、複数回に分けて混合してもよい。また、比較的に長い時間(例えば1分間以上)にわたって連続的に混合してもよい。
【0060】
開環重合反応の開始時における反応液中の環状オレフィン単量体の濃度は、好ましくは1重量%以上、より好ましくは2重量%以上、特に好ましくは3重量%以上であり、好ましくは50重量%以下、より好ましくは45重量%以下、特に好ましくは40重量%以下である。環状オレフィン単量体の濃度を前記範囲の下限値以上にすることにより、生産性を高くできる。また、上限値以下にすることにより、開環重合反応後の反応液の粘度を低くできるので、その後の水素化反応を容易に行うことができる。
【0061】
開環重合反応に用いる式(1)で示される金属化合物の量は、「金属化合物:環状オレフィン単量体」のモル比が、所定の範囲の収まるように設定することが望ましい。具体的には、前記のモル比は、好ましくは1:100〜1:2,000,000、より好ましくは1:500〜1,000,000、特に好ましくは1:1,000〜1:500,000である。金属化合物の量を前記範囲の下限値以上にすることにより、十分な重合活性を得ることができる。また、上限値以下にすることにより、反応後に金属化合物を容易に除去できる。
【0062】
有機金属還元剤の量は、式(1)で示される金属化合物1モルに対して、好ましくは0.1モル以上、より好ましくは0.2モル以上、特に好ましくは0.5モル以上であり、好ましくは100モル以下、より好ましくは50モル以下、特に好ましくは20モル以下である。有機金属還元剤の量を前記範囲の下限値以上にすることにより、重合活性を十分に高くできる。また、上限値以下にすることにより、副反応の発生を抑制することができる。
【0063】
重合体(α)の重合反応系は、活性調整剤を含んでいてもよい。活性調整剤を用いることで、開環重合触媒を安定化したり、開環重合反応の反応速度を調整したり、重合体の分子量分布を調整したりできる。
活性調整剤としては、官能基を有する有機化合物を用いうる。このような活性調整剤としては、例えば、含酸素化合物、含窒素化合物、含リン有機化合物等が挙げられる。
【0064】
含酸素化合物としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール、フラン、テトラヒドロフラン等のエーテル類;アセトン、ベンゾフェノン、シクロヘキサノンなどのケトン類;エチルアセテート等のエステル類;等が挙げられる。
含窒素化合物としては、例えば、アセトニトリル、ベンゾニトリル等のニトリル類;トリエチルアミン、トリイソプロピルアミン、キヌクリジン、N,N−ジエチルアニリン等のアミン類;ピリジン、2,4−ルチジン、2,6−ルチジン、2−t−ブチルピリジン等のピリジン類;等が挙げられる。
含リン化合物としては、例えば、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフェート、トリメチルホスフェート等のホスフィン類;トリフェニルホスフィンオキシド等のホスフィンオキシド類;等が挙げられる。
【0065】
活性調整剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
重合体(α)の重合反応系における活性調整剤の量は、式(1)で示される金属化合物100モル%に対して、好ましくは0.01モル%〜100モル%である。
【0066】
重合体(α)の重合反応系は、重合体(α)の分子量を調整するために、分子量調整剤を含んでいてもよい。分子量調整剤としては、例えば、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン等のα−オレフィン類;スチレン、ビニルトルエン等の芳香族ビニル化合物;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル、酢酸アリル、アリルアルコール、グリシジルメタクリレート等の酸素含有ビニル化合物;アリルクロライド等のハロゲン含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;1,4−ペンタジエン、1,4−ヘキサジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、2−メチル−1,4−ペンタジエン、2,5−ジメチル−1,5−ヘキサジエン等の非共役ジエン;1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン等の共役ジエン;等が挙げられる。
【0067】
分子量調整剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
重合体(α)を重合するための重合反応系における分子量調整剤の量は、目的とする分子量に応じて適切に決定しうる。分子量調整剤の具体的な量は、環状オレフィン単量体に対して、好ましくは0.1モル%〜50モル%の範囲である。
【0068】
重合温度は、好ましくは−78℃以上、より好ましくは−30℃以上であり、好ましくは+200℃以下、より好ましくは+180℃以下である。
重合時間は、反応規模に依存しうる。具体的な重合時間は、好ましくは1分間から1000時間の範囲である。
【0069】
上述した製造方法により、重合体(α)が得られる。この重合体(α)を水素化することにより、重合体(β)を製造することができる。
重合体(α)の水素化は、例えば、常法に従って水素化触媒の存在下で、重合体(α)を含む反応系内に水素を供給することによって行うことができる。この水素化反応において、反応条件を適切に設定すれば、通常、水素化反応により水素添加物のタクチシチーが変化することはない。
【0070】
水素化触媒としては、オレフィン化合物の水素化触媒として公知の均一系触媒及び不均一触媒を用いうる。
均一系触媒としては、例えば、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n−ブチルリチウム、ジルコノセンジクロリド/sec−ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウム等の、遷移金属化合物とアルカリ金属化合物の組み合わせからなる触媒;ジクロロビス(トリフェニルホスフィン)パラジウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、クロロヒドリドカルボニルビス(トリシクロヘキシルホスフィン)ルテニウム、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリド、クロロトリス(トリフェニルホスフィン)ロジウム等の貴金属錯体触媒;等が挙げられる。
不均一触媒としては、例えば、ニッケル、パラジウム、白金、ロジウム、ルテニウム等の金属触媒;ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナ等の、前記金属をカーボン、シリカ、ケイソウ土、アルミナ、酸化チタンなどの担体に担持させてなる固体触媒が挙げられる。
水素化触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0071】
水素化反応は、通常、不活性有機溶媒中で行われる。不活性有機溶媒としては、ベンゼン、トルエン等の芳香族炭化水素溶媒;ペンタン、ヘキサン等の脂肪族炭化水素溶媒;シクロヘキサン、デカヒドロナフタレンなどの脂環族炭化水素溶媒;テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル溶媒;等が挙げられる。不活性有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、不活性有機溶媒は、開環重合反応に用いた有機溶媒と同じものであってもよいし、異なるものであってもよい。さらに、開環重合反応の反応液に水素化触媒を混合して、水素化反応を行ってもよい。
【0072】
水素化反応の反応条件は、通常、用いる水素化触媒によっても異なる。
水素化反応の反応温度は、好ましくは−20℃以上、より好ましくは−10℃以上、特に好ましくは0℃以上であり、好ましくは+250℃以下、より好ましくは+220℃以下、特に好ましくは+200℃以下である。反応温度を前記範囲の下限値以上にすることにより、反応速度を速くできる。また、上限値以下にすることにより、副反応の発生を抑制できる。
【0073】
水素圧力は、好ましくは0.01MPa以上、より好ましくは0.05MPa以上、特に好ましくは0.1MPa以上であり、好ましくは20MPa以下、より好ましくは15MPa以下、特に好ましくは10MPa以下である。水素圧力を前記範囲の下限値以上にすることにより、反応速度を速くできる。また、上限値以下にすることにより、高耐圧反応装置等の特別な装置が不要となり、設備コストを抑制できる。
【0074】
水素化反応の反応時間は、所望の水素添加率が達成される任意の時間に設定してもよく、好ましくは0.1時間〜10時間である。
水素化反応後は、通常、常法に従って、重合体(α)の水素添加物である重合体(β)を回収する。
【0075】
水素化反応における水素添加率(水素化された主鎖二重結合の割合)は、好ましくは98%以上、より好ましくは99%以上である。水素添加率が高くなるほど、脂環式構造含有重合体の耐熱性を良好にできる。
ここで、重合体の水素添加率は、オルトジクロロベンゼン−d
4を溶媒として、145℃で、
1H−NMR測定により測定しうる。
【0076】
次に、重合体(γ)及び重合体(δ)の製造方法を説明する。
重合体(γ)及び(δ)の製造に用いる環状オレフィン単量体としては、重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体として示した範囲から選択されるものを任意に用いうる。また、環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0077】
重合体(γ)の製造においては、単量体として、環状オレフィン単量体に組み合わせて、環状オレフィン単量体と共重合可能な任意の単量体を用いうる。任意の単量体としては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン等の炭素原子数2〜20のα−オレフィン;スチレン、α−メチルスチレン等の芳香環ビニル化合物;1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、1,7−オクタジエン等の非共役ジエン;等が挙げられる。これらの中でも、α−オレフィンが好ましく、エチレンがより好ましい。また、任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0078】
環状オレフィン単量体と任意の単量体との量の割合は、重量比(環状オレフィン単量体:任意の単量体)で、好ましくは30:70〜99:1、より好ましくは50:50〜97:3、特に好ましくは70:30〜95:5である。
【0079】
環状オレフィン単量体を2種以上用いる場合、及び、環状オレフィン単量体と任意の単量体を組み合わせて用いる場合は、重合体(γ)は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
【0080】
重合体(γ)の合成には、通常、付加重合触媒を用いる。このような付加重合触媒としては、例えば、バナジウム化合物及び有機アルミニウム化合物から形成されるバナジウム系触媒、チタン化合物及び有機アルミニウム化合物から形成されるチタン系触媒、ジルコニウム錯体及びアルミノオキサンから形成されるジルコニウム系触媒等が挙げられる。また、付加重合体触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0081】
付加重合触媒の量は、単量体1モルに対して、好ましくは0.000001モル以上、より好ましくは0.00001モル以上であり、好ましくは0.1モル以下、より好ましくは0.01モル以下である。
【0082】
環状オレフィン単量体の付加重合は、通常、有機溶媒中で行われる。有機溶媒としては、環状オレフィン単量体の開環重合に用いうる有機溶媒として示した範囲から選択されるものを任意に用いうる。また、有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0083】
重合体(γ)を製造するための重合における重合温度は、好ましくは−50℃以上、より好ましくは−30℃以上、特に好ましくは−20℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、特に好ましくは150℃以下である。また、重合時間は、好ましくは30分以上、より好ましくは1時間以上であり、好ましくは20時間以下、より好ましくは10時間以下である。
【0084】
上述した製造方法により、重合体(γ)が得られる。この重合体(γ)を水素化することにより、重合体(δ)を製造することができる。
重合体(γ)の水素化は、重合体(α)を水素化する方法として先に示したものと同様の方法により、行いうる。
【0085】
上述した結晶性の脂環式構造含有重合体は、シンジオタクチック構造を有することが好ましく、そのシンジオタクチック立体規則性の度合いが高いことがより好ましい。これにより、脂環式構造含有重合体の結晶性を高めることができるので、引張弾性率を特に大きくできる。脂環式構造含有重合体のシンジオタクチック立体規則性の度合いは、脂環式構造含有重合体のラセモ・ダイアッドの割合によって表しうる。脂環式構造含有重合体の具体的なラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは60%以上、特に好ましくは70%以上である。
【0086】
ラセモ・ダイアッドの割合は、
13C−NMRスペクトル分析により、測定しうる。具体的には、下記の方法により測定しうる。
オルトジクロロベンゼン−d
4を溶媒として、200℃で、inverse−gated decoupling法を適用して、重合体試料の
13C−NMR測定を行う。この
13C−NMR測定の結果から、オルトジクロロベンゼン−d
4の127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比に基づいて、重合体試料のラセモ・ダイアッドの割合を求めうる。
【0087】
結晶性樹脂における結晶性の重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。結晶性の重合体の割合を前記範囲の下限値以上にすることにより、第一の基材の耐熱性及び引張弾性率を高めることができる。
【0088】
第一の基材に含まれる結晶性の重合体は、第一の基材を製造するよりも前においては結晶化が進行していなくてもよいが、第一の基材が製造された後においては結晶化が十分に進行していることが好ましい。第一の基材に含まれる結晶性の重合体の具体的な結晶化度の範囲は、好ましくは10%以上、より好ましくは15%以上、特に好ましくは20%以上である。結晶化度を前記範囲の下限値以上にすることにより、第一の基材に高い耐熱性、耐薬品性及び引張弾性率を付与することができる。前記の結晶化度の上限に特に制限は無いが、第一の基材の透明性の観点から、好ましくは70%以下、より好ましくは60%以下、特に好ましくは50%以下である。重合体の結晶化度は、X線回折法によって測定しうる。
【0089】
第一の基材の材料としての樹脂は、上述した重合体に組み合わせて、任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;などが挙げられる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0090】
第一の基材は、遅相軸を有することが好ましい。遅相軸は、通常、第一の基材に含まれる重合体の分子の配向によって生じているものである。また、第一の基材に含まれる重合体の分子が配向している場合、その配向方向に応じた配向規制力が第一の基材に生じる。そのため、遅相軸を有する第一の基材は、通常、良好な配向規制力を有する。このような遅相軸は、延伸によって生じうる。
【0091】
第一の基材の遅相軸方向は、光学異方性層に求められる光学特性に応じて設定しうる。中でも、長尺状の第一の基材は、第一の基材の幅方向に対して平行でなく垂直でもない斜め方向に遅相軸を有することが好ましい。具体的には、第一の基材の幅方向に対して第一の基材の遅相軸がなす配向角の範囲は、好ましくは10°以上、より好ましくは30°以上、特に好ましくは40°以上であり、好ましくは85°以下、より好ましくは80°以下、特に好ましくは75°以下である。第一の基板の配向角を前記の範囲に収めることにより、第一の基板上に形成される光学異方性層の遅相軸方向を斜め方向にできるので、光学異方性層を円偏光板の効率的な製造に適した部材にできる。また、ある態様においては、第一の基材の配向角は、好ましくは15°±5°、45°±5°、67.5±5°、75°±5°、より好ましくは15°±4°、45°±4°、67.5±4°、75°±4°、さらにより好ましくは15°±3°、45°±3°、67.5°±3°、75°±3°といった特定の範囲にしてもよい。
【0092】
第一の基材は、光学異方性を有することが好ましく、したがって複屈折Δnを有することが好ましい。第一の基材の具体的な複屈折Δnは、好ましくは0.0010以上、より好ましくは0.0030以上、特に好ましくは0.010以上であり、好ましくは0.100以下、より好ましくは0.090以下、特に好ましくは0.060以下である。このような複屈折Δnを有する第一の基材では、通常、厚み方向の全体に亘って分子ダイレクターが略均一に配向し、良好な配向規制力を第一の基材に与えることができる。そのため、ラビング処理等の処理によって表面層のみに配向規制力が与えられた第一の基材に比べて、環境の影響(熱、光、酸素など)による経時的な配向規制力の緩和を効果的に抑制できる。
【0093】
第一の基材は、透明性に優れることが好ましい。具体的には、第一の基材の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。第一の基材の全光線透過率は、紫外・可視分光計を用いて、波長400nm〜700nmの範囲で測定しうる。
【0094】
第一の基材は、ヘイズが小さいことが好ましい。具体的には、第一の基材のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下である。第一の基材のヘイズは、当該第一の基材を選択した任意の部位で50mm×50mmの正方形の薄膜サンプルに切り出し、その後、薄膜サンプルについて、ヘイズメーターを用いて測定しうる。
【0095】
第一の基材は、吸水率が低いことが好ましい。具体的には、第一の基材の吸水率は、好ましくは0.1%以下、より好ましくは0.08%以下、特に好ましくは0.05%以下である。
吸水率は、下記の方法により測定しうる。当該第一の基材を選択した任意の部位で150mm×150mmの正方形の薄膜サンプルに切り出し、サンプルの質量を測定する。その後、このサンプルを、23℃の水中に24時間浸漬して、浸漬後のサンプルの質量を測定する。そして、浸漬前のサンプルの質量に対する、浸漬によって増加した試験片の質量の割合を、吸水率(%)として算出しうる。
【0096】
第一の基材は、寸法変化率の絶対値が小さいことが好ましい。具体的には、150℃で1時間加熱した場合の熱寸法変化率の絶対値が、フィルム面内の任意の方向で、好ましくは1%以下、より好ましくは0.5%以下、特に好ましくは0.1%以下である。
熱寸法変化率は、下記の方法により測定しうる。
当該第一の基材を、選択した任意の部位で、150mm×150mmの正方形の薄膜サンプルに切り出す。そのサンプルを、150℃のオーブン内で60分間加熱し、23℃(室温)まで冷却する。その後、サンプルの四辺の長さ及び2本の対角線の長さを測定する。測定された四辺それぞれの長さを基に、下記式(a)に基づいて、熱寸法変化率を算出する。式(a)において、L
Aは、加熱後のサンプルの辺の長さを示す。
熱寸法変化率(%)=[(L
A−150)/150]×100 (a)
また、測定された2本の対角線の長さを基に、下記式(b)に基づいて、熱寸法変化率を算出する。式(b)において、L
Dは、加熱後のサンプルの対角線の長さを示す。
熱寸法変化率(%)=[(L
D−212.13)/212.13]×100 (b)
そして、得られた6つの熱寸法変化率の計算値の中で絶対値が最大となる値を、第一の基材の熱寸法変化率(%)として算出しうる。熱膨張が大きいものは、熱寸法変化率が大きい値を示す。
【0097】
第一の基材は、用途に応じて、レターデーションを有していてもよい。例えば、複層フィルムを位相差フィルム、光学補償フィルム等の光学フィルムとして用いる場合には、第一の基材はレターデーションを有することが好ましい。測定波長590nmにおける第一の基材の面内レターデーションReは、好ましくは30nm以上、より好ましくは50nm以上であり、好ましくは500nm以下であり、より好ましくは300nm以下である。
【0098】
第一の基材の厚みは、好ましくは1μm以上、より好ましくは3μm以上、特に好ましくは10μm以上であり、好ましくは1mm以下、より好ましくは500μm以下、特に好ましくは200μm以下である。第一の基材の厚みを前記範囲の下限値以上にすることにより、適度の強度を得ることができ、上限値以下にすることにより、長尺の複層フィルムを製造する場合の巻き取りを可能にできる。
【0099】
[3.第一の基材の製造方法]
第一の基材は、通常、樹脂フィルムを用意した後で、その樹脂フィルムに配向規制力を生じさせる処理を施す工程を含む製造方法により、製造される。樹脂フィルムに配向規制力を生じさせる処理としては、例えば、光配向処理、ラビング処理、イオンビーム照射処理、蒸着膜形成処理及び延伸処理などが挙げられる。中でも、延伸処理が好ましい。そこで、以下、第一の基材の製造方法の例として、結晶性の重合体を含む結晶性樹脂からなる樹脂フィルムに延伸処理を施すことによって第一の基材を得る方法を説明する。
【0100】
ここで例示する第一の基材の製造方法は、結晶性樹脂からなる樹脂フィルムとしての延伸前フィルムを用意する工程と、延伸前フィルムを延伸して延伸フィルムを得る工程と、延伸フィルムを平坦に維持しながら延伸フィルムの緊張を緩和させて第一の基材を得る工程と、を含む。また、この製造方法は、延伸フィルムを得た後、当該延伸フィルムの緊張を緩和させる前に、延伸フィルムに含まれる結晶性の重合体の結晶化を促進する工程を含むことが好ましい。
【0101】
〔3.1.延伸前フィルムの製造工程〕
前記の製造方法では、延伸前フィルムを用意する工程を行う。延伸前フィルムは、例えば、射出成形法、押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、圧縮成形法等の樹脂成型法によって結晶性樹脂をフィルム状に成形することにより、製造しうる。これらの中でも、厚みの制御が容易であることから、押出成形法が好ましい。
【0102】
押出成形法によって延伸前フィルムを製造する場合、その押出成形法における製造条件は、好ましくは下記の通りである。シリンダー温度(溶融樹脂温度)は、好ましくはTm以上、より好ましくはTm+20℃以上であり、好ましくはTm+100℃以下、より好ましくはTm+50℃以下である。また、キャストロール温度は、好ましくはTg−50℃以上であり、好ましくはTg+70℃以下、より好ましくはTg+40℃以下である。さらに、冷却ロール温度は、好ましくはTg−70℃以上、より好ましくはTg−50℃以上であり、好ましくはTg+60℃以下、より好ましくはTg+30℃以下である。このような条件で延伸前フィルムを製造することにより、厚さ1μm〜1mmの延伸前フィルムを容易に製造できる。ここで、「Tm」は結晶性の重合体の融点を表し、「Tg」は結晶性の重合体のガラス転移温度を表す。
【0103】
〔3.2.延伸工程〕
前記の製造方法では、用意した延伸前フィルムを延伸して、延伸フィルムを得る延伸工程を行う。延伸する方向は、光学異方性層に求められる所望の配向方向に応じて適宜設定しうる。
【0104】
延伸方法に格別な制限は無く、任意の延伸方法を用いうる。例えば、延伸前フィルムを長手方向に一軸延伸する方法(縦一軸延伸法)、延伸前フィルムを幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;延伸前フィルムを長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、延伸前フィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法などの、二軸延伸法;延伸前フィルムを幅方向に平行でもなく垂直でもない斜め方向に延伸する方法(斜め延伸法);などが挙げられる。
【0105】
前記の縦一軸延伸法としては、例えば、ロール間の周速の差を利用した延伸方法などが挙げられる。
また、前記の横一軸延伸法としては、例えば、テンター延伸機を用いた延伸方法などが挙げられる。
さらに、前記の同時二軸延伸法としては、例えば、ガイドレールに沿って移動可能に設けられ且つ延伸前フィルムを固定しうる複数のクリップを備えたテンター延伸機を用いた延伸方法が挙げられる。この方法では、クリップの間隔を開いて延伸前フィルムを長手方向に延伸すると同時に、ガイドレールの広がり角度により延伸前フィルムを幅方向に延伸する。
また、前記の逐次二軸延伸法としては、例えば、ロール間の周速の差を利用して延伸前フィルムを長手方向に延伸した後で、その延伸前フィルムの両端部をクリップで把持してテンター延伸機により幅方向に延伸する延伸方法などが挙げられる。
さらに、前記の斜め延伸法としては、例えば、延伸前フィルムに対して長手方向又は幅方向に左右異なる速度の送り力、引張り力又は引取り力を付加しうるテンター延伸機を用いて延伸前フィルムを斜め方向に連続的に延伸する延伸方法などが挙げられる。
【0106】
延伸前フィルムを延伸する場合の延伸温度は、好ましくは(Tg−30℃)以上、より好ましくは(Tg−20℃)以上、特に好ましくは(Tg−10℃)以上であり、好ましくは(Tg+60℃)以下、より好ましくは(Tg+50℃)以下、特に好ましくは(Tg+40℃)以下である。ここで、「Tg」は結晶性の重合体のガラス転移温度を表す。このような温度範囲で延伸を行うことにより、延伸フィルムに含まれる重合体分子を適切に配向させることができる。
【0107】
延伸前フィルムを延伸する場合の延伸倍率は、好ましくは1.1倍以上、より好ましくは1.2倍以上、特に好ましくは1.5倍以上であり、好ましくは20倍以下、より好ましくは10倍以下、特に好ましくは5倍以下である。ここで、例えば二軸延伸法のように異なる複数の方向に延伸を行う場合、前記の延伸倍率は、各延伸方向における延伸倍率の積で表される総延伸倍率のことを示す。延伸倍率を前記範囲の上限値以下にすることにより、フィルムが破断する可能性を小さくできるので、第一の基材の製造を容易に行うことができる。
【0108】
前記のような延伸処理を延伸前フィルムに施すことにより、フィルム中の重合体分子が配向するので、配向規制力を有する延伸フィルムが得られる。また、通常は、延伸により、結晶化促進工程における大きな結晶粒の発生を抑制できるので、結晶粒に起因する白化を抑制でき、そのため第一の基材の透明性を高めることができる。さらに、通常は、延伸によって延伸フィルムには光学異方性が付与されるので、複屈折及びレターデーション等の光学特性が発現する。
【0109】
〔3.3.結晶化促進工程〕
延伸フィルムを得た後で、延伸フィルム中に含まれる重合体の結晶化を促進する結晶化促進工程を行うことが好ましい。結晶化を促進することにより、延伸フィルムの引張弾性率を効果的に高めることができる。
【0110】
結晶化の促進は、延伸フィルムを所定の温度に調整することで行いうる。結晶化を促進する際の温度範囲は、結晶性の重合体のガラス転移温度Tg以上、結晶性の重合体の融点Tm以下の温度範囲において任意に設定しうる。中でも、前記の温度範囲は、結晶化の速度が大きくなるように設定することが好ましく、具体的には、好ましくはTg+20℃以上、より好ましくはTg+30℃以上であり、好ましくはTm−20℃以下、より好ましくはTm−40℃以下である。結晶化を促進する際の温度を前記範囲の下限値以上にすることにより結晶化を効果的に促進でき、また、上限値以下にすることにより第一の基材の白濁を抑制できる。
【0111】
延伸フィルムを前記のような温度にする場合、通常、延伸フィルムの加熱を行う。この際に用いる加熱装置としては、加熱装置と延伸フィルムとの接触が不要であることから、延伸フィルムの雰囲気温度を上昇させうる加熱装置が好ましい。好適な加熱装置の具体例を挙げると、オーブン及び加熱炉が挙げられる。
【0112】
結晶化の促進は、延伸フィルムを保持して緊張させた状態で行うことが好ましい。これにより、結晶化の促進時における延伸フィルムの熱収縮による変形を抑制できるので、延伸フィルムの平滑性を損なうことなく当該延伸フィルム中の重合体の結晶化を促進できる。ここで、延伸フィルムを緊張させた状態とは、延伸フィルムに張力がかかった状態をいう。ただし、この延伸フィルムを緊張させた状態には、延伸フィルムが実質的に延伸される状態を含まない。また、実質的に延伸されるとは、延伸フィルムのいずれかの方向への延伸倍率が通常1.1倍以上になることをいう。
【0113】
延伸フィルムを保持する場合、適切な保持具によって延伸フィルムを保持する。保持具は、延伸フィルムを連続的に保持しうるものでもよく、間隔を空けて間欠的に保持しうるものでもよい。例えば、所定の間隔で配列された保持具によって延伸フィルムを間欠的に保持してもよい。
【0114】
延伸フィルムは、例えば当該延伸フィルムの二辺以上で保持されることによって、緊張した状態にされうる。これにより、保持されて緊張した状態となった領域において延伸フィルムの熱収縮による変形が妨げられる。延伸フィルムの広い面積において変形を妨げるためには、延伸フィルムは、対向する二辺を含む辺で保持されて、その保持された辺の間の領域を緊張した状態にされることが好ましい。例えば、矩形の枚葉の延伸フィルムでは、その延伸フィルムの対向する二辺(例えば、長辺同士、又は、短辺同士)で保持されて、前記二辺の間の領域を緊張した状態にされることで、その枚葉の延伸フィルムの全面において変形が妨げられる。また、例えば、長尺の延伸フィルムでは、その延伸フィルムの幅方向の端部にある二辺(即ち、長辺)で保持されて前記二辺の間の領域を緊張した状態にされることで、その長尺の延伸フィルムの全面において変形が妨げられる。このように変形を妨げられた延伸フィルムは、熱収縮によってフィルム内に応力が生じても、シワ等の変形の発生が抑制される。この際、例えば延伸方向(二軸延伸の場合は延伸倍率が大きい方向)と直交する二辺を含む辺で延伸フィルムが保持されることにより延伸方向に張力が与えられて延伸フィルムが緊張させられると、変形が特に効果的に抑制される。
【0115】
結晶化の促進による変形を効果的に抑制するためには、より多くの辺で延伸フィルムが保持されることが好ましい。よって、例えば、枚葉の延伸フィルムは、その全ての辺で保持されることが好ましい。具体例を挙げると、矩形の枚葉の延伸フィルムは、四辺で保持されることが好ましい。
【0116】
延伸フィルムを辺で保持しうる保持具としては、延伸フィルムの辺以外の部分では延伸フィルムと接触しないものが好ましい。このような保持具を用いることにより、より平滑性に優れる第一の基材を得ることができる。
【0117】
また、保持具としては、保持具同士の相対的な位置を結晶化促進工程においては固定しうるものが好ましい。このような保持具は、結晶化促進工程において保持具同士の位置が相対的に移動しないので、延伸フィルムの実質的な延伸及び収縮を抑制しやすい。
【0118】
好適な保持具としては、例えば、矩形の延伸フィルム用の保持具として、型枠に所定間隔で設けられ延伸フィルムの辺を把持しうるクリップ等の把持子が挙げられる。また、例えば、長尺の延伸フィルムの幅方向の端部にある二辺を保持するための保持具としては、テンター延伸機に設けられ延伸フィルムの辺を把持しうる把持子が挙げられる。
【0119】
長尺の延伸フィルムは、その延伸フィルムの長手方向の端部にある辺(即ち、短辺)で保持されてもよいが、前記の辺で保持される代わりに、延伸フィルムが結晶化の促進のために所定の温度に調整される処理領域の長手方向の両側で保持されてもよい。例えば、延伸フィルムの処理領域の長手方向の両側に、延伸フィルムを熱収縮しないように保持して緊張させた状態にしうる保持装置を設けてもよい。このような保持装置としては、例えば、2つのロールの組み合わせ、押出機と引き取りロールとの組み合わせ、などが挙げられる。これらの組み合わせによって延伸フィルムに搬送張力等の張力を加えることで、結晶化の促進が行われる処理領域において当該延伸フィルムの熱収縮を抑制できる。そのため、前記の組み合わせを保持装置として用いれば、延伸フィルムを長手方向に搬送しながら当該延伸フィルムを保持できるので、第一の基材の効率的な製造ができる。
【0120】
また、結晶化促進化工程により、高温環境下における寸法変化の原因となり得るフィルム内の応力が解消されている。このために、熱膨張が小さく、熱寸法変化率が小さい第一の基材の製造ができる。
【0121】
延伸フィルムを結晶化の促進のための所定の温度に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは10分以下である。処理時間を前記範囲の下限値以上にすることにより、延伸フィルムが含む重合体の結晶化を十分に進行させて、第一の基材の耐熱性を効果的に高めることができる。また、処理時間を前記範囲の上限値以下にすることにより、第一の基材の白濁を抑制できる。
【0122】
〔3.4.緩和工程〕
必要に応じて結晶化促進工程を行った後で、延伸フィルムから残留応力を除去するために、延伸フィルムを平坦に維持しながら、延伸フィルムの緊張を緩和させて、第一の基材を得る緩和工程を行う。
【0123】
延伸フィルムの緊張の緩和、とは、延伸又は結晶化促進のために延伸機又は保持装置によって保持されて緊張した状態から延伸フィルムを解放することをいい、延伸フィルムが緊張していなければ延伸フィルムが保持装置で保持されていてもよい。このように緊張が緩和されると、延伸フィルムは熱収縮を生じうる状態となる。緩和工程では、延伸フィルムに熱収縮を生じさせることによって、第一の基材に加熱時において生じうる応力を解消している。そのため、第一の基材の高温環境下での熱収縮を小さくできるので、高温環境下での寸法安定性に優れる第一の基材が得られる。
【0124】
延伸フィルムの緊張の緩和は、一時に行ってもよく、時間をかけて連続的又は段階的に行ってもよい。ただし、得られる第一の基材の波打ち及びシワ等の変形の発生を抑制するためには、緊張の緩和は、連続的又は段階的に行うことが好ましい。
【0125】
前記の延伸フィルムの緊張の緩和は、延伸フィルムを平坦に維持しながら行う。ここで延伸フィルムを平坦に維持する、とは、延伸フィルムに波打ち及びシワといった変形を生じないように延伸フィルムを平面形状に保つことをいう。これにより、得られる第一の基材の波打ち及びシワ等の変形の発生を抑制できる。
【0126】
緊張の緩和の際の延伸フィルムの処理温度は、結晶性の重合体のガラス転移温度Tg以上、結晶性の重合体の融点Tm以下の温度範囲において設定しうる。具体的な処理温度は、好ましくはTg+20℃以上、より好ましくはTg+30℃以上であり、好ましくはTm−20℃以下、より好ましくはTm−40℃以下である。また、結晶化促進工程から冷却を経ずに引き続いて緩和工程を行う場合には、緩和工程における延伸フィルムの処理温度は、結晶化促進工程での温度と同じであることが好ましい。これにより、緩和工程における延伸フィルムの温度ムラを抑制したり、第一の基材の生産性を高めたりできる。
【0127】
緩和工程において、延伸フィルムを前記の温度範囲に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは10分間以下である。処理時間を前記範囲の下限値以上にすることにより、第一の基材の高温環境下での寸法安定性を効果的に高めることができる。また、上限値以下にすることにより、第一の基材の高温環境下での寸法安定性を効果的に高めることができ、また、緩和工程における結晶化の進行による第一の基材の白濁を抑制することができる。
【0128】
緩和工程において枚葉の延伸フィルムの緊張を緩和する場合、例えば、その延伸フィルムの四辺を保持しながら、保持部分の間隔を連続的又は段階的に狭める方法を採用しうる。この場合、延伸フィルムの四辺において保持部分の間隔を同時に狭めてもよい。また、一部の辺において保持部分の間隔を狭めた後で、別の一部の辺の保持部分の間隔を狭めてもよい。さらに、一部の辺の保持部分の間隔を狭めないで維持してもよい。また、一部の辺の保持部分の間隔は連続的又は段階的に狭め、別の一部の辺の保持部分の間隔を一時に狭めてもよい。
【0129】
また、前記のような緩和工程において長尺の延伸フィルムの緊張を緩和する場合、例えば、テンター延伸機を用いて、クリップを案内しうるガイドレールの間隔を延伸フィルムの搬送方向において狭めたり、隣り合うクリップの間隔を狭めたりする方法を採用しうる。
【0130】
前記のように、延伸フィルムを保持した状態で保持部分の間隔を狭めることで延伸フィルムの緊張の緩和を行う場合、間隔を狭める程度は、延伸フィルムに残留していた応力の大きさに応じて設定しうる。緩和工程において保持間隔を狭める具体的な程度は、緩和工程での処理温度において延伸フィルムに緊張を与えない状態での熱収縮率をS(%)とした場合に、好ましくは0.1S以上、より好ましくは0.5S以上、特に好ましくは0.7S以上であり、好ましくは1.2S以下、より好ましくは1.0S以下、特に好ましくは0.95S以下である。また、例えば直交する2方向で熱収縮率Sが異なる場合のように、前記熱収縮率Sに異方性がある場合は、各々の方向について前記範囲内で保持間隔を狭める程度を定めうる。このような範囲にすることで、第一の基材の残留応力を十分に除去し、かつ平坦性を維持させることができる。
【0131】
前記の熱収縮率Sは、下記の方法により測定しうる。
室温23℃の環境下で、延伸フィルムを150mm×150mmの大きさの正方形に切り出し、試料フィルムとする。この試料フィルムを、緩和工程の処理温度と同じ温度に設定したオーブン内で60分間加熱し、23℃(室温)まで冷却した後、試料フィルムの熱収縮率Sを求めたい方向に平行な二辺の長さを測定する。
測定された二辺それぞれの長さを基に、下記式(A)に基づいて、試料フィルムの熱収縮率Sを算出する。式(A)において、L
1は、加熱後の試料フィルムの測定した二辺の一方の辺の長さを示し、L
2はもう一方の辺の長さを示す。
熱収縮率S(%)=[(300−L
1−L
2)/300]×100 (A)
【0132】
[4.光学異方性層の構成]
本発明の複層フィルムは、第一の基材上に直接形成された、硬化液晶分子を含む光学異方性層を備える。第一の基材上への、光学異方性層の「直接」の形成とは、第一の基材の表面に、他の層を介さずに光学異方性層を形成することを示す。高い引張弾性率を有する第一の基材を採用し、且つ、光学異方性層がその上に直接形成されたものであることにより、光学異方性層においては、表面におけるシワの形成が抑制される。
【0133】
光学異方性層において、硬化液晶分子は、第一の基材の配向規制力に応じた方向に配向する。例えば、第一の基材が延伸によって生じた配向規制力を有する場合、光学異方性層に含まれる硬化液晶分子は、第一の基材の遅相軸の方向と略同一方向に沿った配向規則性を有しうる。
【0134】
硬化液晶分子は、好ましくは、第一の基材の遅相軸の方向と略同一方向に沿ったホモジニアス配向規則性を有しうる。ここで、「ホモジニアス配向規則性を有する」とは、硬化液晶分子のメソゲンの長軸方向をフィルム面に投影して得られる線の平均方向が、フィルム面に平行なある一の方向(例えば第一の基材の表面ダイレクターの方向)に整列することをいう。さらに、ある所定の方向に「沿った」ホモジニアス配向規則性とは、当該整列方向が、前記所定の方向に略一致することをいう。例えば、前記所定の方向とは、第一の基材の表面ダイレクターの方向又は第一の基材の遅相軸方向である。硬化液晶分子がホモジニアス配向規則性を有しているか否か、及びその整列方向は、AxoScan(Axometrics社製)に代表されるような位相差計を用いた遅相軸方向の測定と、遅相軸方向における入射角毎のレターデーション分布の測定とにより確認しうる。
【0135】
ここで、硬化液晶分子が、棒状の分子構造を有する重合性液晶化合物を重合させてなるものである場合は、通常は、当該重合性液晶化合物のメソゲンの長軸方向が、硬化液晶分子のメソゲンの長軸方向となる。また、重合性液晶化合物として逆波長分散重合性液晶化合物(後述)を用いた場合のように、光学異方性層中に、配向方向の異なる複数種類のメソゲンが存在する場合は、それらのうち最も長い種類のメソゲンの長軸方向が整列する方向が、当該整列方向となる。
【0136】
さらに、第一の基材の遅相軸の方向と「略」同一方向に沿った配向とは、第一の基材の遅相軸の方向と、メソゲンの整列方向とがなす角が、5°以内であることをいう。当該角は、好ましくは3°以内であり、より好ましくは1°以内である。
【0137】
第一の基材として遅相軸を有するものを用い、さらに光学異方性層の材料を適切に選択することにより、光学異方性層に、第一の基材の遅相軸方向と略同一方向に沿ったホモジニアス配向規則性等の配向規則性を付与することができ、その結果、このような配向規則性を有する光学異方性層を得ることができる。
【0138】
特に、延伸によって生じた配向規制力を有する第一の基材を用いた場合、所望の方向に遅相軸を有する光学異方性層を、ラビングにより生じる発塵、キズの発生、及び異物の混入が少ない状態で得ることができる。その結果、配向における欠陥の少ない光学異方性層が得られる。具体的には、光学異方性層を顕微鏡観察した場合に見られるキズや異物が少なく、線欠陥等の配向欠陥の少ない光学異方性層が得られる。
【0139】
このような光学異方性層は、通常、第一の基材の遅相軸方向と略平行な遅相軸を有する。ここで、光学異方性層の遅相軸方向と第一の基材の遅相軸とが「略平行」である、とは、光学異方性層の遅相軸方向と第一の基材の遅相軸とがなす角度が、通常±5°以内、好ましくは±3°以内、更に好ましくは±1°以内であることをいう。
【0140】
光学異方性層が長尺状である場合、光学異方性層の幅方向に対して光学異方性層の遅相軸がなす配向角の範囲は、第一の基材の配向角と同様としうる。具体的には、光学異方性層の配向角は、好ましくは10°以上、より好ましくは30°以上、特に好ましくは40°以上であり、好ましくは85°以下、より好ましくは80°以下、特に好ましくは70°以下である。また、ある態様においては、光学異方性層の配向角は、好ましくは15°±5°、45°±5°、67.5°±5°、75°±5°、より好ましくは15°±4°、45°±4°、67.5°±4°、75°±4°、さらにより好ましくは15°±3°、45°±3°、67.5°±3°、75°±3°といった特定の範囲としうる。このような角度関係を有することにより、光学異方性層を、円偏光板の効率的な製造を可能にする材料にできる。
【0141】
光学異方性層のレターデーションは、光学異方性層の用途に応じて設定しうる。例えば、測定波長590nmで測定した光学異方性層の面内レターデーションReが、108nm〜168nmの範囲である場合、その光学異方性層は、1/4波長板として使用しうる。また、測定波長590nmで測定した光学異方性層の面内レターデーションReが245nm〜305nmの範囲である場合、その光学異方性層は、1/2波長板として使用しうる。より具体的には、1/4波長板として用いる場合、測定波長590nmで測定した光学異方性層の面内レターデーションReは、好ましくは128nm以上、より好ましくは133nm以上であり、好ましくは148nm以下、より好ましくは143nm以下である。また、1/2波長板として用いる場合、測定波長590nmで測定した光学異方性層の面内レターデーションReは、好ましくは265nm以上、より好ましくは270nm以上であり、好ましくは285nm以下、より好ましくは280nm以下である。
【0142】
光学異方性層は、逆波長分散性を有することが好ましい。即ち、光学異方性層は、短波長より長波長の透過光について大きい面内レターデーションを示す波長分散を有することが好ましい。また、光学異方性層は、少なくとも可視光の帯域の一部、好ましくは全部においてそのような逆波長分散性を有することが好ましい。光学異方性層が逆波長分散性を有することにより、1/4波長板又は1/2波長板といった光学用途において、広い帯域において均一に機能を発現できる。
【0143】
光学異方性層の厚みは、レターデーションなどの特性を所望の範囲とできるよう、適宜調整しうる。光学異方性層の具体的な厚みは、好ましくは0.5μm以上、より好ましくは0.8μm以上、特に好ましくは1.0μm以上であり、好ましくは5μm以下、より好ましくは4μm以下、特に好ましくは3.5μm以下である。
【0144】
光学異方性層の形状並びに長さ及び幅は、任意である。光学異方性層は、第一の基材と同様に、長尺状にしてもよく、枚葉にしてもよい。
【0145】
[5.光学異方性層の形成方法]
光学異方性層は、典型的には、第一の基材上に、直接、重合性液晶化合物を含有する液晶組成物を塗布して、液晶組成物の層を形成する工程と;液晶組成物の層中の重合性液晶化合物を配向させる工程と;重合性液晶化合物を重合させて、光学異方性層を得る工程と、を含む方法により、形成しうる。
【0146】
〔5.1.液晶組成物〕
液晶組成物は、重合性液晶化合物を含み、必要に応じて任意の成分を含みうる組成物である。また、液晶組成物の成分としての液晶化合物とは、液晶組成物に配合し配向させた際に、液晶相を呈しうる化合物である。さらに、重合性液晶化合物とは、かかる液晶相を呈した状態で液晶組成物中で重合し、液晶相における分子の配向を維持したまま重合体となりうる液晶化合物である。また、逆波長分散重合性液晶化合物とは、そのように重合体とした場合、得られた重合体が逆波長分散性を示す重合性液晶化合物である。
以下の説明において、液晶組成物の成分であって、重合性を有する化合物(重合性液晶化合物及びその他の重合性を有する化合物等)を総称して、単に「重合性化合物」ということがある。
【0147】
〔5.1.1.重合性液晶化合物〕
重合性液晶化合物としては、例えば、重合性基を有する液晶化合物、側鎖型液晶ポリマーを形成しうる化合物、円盤状液晶性化合物などが挙げられる。重合性基を有する液晶化合物としては、例えば、特開平11−513360号公報、特開2002−030042号公報、特開2004−204190号公報、特開2005−263789号公報、特開2007−119415号公報、特開2007−186430号公報などの文献に記載された重合性基を有する棒状液晶化合物が挙げられる。また、側鎖型液晶ポリマー化合物としては、例えば、特開2003−177242号公報などの文献に記載の側鎖型液晶ポリマー化合物が挙げられる。好ましい液晶化合物の例を製品名で挙げると、BASF社製「LC242」等が挙げられる。円盤状液晶性化合物の具体例は、特開平8−50206号公報、文献(C. Destrade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981) ;日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B. Kohne et al., Angew. Chem. Soc. Chem. Comm., page 1794 (1985);J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994))に記載されている。これらの液晶化合物及び以下に説明する逆波長分散重合性液晶化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0148】
重合性液晶化合物の一部又は全部として、逆波長分散重合性液晶化合物を用いることが好ましい。逆波長分散重合性液晶化合物を用いることにより、逆波長分散性を有する光学異方性層を容易に得ることができる。
【0149】
逆波長分散重合性液晶化合物の例としては、その分子中に主鎖メソゲンと、主鎖メソゲンに結合した側鎖メソゲンとを有する化合物が挙げられる。このような逆波長分散重合性液晶化合物が配向した状態において、側鎖メソゲンは、主鎖メソゲンと異なる方向に配向しうる。したがって、光学異方性層において、主鎖メソゲン及び側鎖メソゲンは異なる方向に配向しうる。そのような配向により、光学異方性層が逆波長分散性を呈しうる。
【0150】
逆波長分散重合性液晶化合物の好適な具体例としては、下記式(I)で示される化合物が挙げられる。以下の説明において、式(I)で表される化合物を、適宜「化合物(I)」ということがある。
【0152】
化合物(I)では、基−Y
5−A
4−(Y
3−A
2)
n−Y
1−A
1−Y
2−(A
3−Y
4)
m−A
5−Y
6−が主鎖メソゲンとなり、一方基>A
1−C(Q
1)=N−N(A
x)A
yが側鎖メソゲンとなり、基A
1は、主鎖メソゲン及び側鎖メソゲンの両方の性質に影響する。
【0153】
式(I)中、Y
1〜Y
8は、それぞれ独立して、化学的な単結合、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR
1−C(=O)−、−C(=O)−NR
1−、−O−C(=O)−NR
1−、−NR
1−C(=O)−O−、−NR
1−C(=O)−NR
1−、−O−NR
1−、又は、−NR
1−O−を表す。
【0154】
ここで、R
1は水素原子又は炭素数1〜6のアルキル基を表す。
R
1の炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、n−へキシル基等が挙げられる。
R
1としては、水素原子又は炭素数1〜4のアルキル基が好ましい。
【0155】
化合物(I)においては、Y
1〜Y
8は、それぞれ独立して、化学的な単結合、−O−、−O−C(=O)−、−C(=O)−O−、又は、−O−C(=O)−O−であることが好ましい。
【0156】
前記式(I)において、G
1及びG
2は、それぞれ独立して、置換基を有していてもよい、炭素数1〜20の二価の脂肪族基を表す。
炭素数1〜20の二価の脂肪族基としては、例えば、炭素数1〜20のアルキレン基、炭素数2〜20のアルケニレン基等の鎖状構造を有する二価の脂肪族基;炭素数3〜20のシクロアルカンジイル基、炭素数4〜20のシクロアルケンジイル基、炭素数10〜30の二価の脂環式縮合環基等の二価の脂肪族基;等が挙げられる。
【0157】
G
1及びG
2の二価の脂肪族基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、n−へキシルオキシ基等の炭素数1〜6のアルコキシ基;が挙げられる。なかでも、フッ素原子、メトキシ基及びエトキシ基が好ましい。
【0158】
また、前記脂肪族基には、1つの脂肪族基当たり1以上の−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR
2−C(=O)−、−C(=O)−NR
2−、−NR
2−、又は、−C(=O)−が介在していてもよい。ただし、−O−又は−S−がそれぞれ2以上隣接して介在する場合を除く。ここで、R
2は、前記R
1と同様の、水素原子又は炭素数1〜6のアルキル基を表し、水素原子又はメチル基であることが好ましい。
前記脂肪族基に介在する基としては、−O−、−O−C(=O)−、−C(=O)−O−、−C(=O)−が好ましい。
【0159】
これらの基が介在する脂肪族基の具体例としては、−CH
2−CH
2−O−CH
2−CH
2−、−CH
2−CH
2−S−CH
2−CH
2−、−CH
2−CH
2−O−C(=O)−CH
2−CH
2−、−CH
2−CH
2−C(=O)−O−CH
2−CH
2−、−CH
2−CH
2−C(=O)−O−CH
2−、−CH
2−O−C(=O)−O−CH
2−CH
2−、−CH
2−CH
2−NR
2−C(=O)−CH
2−CH
2−、−CH
2−CH
2−C(=O)−NR
2−CH
2−、−CH
2−NR
2−CH
2−CH
2−、−CH
2−C(=O)−CH
2−等が挙げられる。
【0160】
これらの中でも、本発明の所望の効果をより良好に発現させる観点から、G
1及びG
2は、それぞれ独立して、炭素数1〜20のアルキレン基、炭素数2〜20のアルケニレン基等の鎖状構造を有する二価の脂肪族基が好ましく、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基〔−(CH
2)
10−〕等の、炭素数1〜12のアルキレン基がより好ましく、テトラメチレン基〔−(CH
2)
4−〕、ヘキサメチレン基〔−(CH
2)
6−〕、オクタメチレン基〔−(CH
2)
8−〕、及び、デカメチレン基〔−(CH
2)
10−〕が特に好ましい。
【0161】
前記式(I)において、Z
1及びZ
2は、それぞれ独立して、無置換又はハロゲン原子で置換されていてもよい炭素数2〜10のアルケニル基を表す。
該アルケニル基の炭素数としては、2〜6が好ましい。Z
1及びZ
2のアルケニル基の置換基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、塩素原子が好ましい。
【0162】
Z
1及びZ
2の炭素数2〜10のアルケニル基の具体例としては、CH
2=CH−、CH
2=C(CH
3)−、CH
2=CH−CH
2−、CH
3−CH=CH−、CH
2=CH−CH
2−CH
2−、CH
2=C(CH
3)−CH
2−CH
2−、(CH
3)
2C=CH−CH
2−、(CH
3)
2C=CH−CH
2−CH
2−、CH
2=C(Cl)−、CH
2=C(CH
3)−CH
2−、CH
3−CH=CH−CH
2−等が挙げられる。
【0163】
なかでも、本発明の所望の効果をより良好に発現させる観点から、Z
1及びZ
2としては、それぞれ独立して、CH
2=CH−、CH
2=C(CH
3)−、CH
2=C(Cl)−、CH
2=CH−CH
2−、CH
2=C(CH
3)−CH
2−、又は、CH
2=C(CH
3)−CH
2−CH
2−が好ましく、CH
2=CH−、CH
2=C(CH
3)−、又は、CH
2=C(Cl)−がより好ましく、CH
2=CH−が特に好ましい。
【0164】
前記式(I)において、A
xは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表す。「芳香環」は、Huckel則に従う広義の芳香族性を有する環状構造、すなわち、π電子を(4n+2)個有する環状共役構造、及びチオフェン、フラン、ベンゾチアゾール等に代表される、硫黄、酸素、窒素等のヘテロ原子の孤立電子対がπ電子系に関与して芳香族性を示す環状構造を意味する。
【0165】
A
xの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基は、芳香環を複数個有するものであってもよく、芳香族炭化水素環及び芳香族複素環を有するものであってもよい。
【0166】
前記芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。前記芳香族複素環としては、ピロール環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環等の単環の芳香族複素環;ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、フタラジン環、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾフラン環、ベンゾチオフェン環、チアゾロピリジン環、オキサゾロピリジン環、チアゾロピラジン環、オキサゾロピラジン環、チアゾロピリダジン環、オキサゾロピリダジン環、チアゾロピリミジン環、オキサゾロピリミジン環等の縮合環の芳香族複素環;が挙げられる。
【0167】
A
xが有する芳香環は置換基を有していてもよい。かかる置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基;ビニル基、アリル基等の炭素数2〜6のアルケニル基;トリフルオロメチル基等の炭素数1〜6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1〜6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;−C(=O)−R
5;−C(=O)−OR
5;−SO
2R
6;等が挙げられる。ここで、R
5は炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、又は、炭素数3〜12のシクロアルキル基を表し、R
6は後述するR
4と同様の、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、フェニル基、又は、4−メチルフェニル基を表す。
【0168】
また、A
xが有する芳香環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であってもよく、縮合多環であってもよく、不飽和環であってもよく、飽和環であってもよい。
さらに、A
xの炭素数2〜30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するA
yにて同じである。)。
【0169】
A
xの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基としては、例えば、芳香族炭化水素環基;芳香族複素環基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3〜30のアルキル基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4〜30のアルケニル基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4〜30のアルキニル基;が挙げられる。
【0170】
A
xの好ましい具体例を以下に示す。但し、A
xは以下に示すものに限定されるものではない。なお、下記式中、「−」は環の任意の位置からのびる結合手を表す(以下にて同じである。)。
(1)芳香族炭化水素環基
【0176】
上記式中、Eは、NR
6a、酸素原子又は硫黄原子を表す。ここで、R
6aは、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基を表す。
【0178】
上記式中、X、Y及びZは、それぞれ独立して、NR
7、酸素原子、硫黄原子、−SO−、又は、−SO
2−を表す(ただし、酸素原子、硫黄原子、−SO−、−SO
2−が、それぞれ隣接する場合を除く。)。R
7は、前記R
6aと同様の、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基を表す。
【0180】
(上記式中、Xは前記と同じ意味を表す。)
(3)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルキル基
【0182】
(4)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルケニル基
【0184】
(5)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルキニル基
【0186】
上記したA
xの中でも、炭素数6〜30の芳香族炭化水素環基、又は炭素数4〜30の芳香族複素環基が好ましく、下記に示すいずれかの基がより好ましく、
【0189】
下記に示すいずれかの基が更に好ましい。
【0191】
A
xが有する環は置換基を有していてもよい。かかる置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基;ビニル基、アリル基等の炭素数2〜6のアルケニル基;トリフルオロメチル基等の炭素数1〜6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1〜6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;−C(=O)−R
8;−C(=O)−OR
8;−SO
2R
6;等が挙げられる。ここでR
8は、メチル基、エチル基等の炭素数1〜6のアルキル基;又は、フェニル基等の炭素数6〜14のアリール基;を表す。なかでも、ハロゲン原子、シアノ基、炭素数1〜6のアルキル基、及び炭素数1〜6のアルコキシ基が好ましい。
【0192】
A
xが有する環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であっても、縮合多環であってもよい。
A
xの炭素数2〜30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するA
yにて同じである。)。
【0193】
前記式(I)において、A
yは、水素原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数3〜12のシクロアルキル基、置換基を有していてもよい炭素数2〜20のアルキニル基、−C(=O)−R
3、−SO
2−R
4、−C(=S)NH−R
9、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表す。ここで、R
3は、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数3〜12のシクロアルキル基、又は、炭素数5〜12の芳香族炭化水素環基を表す。R
4は、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、フェニル基、又は、4−メチルフェニル基を表す。R
9は、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数3〜12のシクロアルキル基、又は、置換基を有していてもよい炭素数5〜20の芳香族基を表す。
【0194】
A
yの、置換基を有していてもよい炭素数1〜20のアルキル基の炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、1−メチルペンチル基、1−エチルペンチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−へキシル基、イソヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−イコシル基が挙げられる。置換基を有してもよい炭素数1〜20のアルキル基の炭素数は、1〜12であることが好ましく、4〜10であることが更に好ましい。
【0195】
A
yの、置換基を有していてもよい炭素数2〜20のアルケニル基の炭素数2〜20のアルケニル基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基が挙げられる。置換基を有していてもよい炭素数2〜20のアルケニル基の炭素数は、2〜12であることが好ましい。
【0196】
A
yの、置換基を有していてもよい炭素数3〜12のシクロアルキル基の炭素数3〜12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。
【0197】
A
yの、置換基を有していてもよい炭素数2〜20のアルキニル基の炭素数2〜20のアルキニル基としては、例えば、エチニル基、プロピニル基、2−プロピニル基(プロパルギル基)、ブチニル基、2−ブチニル基、3−ブチニル基、ペンチニル基、2−ペンチニル基、ヘキシニル基、5−ヘキシニル基、ヘプチニル基、オクチニル基、2−オクチニル基、ノナニル基、デカニル基、7−デカニル基が挙げられる。
【0198】
A
yの、置換基を有していてもよい炭素数1〜20のアルキル基、及び置換基を有していてもよい炭素数2〜20のアルケニル基の置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1〜20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1〜12のアルコキシ基で置換された炭素数1〜12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3〜8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3〜8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2〜12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6〜14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、−CH
2CF
3等の、少なくとも1個がフッ素原子で置換された炭素数1〜12のフルオロアルコキシ基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;−C(=O)−R
7a;−C(=O)−OR
7a;−SO
2R
8a;−SR
10;−SR
10で置換された炭素数1〜12のアルコキシ基;水酸基;が挙げられる。ここで、R
7a及びR
10は、それぞれ独立して、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数3〜12のシクロアルキル基、又は、炭素数6〜12の芳香族炭化水素環基を表し、R
8aは、前記R
4と同様の、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、フェニル基、又は、4−メチルフェニル基を表す。
【0199】
A
yの、置換基を有していてもよい炭素数3〜12のシクロアルキル基の置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1〜6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3〜8のシクロアルキル基;−C(=O)−R
7a;−C(=O)−OR
7a;−SO
2R
8a;水酸基;が挙げられる。ここでR
7a及びR
8aは、前記と同じ意味を表す。
【0200】
A
yの、置換基を有していてもよい炭素数2〜20のアルキニル基の置換基としては、例えば、置換基を有していてもよい炭素数1〜20のアルキル基、及び、置換基を有していてもよい炭素数2〜20のアルケニル基の置換基と同様な置換基が挙げられる。
【0201】
A
yの、−C(=O)−R
3で表される基において、R
3は、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数3〜12のシクロアルキル基、又は、炭素数5〜12の芳香族炭化水素環基を表す。これらの具体例は、前記A
yの、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、及び、置換基を有していてもよい炭素数3〜12のシクロアルキル基;並びに、前記A
xで説明した芳香族炭化水素環基のうち炭素数が5〜12のものの例として列記したものと同様のものが挙げられる。
【0202】
A
yの、−SO
2−R
4で表される基において、R
4は、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、フェニル基、又は、4−メチルフェニル基を表す。R
4の、炭素数1〜20のアルキル基、及び炭素数2〜20のアルケニル基の具体例は、前記A
yの、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基の例として列記したものと同様のものが挙げられる。
【0203】
A
yの、−C(=S)NH−R
9で表される基において、R
9は、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数3〜12のシクロアルキル基、又は、置換基を有していてもよい炭素数5〜20の芳香族基を表す。これらの具体例は、前記A
yの、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数3〜12のシクロアルキル基;並びに、前記A
xで説明した芳香族炭化水素環基及び芳香族複素環基のうち炭素数が5〜20のものの例として挙げたものと同様のものが挙げられる。
【0204】
A
yの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基としては、前記A
xで例示したのと同様のものが挙げられる。
【0205】
これらの中でも、A
yとしては、水素原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数3〜12のシクロアルキル基、置換基を有していてもよい炭素数2〜20のアルキニル基、−C(=O)−R
3、−SO
2−R
4、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基で表される基が好ましい。さらに、A
yとしては、水素原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数3〜12のシクロアルキル基、置換基を有していてもよい炭素数2〜20のアルキニル基、置換基を有してもよい炭素数6〜12の芳香族炭化水素環基、置換基を有していてもよい炭素数3〜9の芳香族複素環基、−C(=O)−R
3、−SO
2−R
4で表される基が更に好ましい。ここで、R
3及びR
4は、前記と同じ意味を表す。
【0206】
A
yの、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数2〜20のアルケニル基、置換基を有していてもよい炭素数2〜20のアルキニル基の置換基としては、ハロゲン原子、シアノ基、炭素数1〜20のアルコキシ基、炭素数1〜12のアルコキシ基で置換された炭素数1〜12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2〜12の環状エーテル基、炭素数6〜14のアリールオキシ基、水酸基、ベンゾジオキサニル基、フェニルスルホニル基、4−メチルフェニルスルホニル基、ベンゾイル基、−SR
10が好ましい。ここで、R
10は前記と同じ意味を表す。
【0207】
A
yの、置換基を有していてもよい炭素数3〜12のシクロアルキル基、置換基を有してもよい炭素数6〜12の芳香族炭化水素環基、置換基を有していてもよい炭素数3〜9の芳香族複素環基の置換基としては、フッ素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、シアノ基が好ましい。
【0208】
また、A
xとA
yは、一緒になって、環を形成していてもよい。かかる環としては、例えば、置換基を有していてもよい、炭素数4〜30の不飽和複素環、炭素数6〜30の不飽和炭素環が挙げられる。前記炭素数4〜30の不飽和複素環、炭素数6〜30の不飽和炭素環としては、特に制約はなく、芳香族性を有していても有していなくてもよい。
【0209】
A
xとA
yが一緒になって形成される環としては、例えば、下記に示す環が挙げられる。なお、下記に示す環は、式(I)中の
【0211】
として表される部分を示すものである。
【0215】
(式中、X、Y、Zは、前記と同じ意味を表す。)
また、これらの環は置換基を有していてもよい。かかる置換基としては、A
xが有する芳香環の置換基として例示したのと同様のものが挙げられる。
【0216】
A
xとA
yに含まれるπ電子の総数は、本発明の所望の効果をより良好に発現させる観点から、4以上24以下であるのが好ましく、6以上20以下であるのがより好ましく、6以上18以下であるのが更により好ましい。
【0217】
A
xとA
yの好ましい組み合わせとしては、下記の組み合わせ(α)及び組み合わせ(β)が挙げられる。
(α)A
xが炭素数4〜30の、芳香族炭化水素環基又は芳香族複素環基であり、A
yが水素原子、炭素数3〜8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、若しくは炭素数3〜8のシクロアルキル基)を置換基として有していてもよい炭素数6〜12の芳香族炭化水素環基、(ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3〜9の芳香族複素環基、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルケニル基、又は、置換基を有していてもよい炭素数2〜20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1〜20のアルコキシ基、炭素数1〜12のアルコキシ基で置換された炭素数1〜12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2〜12の環状エーテル基、炭素数6〜14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基及び−SR
10のいずれかである組み合わせ。
(β)A
xとA
yが一緒になって不飽和複素環又は不飽和炭素環を形成している組み合わせ。ここで、R
10は前記と同じ意味を表す。
【0218】
A
xとA
yのより好ましい組み合わせとしては、下記の組み合わせ(γ)が挙げられる。
(γ)A
xが下記構造を有する基のいずれかであり、A
yが水素原子、炭素数3〜8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、若しくは炭素数3〜8のシクロアルキル基)を置換基として有していてもよい炭素数6〜12の芳香族炭化水素環基、(ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3〜9の芳香族複素環基、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルケニル基、又は、置換基を有していてもよい炭素数2〜20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1〜20のアルコキシ基、炭素数1〜12のアルコキシ基で置換された炭素数1〜12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2〜12の環状エーテル基、炭素数6〜14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、−SR
10のいずれかである組み合わせ。ここで、R
10は、前記と同じ意味を表す。
【0221】
(式中、X、Yは、前記と同じ意味を表す。)
A
xとA
yの特に好ましい組み合わせとしては、下記の組み合わせ(δ)が挙げられる。
(δ)A
xが下記構造を有する基のいずれかであり、A
yが水素原子、炭素数3〜8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、若しくは炭素数3〜8のシクロアルキル基)を置換基として有していてもよい炭素数6〜12の芳香族炭化水素環基、(ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3〜9の芳香族複素環基、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルケニル基、又は、置換基を有していてもよい炭素数2〜20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1〜20のアルコキシ基、炭素数1〜12のアルコキシ基で置換された炭素数1〜12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2〜12の環状エーテル基、炭素数6〜14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、及び、−SR
10のいずれかである組合せ。下記式中、Xは前記と同じ意味を表す。ここで、R
10は前記と同じ意味を表す。
【0223】
前記式(I)において、A
1は、置換基を有していてもよい三価の芳香族基を表す。三価の芳香族基としては、三価の炭素環式芳香族基であってもよく、三価の複素環式芳香族基であってもよい。本発明の所望の効果をより良好に発現させる観点から、三価の炭素環式芳香族基が好ましく、三価のベンゼン環基又は三価のナフタレン環基がより好ましく、下記式に示す三価のベンゼン環基又は三価のナフタレン環基がさらに好ましい。なお、下記式においては、結合状態をより明確にすべく、置換基Y
1、Y
2を便宜上記載している(Y
1、Y
2は、前記と同じ意味を表す。以下にて同じ。)。
【0225】
これらの中でも、A
1としては、下記に示す式(A11)〜(A25)で表される基がより好ましく、式(A11)、(A13)、(A15)、(A19)、(A23)で表される基がさらに好ましく、式(A11)、(A23)で表される基が特に好ましい。
【0227】
A
1の、三価の芳香族基が有していてもよい置換基としては、前記A
xの芳香環の置換基として例示したのと同様のものが挙げられる。A
1としては、置換基を有さないものが好ましい。
【0228】
前記式(I)において、A
2及びA
3は、それぞれ独立して、置換基を有していてもよい炭素数3〜30の二価の脂環式炭化水素基を表す。炭素数3〜30の二価の脂環式炭化水素基としては、例えば、炭素数3〜30のシクロアルカンジイル基、炭素数10〜30の二価の脂環式縮合環基等が挙げられる。
【0229】
炭素数3〜30のシクロアルカンジイル基としては、例えば、シクロプロパンジイル基;シクロブタン−1,2−ジイル基、シクロブタン−1,3−ジイル基等のシクロブタンジイル基;シクロペンタン−1,2−ジイル基、シクロペンタン−1,3−ジイル基等のシクロペンタンジイル基;シクロヘキサン−1,2−ジイル基、シクロヘキサン−1,3−ジイル基、シクロヘキサン−1,4−ジイル基等のシクロへキサンジイル基;シクロヘプタン−1,2−ジイル基、シクロヘプタン−1,3−ジイル基、シクロヘプタン−1,4−ジイル基等のシクロへプタンジイル基;シクロオクタン−1,2−ジイル基、シクロオクタン−1,3−ジイル基、シクロオクタン−1,4−ジイル基、シクロオクタン−1,5−ジイル基等のシクロオクタンジイル基;シクロデカン−1,2−ジイル基、シクロデカン−1,3−ジイル基、シクロデカン−1,4−ジイル基、シクロデカン−1,5−ジイル基等のシクロデカンジイル基;シクロドデカン−1,2−ジイル基、シクロドデカン−1,3−ジイル基、シクロドデカン−1,4−ジイル基、シクロドデカン−1,5−ジイル基等のシクロドデカンジイル基;シクロテトラデカン−1,2−ジイル基、シクロテトラデカン−1,3−ジイル基、シクロテトラデカン−1,4−ジイル基、シクロテトラデカン−1,5−ジイル基、シクロテトラデカン−1,7−ジイル基等のシクロテトラデカンジイル基;シクロエイコサン−1,2−ジイル基、シクロエイコサン−1,10−ジイル基等のシクロエイコサンジイル基;等が挙げられる。
【0230】
炭素数10〜30の二価の脂環式縮合環基としては、例えば、デカリン−2,5−ジイル基、デカリン−2,7−ジイル基等のデカリンジイル基;アダマンタン−1,2−ジイル基、アダマンタン−1,3−ジイル基等のアダマンタンジイル基;ビシクロ[2.2.1]へプタン−2,3−ジイル基、ビシクロ[2.2.1]へプタン−2,5−ジイル基、ビシクロ[2.2.1]へプタン−2,6−ジイル基等のビシクロ[2.2.1]へプタンジイル基;等が挙げられる。
【0231】
これらの二価の脂環式炭化水素基は、任意の位置に置換基を有していてもよい。置換基としては、前記A
xの芳香環の置換基として例示したのと同様のものが挙げられる。
【0232】
これらの中でも、A
2及びA
3としては、炭素数3〜12の二価の脂環式炭化水素基が好ましく、炭素数3〜12のシクロアルカンジイル基がより好ましく、下記式(A31)〜(A34)で表される基がさらに好ましく、下記式(A32)で表される基が特に好ましい。
【0234】
前記炭素数3〜30の二価の脂環式炭化水素基は、Y
1及びY
3(又はY
2及びY
4)と結合する炭素原子の立体配置の相違に基づく、シス型及びトランス型の立体異性体が存在し得る。例えば、シクロヘキサン−1,4−ジイル基の場合には、下記に示すように、シス型の異性体(A32a)とトランス型の異性体(A32b)が存在し得る。
【0236】
前記炭素数3〜30の二価の脂環式炭化水素基は、シス型であってもよく、トランス型であってもよく、シス型及びトランス型の異性体混合物であってもよい。中でも、配向性が良好であることから、トランス型あるいはシス型であるのが好ましく、トランス型がより好ましい。
【0237】
前記式(I)において、A
4及びA
5は、それぞれ独立して、置換基を有していてもよい、炭素数6〜30の二価の芳香族基を表す。A
4及びA
5の芳香族基は、単環のものであってもよく、多環のものであってもよい。A
4及びA
5の好ましい具体例としては、下記のものが挙げられる。
【0239】
上記A
4及びA
5の二価の芳香族基は、任意の位置に置換基を有していてもよい。当該置換基としては、例えば、ハロゲン原子、シアノ基、ヒドロキシル基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、ニトロ基、−C(=O)−OR
8b基;が挙げられる。ここでR
8bは、炭素数1〜6のアルキル基である。なかでも、置換基としては、ハロゲン原子、炭素数1〜6のアルキル基、アルコキシ基が好ましい。また、ハロゲン原子としては、フッ素原子がより好ましく、炭素数1〜6のアルキル基としては、メチル基、エチル基、プロピル基がより好ましく、アルコキシ基としては、メトキシ基、エトキシ基がより好ましい。
【0240】
これらの中でも、本発明の所望の効果をより良好に発現させる観点から、A
4及びA
5は、それぞれ独立して、置換基を有していてもよい、下記式(A41)、(A42)又は(A43)で表される基がより好ましく、置換基を有していてもよい式(A41)で表される基が特に好ましい。
【0242】
前記式(I)において、Q
1は、水素原子、又は、置換基を有していてもよい炭素数1〜6のアルキル基を示す。置換基を有していてもよい炭素数1〜6のアルキル基としては、前記A
yで例示した置換基を有していてもよい炭素数1〜20のアルキル基のうち、炭素菅1〜6のものが挙げられる。これらの中でも、Q
1は、水素原子又は炭素数1〜6のアルキル基が好ましく、水素原子及びメチル基がより好ましい。
【0243】
前記式(I)において、m及びnは、それぞれ独立に、0又は1を表す。中でも、mは好ましくは1であり、また、nは好ましくは1である。
【0244】
化合物(I)は、例えば、国際公開第2012/147904号に記載される、ヒドラジン化合物とカルボニル化合物との反応により製造しうる。
【0245】
〔5.1.2.重合性モノマー〕
液晶組成物は、任意の成分として、重合性モノマーを含有しうる。「重合性モノマー」とは、重合能を有しモノマーとして働きうる化合物のうち、特に、重合性液晶化合物以外の化合物をいう。
重合性モノマーとしては、例えば、1分子当たり1以上の重合性基を有するものを用いうる。重合性基を有することにより、光学異方性層の形成に際し重合を達成することができる。また、重合性モノマーが1分子当たり2以上の重合性基を有する架橋性モノマーである場合、架橋的な重合を達成することができる。かかる重合性基の例としては、化合物(I)中の基Z
1−Y
7−及びZ
2−Y
8−と同様の基を挙げることができる。重合性基の具体例としては、アクリロイル基、メタクリロイル基、及びエポキシ基を挙げることができる。
【0246】
重合性モノマーは、それ自体が非液晶性のものであってもよい。ここで、それ自体が「非液晶性」であるとは、当該重合性モノマーそのものを、室温から200℃のいずれの温度に置いた場合にも、配向処理をした第一の基材上で配向を示さないものをいう。配向を示すかどうかは、偏光顕微鏡のクロスニコル透過観察にてサンプルを面内方向で回転させた場合に、明暗のコントラストがあるかどうかで判断する。
【0247】
液晶組成物において、重合性モノマーの配合割合は、重合性液晶化合物100重量部に対し、好ましくは1重量部以上、より好ましくは5重量部以上であり、好ましくは100重量部以下、より好ましくは50重量部以下である。当該範囲内で、重合性モノマーの配合割合を、所望の波長分散性(順波長分散性又は逆波長分散性)を示すように適宜調整することにより、波長分散性の精密な制御が容易となる。
【0248】
重合性モノマーは、既知の製造方法により製造しうる。または、化合物(I)と類似の構造を持つ重合性モノマーについては、化合物(I)の製造方法に準じて製造しうる。
【0249】
〔5.1.3.液晶組成物の任意の成分〕
液晶組成物は、重合性液晶化合物及び重合性モノマーに加えて、必要に応じて、以下に例示するもの等の任意の成分を含みうる。
【0250】
液晶組成物は、重合開始剤を含みうる。重合開始剤としては、液晶組成物中の、重合性液晶化合物及び重合性モノマー等の重合性化合物が有する重合性基の種類に応じて適宜選択しうる。例えば、重合性基がラジカル重合性であればラジカル重合開始剤を、アニオン重合性の基であればアニオン重合開始剤を、カチオン重合性の基であればカチオン重合開始剤を、それぞれ使用しうる。
【0251】
ラジカル重合開始剤としては、加熱することにより、重合性化合物の重合を開始しえる活性種が発生する化合物である熱ラジカル発生剤;及び可視光線、紫外線(i線など)、遠紫外線、電子線、X線等の露光光の露光により、重合性化合物の重合を開始しえる活性種が発生する化合物である光ラジカル発生剤;のいずれも使用可能であるが、光ラジカル発生剤を使用するのが好適である。
【0252】
光ラジカル発生剤としては、例えば、国際公開第2012/147904号に記載される、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O−アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α−ジケトン系化合物、多核キノン系化合物、キサントン系化合物、ジアゾ系化合物、イミドスルホナート系化合物等を挙げることができる。
【0253】
前記アニオン重合開始剤としては、例えば、アルキルリチウム化合物;ビフェニル、ナフタレン、ピレン等の、モノリチウム塩又はモノナトリウム塩;ジリチウム塩やトリリチウム塩等の多官能性開始剤;等が挙げられる。
【0254】
また、前記カチオン重合開始剤としては、例えば、硫酸、リン酸、過塩素酸、トリフルオロメタンスルホン酸等のプロトン酸;三フッ化ホウ素、塩化アルミニウム、四塩化チタン、四塩化スズのようなルイス酸;芳香族オニウム塩又は芳香族オニウム塩と、還元剤との併用系;が挙げられる。
【0255】
重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
液晶組成物において、重合開始剤の割合は、重合性化合物100重量部に対し、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは30重量部以下、より好ましくは10重量部以下である。
【0256】
液晶組成物は、表面張力を調整するための、界面活性剤を含みうる。当該界面活性剤としては、特に限定はないが、通常、ノニオン系界面活性剤が好ましく、分子量が数千程度のオリゴマーであるノニオン系界面活性剤がより好ましい。当該ノニオン系界面活性剤としては、OMNOVA社PolyFoxの「PF−151N」、「PF−636」、「PF−6320」、「PF−656」、「PF−6520」、「PF−3320」、「PF−651」、「PF−652」;ネオス社フタージェントの「FTX−209F」、「FTX−208G」、「FTX−204D」;セイミケミカル社サーフロンの「KH−40」、「S−420」等を用いることができる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。液晶組成物において、界面活性剤の割合は、重合性化合物100重量部に対し、好ましくは0.01重量部以上、より好ましくは0.1重量部以上であり、好ましくは10重量部以下、より好ましくは2重量部以下である。
【0257】
液晶組成物は、有機溶媒等の溶媒を含みうる。かかる有機溶媒の例としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン溶媒;酢酸ブチル、酢酸アミル等の酢酸エステル溶媒;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素溶媒;1,4−ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、1,2−ジメトキシエタン等のエーテル溶媒;及びトルエン、キシレン、メシチレン等の芳香族炭化水素が挙げられる。溶媒の沸点は、取り扱い性に優れる観点から、60℃〜250℃が好ましく、60℃〜150℃がより好ましい。
溶媒の量は、重合性化合物100重量部に対し、好ましくは100重量部〜1000重量部である。
【0258】
液晶組成物は、さらに、金属;金属錯体;染料及び顔料等の着色剤;蛍光材料及び燐光材料等の発光材料;レベリング剤;チキソ剤;ゲル化剤;多糖類;紫外線吸収剤;赤外線吸収剤;抗酸化剤;イオン交換樹脂;酸化チタン等の金属酸化物;などの任意の添加剤を含みうる。
重合性組成物において、かかる任意の添加剤の割合は、重合性化合物100重量部に対し、好ましくは、各々0.1重量部〜20重量部である。
【0259】
液晶組成物は、通常、上に述べた成分を混合することにより、製造し得る。
【0260】
〔5.2.塗布工程〕
光学異方性層を形成する際、第一の基材の面に、直接、液晶組成物を塗布して、液晶組成物の層を形成する塗布工程を行う。この際、長尺状の第一の基材を用いる場合には、連続的に搬送される第一の基材の一方の面上に、液晶組成物を塗布する。通常、第一の基材の搬送方向と、液晶組成物の塗布方向とは、同一方向となりうる。
【0261】
塗布方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、キャップコーティング法、及びディッピング法が挙げられる。例えばダイコーティング法において、ダイコーターのリップ方向を第一の基材の幅方向と平行となるように配置した場合、液晶組成物の塗布方向は、基材の搬送方向(通常は、長尺状の第一の基材の長手方向)と同一となる。塗布される液晶組成物の層の厚みは、光学異方性層に求められる所望の厚さに応じて適宜設定しうる。
【0262】
〔5.3.配向工程〕
液晶組成物の層を形成した後で、液晶組成物の層中の重合性液晶化合物を配向させる配向工程を行う。重合性液晶化合物の配向は、塗布により直ちに達成される場合もあるが、必要に応じて、塗布の後に、加温などの配向処理を施すことにより達成される場合もある。配向処理の条件は、使用する液晶組成物の性質に応じて設定しうる。例えば、50℃〜160℃の温度条件において、30秒間〜5分間処理する条件としうる。
【0263】
重合性液晶化合物は、第一の基材の配向規制力に応じた方向に配向する。例えば、第一の基材が延伸によって生じた配向規制力を有する場合、用いる液晶組成物の組成及び処理条件を適切に設定することにより、液晶組成物の層に含まれる重合性液晶化合物は、第一の基材の遅相軸方向と略同一方向に沿った配向を達成できる。これにより、必要であれば、使用する液晶組成物の塗布方向と、重合性液晶化合物の配向方向とを異ならせることができる。すなわち、必要であれば、使用する液晶組成物の塗布方向と、重合性液晶化合物の配向方向とを、交差させることができる。
【0264】
〔5.4.乾燥工程〕
光学異方性層の形成方法において、液晶組成物の層中の重合性液晶化合物を配向させる工程の後に直ちに重合性液晶化合物を重合させる工程を行ってもよいが、重合性液晶化合物を重合させる工程の前に、必要に応じて、液晶組成物の層を乾燥させる工程を行なってもよい。かかる乾燥は、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等の乾燥方法で達成しうる。かかる乾燥により、液晶組成物の層から、溶媒を除去することができる。
【0265】
〔5.5.重合工程〕
重合性液晶化合物を配向させた後で、重合性液晶化合物を重合させて、光学異方性層を得る工程を行う。重合性液晶化合物の重合方法は、重合性化合物及び重合開始剤等の、液晶組成物の成分の性質に適合した方法を選択しうる。重合方法の例としては、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、加熱を必要とせず、室温で反応を進行させうることから、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。
【0266】
紫外線照射時の温度は、30℃以下とすることが好ましい。紫外線照射時の温度の下限は、15℃以上としうる。紫外線照射強度は、通常、0.1mW/cm
2〜1000mW/cm
2の範囲、好ましくは0.5mW/cm
2〜600mW/cm
2の範囲である。紫外線照射時間は、1秒〜300秒の範囲、好ましくは5秒〜100秒の範囲である。紫外線積算照度(mJ/cm
2)=紫外線照射強度(mW/cm
2)×照射時間(秒)で求められる。
【0267】
[6.任意の層]
本発明の複層フィルムは、上述した第一の基材及び光学異方性層に組み合わせて、更に任意の層を備えていてもよい。例えば、光学異方性層の、第一の基材とは反対側に、保護フィルム層を備えていてもよい。
【0268】
[7.複層フィルムの製造方法]
本発明の複層フィルムは、第一の基材を製造する工程と、この第一の基材上に光学異方性層を形成する工程とを含む製造方法によって、製造しうる。第一の基材の製造方法、及び、光学異方性層の形成方法は、上述した通りである。
【0269】
複層フィルムの好ましい製造方法の例を挙げると、結晶性樹脂からなる延伸前フィルムを延伸して、延伸フィルムを得る工程(延伸工程)と;延伸フィルムを平坦に維持しながら、延伸フィルムの緊張を緩和させて、第一の基材を得る工程(緩和工程)と;第一の基材上に、直接、液晶組成物を塗布して、液晶組成物の層を形成する工程(塗布工程)と;液晶組成物の層中の重合性液晶化合物を配向させる工程(配向工程)と;重合性液晶化合物を重合させて、光学異方性層を形成する工程(重合構成)と;を含む、製造方法が挙げられる。
【0270】
この製造方法によれば、結晶性樹脂からなる第一の基材と、この第一の基材上に直接形成された光学異方性層を備える複層フィルムを製造できる。こうして製造された複層フィルムにおいては、平滑な表面を有し且つ寸法安定性に優れた第一の基材上に光学異方性層を形成できるので、光学異方性層の表面におけるシワの形成を特に効果的に抑制できる。
【0271】
[8.光学異方性転写体]
本発明の複層フィルムを用いて、光学異方性転写体を製造しうる。光学異方性転写体は、光学異方性層及び第二の基材を備える。このような光学異方性転写体は、複層フィルムの第一の基材から光学異方性層を剥離する剥離工程と、この光学異方性層と第二の基材とを貼り合わせる貼合工程と、を含む製造方法により、製造しうる。剥離工程及び貼合工程とは、どちらの工程を先に行ってもよく、両工程を同時に行ってもよい。
【0272】
第二の基材としては、例えば、マスキングフィルム等の光学異方性層を保護しうるフィルムが挙げられる。マスキングフィルムとしては、既知のもの(例えば、トレテガー社製のFF1025、「FF1035」;サンエー化研社製の「SAT116T」、「SAT2038T−JSL」及び「SAT4538T−JSL」;藤森工業社製の「NBO−0424」、「TFB−K001」、「TFB−K0421」及び「TFB−K202」;日立化成社製の「DT−2200−25」及び「K−6040」;寺岡製作所社製の「6010#75」、「6010#100」、「6011#75」及び「6093#75」)を用いうる。このような第二の基材を有する光学異方性転写体からは、光学異方性層を他の部材に容易に転写することができる。したがって、光学異方性転写体を用いれば、光学異方性層を有する光学素子を容易に製造することができる。
【0273】
第二の基材の別の例としては、光学等方性の基材フィルムが挙げられる。光学等方性とは、具体的には、面内レターデーションReが10nm未満であることが好ましく、5nm未満であることがより好ましい。また、光学等方性の基材では、厚み方向のレターデーションRthが、10nm未満であることが好ましく、5nm未満であることがより好ましい。
【0274】
光学等方性の基材フィルムの材料の例としては、樹脂が挙げられる。樹脂としては、例えば、第一の基材の材料として説明した範囲のものが挙げられる。このような樹脂のフィルムは、延伸せず、そのまま第二の基材として用いうる。第二の基材として光学等方性の基材フィルムを備える光学異方性転写体は、そのまま、表示装置等の光学装置に組み込み、光学部材として用いうる。
【0275】
光学異方性転写体は、長尺状のフィルムであってもよく、枚葉のフィルムであってもよい。長尺状の光学異方性転写体を製造する場合は、複層フィルムから光学異方性層を剥離し、これを長尺状の第二の基材に貼合する工程を、ロールツーロールの操作で行うことができる。
光学異方性転写体は、液晶の配向を電圧の調整で変化させうる液晶パネルと、液晶パネルを挟むように配置される偏光板を備えた液晶表示装置の光学補償フィルム、偏光変換素子などの光学素子として適用しうる。液晶パネルは、その表示モードによって特に制限されない。液晶パネルの表示モードとしては、例えば、インプレーンスイッチング(IPSモード)、バーチカルアライメント(VA)モード、マルチドメインバーチカルアライメント(MVA)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプティカルコンペイセイテッドベンド(OCB)モードなどが挙げられる。
【0276】
[9.円偏光板]
光学異方性層を用いることにより、円偏光板を製造できる。この円偏光板は、1層以上の光学異方性層と、直線偏光子とを、貼り合わせる工程を含む製造方法により、製造しうる。
【0277】
円偏光板の具体的な態様としては、下記の2つの態様が挙げられる。
円偏光板(i):光学異方性層と、直線偏光子とを貼り合わせてなる円偏光板であって、光学異方性層が、本発明の複層フィルムから剥離してなる層である、円偏光板。
円偏光板(ii):1/4波長板と1/2波長板と直線偏光子とを貼り合わせてなる円偏光板であって、1/4波長板、1/2波長板、またはこれらの両方が、本発明の複層フィルムから剥離した光学異方性層である、円偏光板。
【0278】
円偏光板が備える光学異方性層としては、本発明の複層フィルムから剥離したものをそのまま用いてもよい。また、円偏光板が備える光学異方性層としては、本発明の複層フィルムから剥離し、一旦第二の基材と貼合して光学異方性転写体とし、この光学異方性転写体をそのまま用いてもよく、又は、光学異方性転写体から再び剥離した光学異方性層を用いてもよい。
【0279】
複層フィルムからの光学異方性層の剥離の工程と、光学異方性層と他の層(他の光学異方性層、直線偏光子等)との貼合の工程は、どちらを先に行ってもよい。例えば、複層フィルムの光学異方性層側の面と直線偏光子の一方の面とを貼合し、その後、第一の基材を剥離する工程を行なってもよい。
【0280】
円偏光板(ii)において、1/4波長板の遅相軸と、1/2波長板の遅相軸と、直線偏光子の透過軸との関係は、既知の様々な関係としうる。例えば、1/4波長板及び1/2波長板の両方として本発明の複層フィルムの光学異方性層を用いる場合、偏光子の透過軸または吸収軸の方向に対する1/2波長板の遅相軸の方向が15°またはそれに近い角度であり、偏光子の透過軸または吸収軸の方向に対する1/4波長板の遅相軸の方向が75°またはそれに近い角度である関係としうる。ここで、15°またはそれに近い角度とは、例えば、15°±5°、好ましくは15°±°4、より好ましくは15°±3°でありうる。また、75°またはそれに近い角度とは、例えば、75°±5°、好ましくは75°±°4、より好ましくは75°±3°でありうる。このような態様を有することにより、円偏光板を、有機EL表示装置用の広帯域反射防止フィルムとして用いることができる。
【0281】
ある製品(複層フィルム、円偏光板、表示装置等)において、面内の光学軸(遅相軸、透過軸、吸収軸等)の方向及び幾何学的方向(フィルムの長手方向及び幅方向等)の角度関係は、通常、ある方向のシフトを正、他の方向のシフトを負として規定される。また、当該正及び負の方向は、当該製品内の構成要素において共通に規定される。例えば、ある円偏光板において、「直線偏光子の透過軸または吸収軸の方向に対する1/2波長板の遅相軸の方向が15°であり直線偏光子の透過軸または吸収軸の方向に対する1/4波長板の遅相軸の方向が75°である」とは、下記の2通りの場合を表す:
・当該円偏光板を、そのある一方の面から観察すると、1/2波長板の遅相軸の方向が、直線偏光子の透過軸または吸収軸の方向から時計周りに15°シフトし、且つ1/4波長板の遅相軸の方向が、直線偏光子の透過軸または吸収軸の方向から時計周りに75°シフトしている。
・当該円偏光板を、そのある一方の面から観察すると、1/2波長板の遅相軸の方向が、直線偏光子の透過軸または吸収軸の方向から反時計周りに15°シフトし、且つ1/4波長板の遅相軸の方向が、直線偏光子の透過軸または吸収軸の方向から反時計周りに75°シフトしている。
【0282】
円偏光板(i)のより具体的な態様としては、光学異方性層として1/4波長板を1層有し、直線偏光子の透過軸または吸収軸に対する1/4波長板の遅相軸の方向が45°またはそれに近い角度である関係の態様が挙げられる。ここで、45°またはそれに近い角度とは、例えば、45°±5°、好ましくは45°±4°、より好ましくは45°±3°でありうる。このような態様を有することにより、円偏光板を、有機EL表示装置用の反射防止フィルムとして用いることができる。
【0283】
複層フィルム、光学異方性層、直線偏光子等のフィルムが長尺状である場合、貼り合わせはロールツーロールで行いうる。ロールツーロールでの貼り合わせとは、長尺状のフィルムのロールからフィルムを繰り出し、これを搬送し、搬送ライン上で他のフィルムとの貼合の工程を行い、さらに得られた貼合物を巻き取りロールとする態様の貼り合わせをいう。例えば、直線偏光子と複層フィルムとを貼合する場合、長尺状の複層フィルムのロールから複層フィルムを繰り出し、これを搬送し、搬送ライン上で直線偏光子との貼合の工程を行い、得られた貼合物を巻き取りロールとすることにより、ロールツーロールでの貼合を行いうる。この場合において、直線偏光子も、ロールから繰り出して貼合の工程に供給しうる。
【0284】
直線偏光子としては、液晶表示装置、及びその他の光学装置等の装置に用いられている既知の偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるもの;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるもの;が挙げられる。直線偏光子の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうちポリビニルアルコールを含有する偏光子が好ましい。
【0285】
偏光子に自然光を入射させると、一方の偏光だけが透過する。偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。偏光子の平均厚みは好ましくは5μm〜80μmである。
【0286】
円偏光板の用途の一つとして、有機EL素子を有する表示装置の反射防止フィルムとしての用途が挙げられる。即ち、表示装置の表面に、円偏光板を、直線偏光子側の面が視認側に向くように設けることにより、装置外部から入射した光が装置内で反射して装置外部へ出射することを抑制することができ、その結果、表示装置の表示面のぎらつきなどの不所望な現象を抑制しうる。具体的には、装置外部から入射した光は、その一部の直線偏光のみが直線偏光子を通過し、次にそれが光学異方性層を通過することにより円偏光となる。ここでいう円偏光としては、実質的に反射防止機能を発現する範囲であれば楕円偏光も包含される。円偏光は、装置内の光を反射する構成要素(有機EL素子中の反射電極等)により反射され、再び光学異方性層を通過することにより、入射した直線偏光の偏光軸と直交する方向に偏光軸を有する直線偏光となり、直線偏光子を通過しなくなる。これにより、反射防止の機能が達成される。この際、特に上に述べた円偏光板(ii)であれば、広帯域での反射防止の機能が達成される。上述した光学異方性層を備える円偏光板は、光学異方性層の表面におけるシワの形成が抑制されているので、欠陥が少なく、そのため反射防止の効果を特に良好に得ることができる。また、光学異方性層の3次元屈折率(nx、ny、nz)の関係について、例えば「nx>ny=nz」、「nx>ny>nz」、「nx>nz>ny」、「nz>nx≧ny」などの関係をもつ光学異方性層を使用してもよい。3次元屈折率が「nx>nz>ny」の関係をもつ光学異方性層を用いることで、正面方向の反射防止機能だけではなく、斜め方向の反射防止機能も有することができる。
【0287】
円偏光板は、必要に応じて任意の層を備えうる。任意の層の例としては、部材同志を接着するための接着層、フィルムの滑り性を良くするマット層、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、反射防止層、防汚層等が挙げられる。
【0288】
[10.表示装置]
円偏光板は、液晶表示装置、有機EL表示装置等の表示装置の構成要素として用いうる。特に、有機EL表示装置に円偏光板を設けることが好ましい。このような有機EL表示装置は、表示素子の有機EL素子を有する表示装置において、上で説明した通り、反射防止フィルムとして円偏光板を備えうる。
さらに、表示装置には、円偏光板の他に、プリズムアレイシート、レンズアレイシート、光拡散板、輝度向上フィルム等の任意の部材を設けうる。
【0289】
[11.光学積層体]
上述した光学異方性転写体を用いることにより、光学積層体を得ることができる。光学積層体は、光学異方性転写体及び第三の基材を備える部材である。光学積層体は、光学異方性転写体及び第三の基材を貼り合わせる工程を含む製造方法によって、製造しうる。この製造方法においては、通常、光学異方性転写体の光学異方性層側の面と、第三の基材とを貼り合わせる。光学積層体は、第三の基材の種類に応じて、様々な光学特性を有する光学素子として用いうる。
【0290】
第三の基材は、例えば、上述した直線偏光子であってもよい。第三の基材として直線偏光子を用いることにより、第二の基材、光学異方性層及び直線偏光子を備える円偏光板を、光学積層体として得ることができる。
【0291】
第三の基材は、例えば、光学補償層であってもよい。光学補償層としては、光学積層体に求められる光学的機能に応じた適切な種類の層を採用しうる。中でも、光学補償層としては、ポジティブCプレートとして機能しうる層を用いることが好ましい。よって、光学補償層の屈折率nx、ny及びnzは、nz>nx≧nyを満たすことが好ましい。ポジティブCプレートとして機能しうる層としては、例えば、特許2818983号公報又は特開平6−88909号公報に記載の延伸フィルム;特開2010−126583号公報に記載のポリ(N−ビニルカルバゾール)とポリスチレンとの共重合体を含むフィルム;特許3842102号公報に記載のホメオトロピック配向液晶フィルム;を用いうる。
【0292】
中でも、光学補償層の屈折率nxと屈折率nyとは、その値が、同じであるか近いことが好ましい。具体的には、屈折率nxと屈折率nyの差nx−nyは、好ましくは0.00000〜0.00100、より好ましくは0.00000〜0.00050、特に好ましくは0.00000〜0.00020である。屈折率差nx−nyが前記の範囲に収まることにより、光学異方性転写体と第三の基材としての光学補償層とを貼り合わせる時に、貼り合せ方向の調整を不要にできる。
【0293】
測定波長590nmにおける光学補償層の面内レターデーションReは、好ましくは0nm〜10nm、より好ましくは0nm〜5nm、特に好ましくは0nm〜2nmである。光学補償層の面内レターデーションReが前記の範囲に収まることにより、光学異方性転写体と第三の基材としての光学補償層とを貼り合わせる時に、貼り合せ方向の調整を不要にできる。
【0294】
測定波長590nmにおける光学補償層の厚み方向のレターデーションRthは、好ましくは−200nm以上、より好ましくは−130nm以上、特に好ましくは−100nm以上であり、好ましくは−10nm以下、より好ましくは−30nm以下、特に好ましくは−50nm以下である。光学補償層の厚み方向のレターデーションRthが前記の範囲に収まることにより、光学異方性層が好適な光学補償機能を発揮できる。
【0295】
前記の光学補償層としては、例えば、樹脂フィルム層、液晶組成物の層、液晶組成物を硬化させた層、などを用いうる。
【0296】
光学補償層の厚みは、好ましくは1.0μm以上、より好ましくは3.0μm以上であり、好ましくは50μm以下、より好ましくは40μm以下、特に好ましくは30μm以下である。
【0297】
光学積層体は、光学異方性転写体及び第三の基材に組み合わせて、更に任意の層を備えていてもよい。任意の層としては、例えば、光学異方性転写体及び第三の基材を貼り合わせるための接着層が挙げられる。
【0298】
[12.光学異方性部材]
光学異方性転写体から第二の基材を剥離することにより、上述した光学異方性層が得られる。この光学異方性層を用いて、光学異方性部材を得ることができる。
【0299】
光学異方性部材は、光学異方性転写体から第二の基材を剥離して得られる光学異方性層、及び、第三の基材を備える部材である。光学異方性部材は、光学異方性転写体から光学異方性層を剥離する工程と、光学異方性層及び第三の基材を貼り合わせる工程と、を含む製造方法によって、製造しうる。この製造方法においては、通常、光学異方性転写体から光学異方性層を剥離する工程の後で、光学異方性層及び第三の基材を貼り合わせる工程を行う。また、光学異方性部材は、光学積層体から第二の基材を剥離する工程を含む製造方法によって、製造しうる。
【0300】
光学異方性部材は、第三の基材の種類に応じて、様々な光学特性を有する光学素子として用いうる。
第三の基材は、例えば、上述した直線偏光子であってもよい。第三の基材として直線偏光子を用いることにより、光学異方性層及び直線偏光子を備える円偏光板を、光学異方性部材として得ることができる。
【0301】
第三の基材は、例えば、上述した光学補償層であってもよい。光学補償層としては、光学積層体の項において説明したのと同様の層を用いうる。
【0302】
光学異方性部材は、光学異方性層及び第三の基材に組み合わせて、更に任意の層を備えていてもよい。任意の層としては、例えば、光学異方性層及び第三の基材を貼り合わせるための接着層が挙げられる。
【実施例】
【0303】
以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
【0304】
[評価方法]
〔重量平均分子量及び数平均分子量の測定方法〕
重合体の重量平均分子量及び数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC−8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
【0305】
〔ガラス転移温度Tgおよび融点Tmの測定方法〕
窒素雰囲気下で300℃に加熱した試料を液体窒素で急冷し、示差操作熱量計(DSC)を用いて、10℃/分で昇温して試料のガラス転移温度Tgおよび融点Tmをそれぞれ求めた。
【0306】
〔重合体の水素添加率の測定方法〕
重合体の水素添加率は、オルトジクロロベンゼン−d
4を溶媒として、145℃で、
1H−NMR測定により測定した。
【0307】
〔重合体のラセモ・ダイアッドの割合の測定方法〕
オルトジクロロベンゼン−d
4を溶媒として、200℃で、inverse−gated decoupling法を適用して、重合体の
13C−NMR測定を行った。この
13C−NMR測定の結果から、オルトジクロロベンゼン−d
4の127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めた。
【0308】
〔フィルムの配向角の測定方法〕
偏光顕微鏡(オリンパス社製、偏光顕微鏡「BX51」)を用いて、フィルムの幅方向における50mm間隔の複数の地点で、面内の遅相軸を観察し、遅相軸とフィルムの幅方向とのなす角度(配向角)を測定した。そして、測定された複数地点の前記配向角の平均値を、当該フィルムの配向角(即ち幅方向に対する遅相軸方向)とした。
【0309】
〔フィルムの面内レターデーションの測定方法〕
位相差計(王子計測社製「KOBRA−21ADH」)を用いて、フィルムの幅方向における50mm間隔の複数の地点で、面内レターデーションを測定した。そして、測定された複数地点の前記面内レターデーションの平均値を、当該フィルムの面内レターデーションとした。この際の測定波長は590nmとした。
【0310】
〔フィルムのヘイズの測定方法〕
フィルムを選択した任意の部位で50mm×50mmの正方形の薄膜サンプルに切り出した。その後、薄膜サンプルについて、ヘイズメーター(日本電色工業社製「NDH5000」)を用いてヘイズを測定した。
【0311】
〔フィルムの引張弾性率の測定方法〕
フィルムから、前記フィルムの長手方向に平行な長辺を有する矩形の第一試験片(幅10mm×長さ250mm)、及び、前記フィルムの幅方向に平行な長辺を有する矩形の第二試験片(長さ250mm×幅10mm)を、それぞれ切り出した。これら第一試験片及び第二試験片それぞれを長辺方向に引っ張って歪ませる際の応力を、JIS K7113に基づき、恒温恒湿槽付き引張試験機(インストロンジャパン社製の5564型デジタル材料試験機)を用いて、温度23℃、湿度60±5%RH、チャック間距離115mm、引張速度100mm/minの条件で、測定した。このような測定を、第一試験片及び第二試験片について、それぞれ3回行った。そして、測定された応力とその応力に対応した歪みの測定データから、試験片の歪が0.6%〜1.2%の範囲で0.2%毎に測定データを選択した。すなわち、試験片の歪みが0.6%、0.8%、1.0%及び1.2%の時の測定データを選択した。この選択された3回分の測定データから最小二乗法を用いてフィルムの引張弾性率を計算した。
【0312】
〔基材フィルムの熱寸法変化率の測定方法〕
室温23℃の環境下で、基材フィルムを150mm×150mmの正方形の薄膜サンプルに切り出し、試料フィルムとした。この試料フィルムを、150℃のオーブン内で60分間加熱し、23℃(室温)まで冷却した後、試料フィルムの四辺の長さ及び2本の対角線の長さを測定する。測定された四辺それぞれの長さを基に、下記式(a)に基づいて、熱寸法変化率を算出した。式(a)において、L
Aは、加熱後のサンプル(試料フィルム)の辺の長さを示す。
熱寸法変化率(%)=[(L
A−150)/150]×100 (a)
また、測定された2本の対角線の長さを基に、下記式(b)に基づいて、熱寸法変化率を算出した。式(b)において、L
Dは、加熱後のサンプルの対角線の長さを示す。
熱寸法変化率(%)=[(L
D−212.13)/212.13]×100 (b)
そして、得られた6つの熱寸法変化率の計算値の中で絶対値が最大となる値を、基材フィルムの熱寸法変化率(%)とした。
【0313】
〔基材フィルムの遅相軸と光学異方性層の遅相軸とのズレ角度の測定方法〕
基材フィルムに液晶組成物を塗布する前に、基材フィルムの、液晶組成物を塗布する面とは反対の面に、基準線を描いた。また、光学異方性層を形成した後に、光学異方性層の面に、基材フィルムの基準線と重なる位置に、基準線を描いた。その後、複層フィルムの光学異方性層を、粘着剤を介してガラス板に貼り合わせ、基材フィルムから剥離した。そして、基材フィルムの遅相軸、及び、光学異方性層の遅相軸それぞれを、ポラリメーター(Axometrics社製「AxoScan」)を用いて測定した。基材フィルムの遅相軸と基材フィルムに描いた基準線とがなす角度、並びに、光学異方性層の遅相軸と光学異方性層に描いた基準線とがなす角度を、測定した。これらの測定した角度から、基材フィルムの遅相軸と光学異方性層の遅相軸とのズレ角度を計算した。
【0314】
〔光学異方性層の配向度の評価方向〕
複層フィルムの光学異方性層を、ガラス板に貼り合わせ、基材フィルムを剥離して、サンプルを製造した。このサンプルを、2枚の直線偏光子(偏光子及び検光子)の間に置いた。この際、前記の直線偏光子は、厚み方向から見て、互いの偏光透過軸が垂直になるように、向きを設定した。また、光学異方性層の遅相軸方向は、厚み方向から見て、直線偏光子の偏光透過軸と平行又は垂直になるように設定した。この状態で、サンプルを透過する光の透過率(クロスニコル透過率)を、分光光度計(日本分光社製「V7200」)及び自動偏光フィルム測定装置(日本分光社製「VAP−7070S」)を用いて測定した。測定された透過率に基づいて、光学異方性層の配向度を、下記の基準で評価した。ここで、「ボトムとなる波長」とは、可視領域の波長のうち、クロスニコル透過率が最も小さくなる波長のことをいう。
「優」:ボトムとなる波長におけるクロスニコル透過率が0.010%以下。
「良」:ボトムとなる波長におけるクロスニコル透過率が0.010%超0.020%以下。
「可」:ボトムとなる波長におけるクロスニコル透過率が0.020%超0.030%以下。
「不可」:ボトムとなる波長におけるクロスニコル透過率が0.030%超。
【0315】
〔表面シワの評価方法〕
複層フィルムを、10cm×10cmにカットして、サンプルを得た。このサンプルを、偏光子と検光子との間に置き、検光子を回転させながら観察して、光学異方性層の表面のシワの状態を下記の基準で評価した。
「優」:シワによるムラは認められない
「良」:ごく一部にシワによるムラが認められる
「不良」:部分的にシワによるムラが認められる
「不可」:シワによるムラが顕著で外観でもムラが認められる
【0316】
[製造例1:基材フィルムAの製造]
(ジシクロペンタジエンの開環重合体の水素添加物の製造工程)
金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1−ヘキセン1.9部を加え、53℃に加温した。
【0317】
テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解した溶液に、濃度19%のジエチルアルミニウムエトキシド/n−ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。
この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。
得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。
【0318】
得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2−エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP−HX」)を用いて吸着剤と溶液を濾別した。
【0319】
濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素添加物を含む反応液が得られた。この反応液は、水素添加物が析出してスラリー溶液となっていた。
【0320】
前記の反応液に含まれる水素添加物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素添加物28.5部を得た。この水素添加物の水素添加率は99%以上、ガラス転移温度Tgは93℃、融点(Tm)は262℃、ラセモ・ダイアッドの割合は89%であった。
【0321】
(延伸前フィルムの製造工程)
こうして得られたジシクロペンタジエンの開環重合体の水素添加物100部に、酸化防止剤(テトラキス〔メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合して、フィルムの材料となる結晶性樹脂を得た。
【0322】
前記の結晶性樹脂を、内径3mmΦのダイ穴を4つ備えた二軸押出機(東芝機械社製「TEM−37B」)に投入した。前記の二軸押出機によって、結晶性樹脂を熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターにて細断して、結晶性樹脂のペレットを得た。前記の二軸押出機の運転条件を、以下に示す。
・バレル設定温度:270℃〜280℃
・ダイ設定温度:250℃
・スクリュー回転数:145rpm
・フィーダー回転数:50rpm
【0323】
引き続き、得られたペレットを、Tダイを備える熱溶融押出しフィルム成形機に供給した。このフィルム成形機を用いて、前記の結晶性樹脂からなる長尺の延伸前フィルム(厚み50μm、幅860mm)を、26.45m/分の速度でロールに巻き取る方法にて製造した。前記のフィルム成形機の運転条件を、以下に示す。
・バレル温度設定:280℃〜290℃
・ダイ温度:270℃
・スクリュー回転数:30rpm
得られた延伸前フィルムのヘイズを測定したところ、0.3%であった。
【0324】
(延伸工程)
長尺の延伸前フィルムの幅方向の端部の二辺を把持しうるクリップを備えたテンター延伸機を用意した。長尺の延伸前フィルムを前記テンター延伸機に供給し、クリップで延伸前フィルムの幅方向の端部の二辺を把持して長尺の延伸前フィルムの幅方向へ延伸倍率2.41倍で一軸延伸して、延伸フィルムを得た。テンター延伸機の運転条件を、以下に示す。
・延伸速度:5000mm/min
・延伸温度:110℃
【0325】
(結晶化促進工程)
テンター延伸機のクリップで延伸フィルムの幅方向の端部の二辺を保持させることで、延伸フィルムを緊張した状態にした。そして、この延伸フィルムに、200℃で30秒間、オーブン内で加熱処理を行うことにより、延伸フィルムに含まれるジシクロペンタジエンの開環重合体の水素添加物の結晶化を促進する結晶化促進工程を行って、基材フィルムAを得た。この基材フィルムAの厚みは20μm、配向角は0°、面内レターデーションReは270nm、23℃における引張弾性率は長手方向で2587MPa、幅方向で2518MPaであった。また、基材フィルムAのヘイズを測定したところ、ヘイズは0.4%であった。さらに、温度150℃での基材フィルムAの熱寸法変化率を前述の方法で測定したところ、1.5%であった。また、基材フィルムAの吸水率は、0.009%であった。
【0326】
[製造例2:基材フィルムBの製造]
製造例1で製造した基材フィルムAの幅方向の端部の二辺を前記テンター延伸装置のクリップに把持させることにより、基材フィルムAをテンター延伸機に取り付けた。そして、温度200℃において、基材フィルムAを平坦に維持しながら基材フィルムAの緊張を緩和する緩和工程を行って、基材フィルムBを得た。この緩和工程では、テンター延伸装置のクリップを基材フィルムAの面内方向に移動させることで、クリップ間距離を縮小させることにより、基材フィルムAの緊張を緩和させた。また、前記のクリップ間距離は、30秒間をかけて、基材フィルムAの幅方向に1.0%縮小させた。この基材フィルムBの厚みは18μm、配向角は0°、面内レターデーションReは268nm、23℃における引張弾性率は、長手方向で3311MPa、幅方向で3119MPaであった。また、基材フィルムBのヘイズを測定したところ、ヘイズは0.4%であった。さらに、温度150℃での基材フィルムBの熱寸法変化率を前述の方法で測定したところ、0.5%であった。また、基材フィルムBの吸水率は、0.009%であった。
【0327】
[製造例3:基材フィルムCの製造]
熱可塑性ノルボルネン樹脂のペレット(日本ゼオン株式会社製。ガラス転移温度126℃)を100℃で5時間乾燥させた。乾燥させたペレットを押出機に供給し、押出機内で溶融させた。そして、溶融した樹脂を、ポリマーパイプ及びポリマーフィルターを通し、Tダイからキャスティングドラム上にシート状に押し出し、冷却して、厚み60μm、幅1350mmの延伸前フィルムを得た。この延伸前フィルムを、マスキングフィルム(トレテガー社製、FF1025)と貼り合わせて保護しながら巻き取り、フィルムロールを得た。
【0328】
前記のフィルムロールから延伸前フィルムを引き出し、マスキングフィルムを剥離した。その後、延伸前フィルムを、延伸倍率1.5倍、延伸温度142℃で斜め方向に一軸延伸処理を施して、延伸フィルムとしての基材フィルムCを得た。この基材フィルムCの厚みは35μm、配向角は15°、面内レターデーションReは141nm、23℃における引張弾性率は長手方向で2402MPa、幅方向で2390MPaであった。また、基材フィルムCのヘイズを測定したところ、ヘイズは0.1%であった。さらに、温度150℃での基材フィルムCの熱寸法変化率を前述の方法で測定を試みたが、全面にシワが発生して測定はできなかった。また、基材フィルムCの吸水率は、0.009%であった。
【0329】
[製造例4:液晶組成物Iの製造]
重合性液晶化合物(BASF社製「LC242」。下記式(A1)で示される化合物)24.15部、界面活性剤(ネオス社製「フタージェントFTX−209F」)0.12部、重合開始剤(BASF社製「IRGACURE379」)0.73部、及び溶媒(メチルエチルケトン)75.00部を混合して、液晶組成物Iを得た。
【0330】
【化27】
【0331】
[製造例5:液晶組成物IIの製造]
式(B1)で表される逆波長分散重合性液晶化合物21.25部、界面活性剤(AGCセイミケミカル社製「サーフロンS420」)0.11部、重合開始剤(BASF社製「IRGACURE379」)0.64部、及び溶媒(シクロペンタノン。日本ゼオン社製)78.00部を混合して、液晶組成物IIを得た。
【0332】
【化28】
【0333】
[実施例1]
第一の基材として、製造例1で製造した基材フィルムAを用意した。この基材フィルムA上に、室温25℃で、製造例4で製造した液晶組成物Iを、ダイコーターを用いて直接に塗布して、液晶組成物の層を形成した。液晶組成物Iの塗布は、ダイコーターのリップ方向を基材フィルムAの幅方向と平行となるように配置することにより、塗布方向が基材フィルムAの長手方向と平行になるように行った。この液晶組成物の層を、配向温度110℃で2.5分間加熱することにより、液晶組成物の層中の重合性液晶化合物を配向させた。その後、液晶組成物の層に、窒素雰囲気下で100mJ/cm
2以上の紫外線を照射して、重合性液晶化合物を重合させて、乾燥膜厚1.1μmのホモジニアス配向した光学異方性層を形成した。これにより、基材フィルムAと、基材フィルムA上に直接に形成された光学異方性層とを備える複層フィルムを得た。こうして得た複層フィルムについて、上述した方法により、基材フィルムの遅相軸と光学異方性層の遅相軸とのズレ角度、光学異方性層の配向度、並びに、表面シワの評価を行った。
【0334】
[実施例2]
基材フィルムAの代わりに基材フィルムBを用い、液晶組成物Iの塗布量を光学異方性層の乾燥厚みが2.2μmとなるように変更した。以上の事項以外は実施例1と同様にして、複層フィルムの製造及び評価を行った。
【0335】
[実施例3]
液晶組成物Iの代わりに液晶組成物IIを用い、配向温度を110℃から115℃に変更した。以上の事項以外は実施例1と同様にして、複層フィルムの製造及び評価を行った。
【0336】
[実施例4]
基材フィルムAの代わりに基材フィルムBを用い、液晶組成物Iの代わりに液晶組成物IIを用い、配向温度を110℃から115℃に変更した。以上の事項以外は実施例1と同様にして、複層フィルムの製造及び評価を行った。
【0337】
[比較例1]
基材フィルムAの代わりに製造例1で製造した延伸前フィルムを用いた。以上の事項以外は実施例1と同様にして、複層フィルムの製造及び評価を行った。ところが、液晶組成物の層において重合性液晶化合物を配向させることができなかったので、光学異方性層の代わりに光学等方性層が形成された。
【0338】
[比較例2]
基材フィルムAの代わりに基材フィルムCを用いた。以上の事項以外は実施例1と同様にして、複層フィルムの製造及び評価を行った。
【0339】
[結果]
実施例及び比較例の結果を、下記の表1に示す。下記の表1において、略称の意味は、以下の通りである。
POLY−D:結晶性樹脂
COP:熱可塑性ノルボルネン樹脂
配向角:基材フィルムの配向角
Re:面内レターデーション
Δn:複屈折
引張弾性率MD:基材フィルムの長手方向における引張弾性率
引張弾性率TD:基材フィルムの幅方向における引張弾性率
【0340】
【表1】
【0341】
[検討]
表1から分かるように、実施例においては、結晶性樹脂からなる延伸フィルムとしての基材フィルムが有する配向規制力によって、光学異方性層に含まれる硬化液晶分子が配向しており、高い配向度が実現されている。さらに、実施例においては、基材フィルムの引張弾性率が所定値以上と大きくなっているため、光学異方性層の表面においてシワに形成が抑制されている。したがって、前記の実施例から、本発明によって、表面のシワを抑制された光学異方性層を備える複層フィルムを実現できることが確認できる。