特許第6886584号(P6886584)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6886584
(24)【登録日】2021年5月19日
(45)【発行日】2021年6月16日
(54)【発明の名称】複合成形品及びその製造方法
(51)【国際特許分類】
   B32B 27/00 20060101AFI20210603BHJP
   B32B 27/42 20060101ALI20210603BHJP
   B32B 27/38 20060101ALI20210603BHJP
   C08L 81/02 20060101ALN20210603BHJP
   C08L 61/06 20060101ALN20210603BHJP
【FI】
   B32B27/00 A
   B32B27/42 101
   B32B27/38
   !C08L81/02
   !C08L61/06
【請求項の数】7
【全頁数】21
(21)【出願番号】特願2017-59122(P2017-59122)
(22)【出願日】2017年3月24日
(65)【公開番号】特開2018-161768(P2018-161768A)
(43)【公開日】2018年10月18日
【審査請求日】2020年1月27日
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】100177471
【弁理士】
【氏名又は名称】小川 眞治
(74)【代理人】
【識別番号】100163290
【弁理士】
【氏名又は名称】岩本 明洋
(74)【代理人】
【識別番号】100149445
【弁理士】
【氏名又は名称】大野 孝幸
(72)【発明者】
【氏名】樋渡 堅太
【審査官】 鶴 剛史
(56)【参考文献】
【文献】 特開2013−075997(JP,A)
【文献】 国際公開第2015/098703(WO,A1)
【文献】 特開平10−226753(JP,A)
【文献】 特開平11−179851(JP,A)
【文献】 特開2010−070712(JP,A)
【文献】 特開平10−157017(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B32B 1/00 − 43/00
C08L 1/00 −101/14
(57)【特許請求の範囲】
【請求項1】
ポリアリーレンスルフィド樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品であって、
前記ポリアリーレンスルフィド樹脂組成物がポリアリーレンスルフィド樹脂(A)と、フェノール樹脂(B)とを必須成分として配合してなること、前記フェノール樹脂(B)がノボラック型フェノール樹脂またはレゾール型フェノール樹脂(B)であること、かつ、ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記フェノール樹脂(B)が0.01〜15質量部の範囲であること、を特徴とする複合成形品。
【請求項2】
前記フェノール樹脂(B)が80〜105g/当量の範囲の水酸基当量を有し、かつ、98〜180℃の範囲の軟化点を有するものである請求項1記載の複合成形品。
【請求項3】
前記フェノール樹脂(B)がノボラック型フェノール樹脂である請求項1または2記載の複合成形品。
【請求項4】
前記ポリアリーレンスルフィド樹脂組成物が溶融混練物である請求項1〜のいずれか一項に記載のポリアリーレンスルフィド複合成形品。
【請求項5】
ポリアリーレンスルフィド樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とを接着する複合成形品の製造方法であって、
前記ポリアリーレンスルフィド樹脂組成物が、ポリアリーレンスルフィド樹脂(A)と、フェノール樹脂(B)とを必須成分として配合し、ポリアリーレンスルフィド樹脂(A)の融点以上で溶融混練すること、かつ、前記フェノール樹脂(B)がノボラック型フェノール樹脂またはビスフェノール型フェノール樹脂(B)であること、かつ、ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記フェノール樹脂(B)が0.01〜15質量部の範囲であること、を特徴とする複合成形品の製造方法。
【請求項6】
前記フェノール樹脂(B)が80〜105g/当量の範囲の水酸基当量を有し、かつ、98〜180℃の範囲の軟化点を有するものである請求項5記載の製造方法。
【請求項7】
ポリアリーレンスルフィド樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物とを接触させた後、該硬化性樹脂組成物を硬化させることを特徴とする請求項5または6記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複合成形品およびそれらの製造方法に関する。
【背景技術】
【0002】
ポリフェニレンスルフィド(以下PPSと略すことがある)樹脂に代表されるポリアリーレンスルフィド(以下PASと略すことがある)樹脂は、高融点で耐熱性に優れつつ、かつ、機械的強度、耐薬品性、成形加工性、寸法安定性にも優れることが知られている。そこで、一般的には、PAS樹脂に、充填剤やエラストマー等の添加剤を配合し、これらがPAS樹脂からなるマトリックス中に分散されるよう溶融混練してPAS樹脂組成物とした上で、溶融成形して電気・電子機器部品、自動車部品等として使用される成形品に加工される。
【0003】
そして、これら部品はその二次加工としてエポキシ樹脂等からなる部品材料と接着する場合が多々見られる。しかし、ポリアリーレンスルフィド樹脂は他の樹脂との接着性、特にエポキシ樹脂との接着性が比較的悪い。そのため、例えば、エポキシ系接着剤によるポリアリーレンスルフィド同士の接合、ポリアリーレンスルフィド樹脂と他の材料との接合、あるいはエポキシ樹脂による電気・電子部品の封止等の際に、ポリアリーレンスルフィド樹脂とエポキシ樹脂を含む硬化性樹脂組成物との接着性(以下、エポキシ樹脂接着性ということがある)の悪さが問題となっていた。
【0004】
そこで、PAS樹脂のエポキシ接着性の改良を目的にこれまでにいくつかの検討がなされ、例えば、ポリアリーレンスルフィド樹脂にエポキシ樹脂を配合したPAS樹脂組成物(特許文献1)や、ポリアリーレンスルフィド樹脂に分子内に分岐構造を有するポリエーテルポリオール樹脂を配合したPAS樹脂組成物が提案されている(特許文献2参照)。前者の方法は、エポキシ樹脂が有するエポキシ基を用いて、一方、後者の方法は、ポリエーテルポリオール樹脂が有する水酸基を用いて、エポキシ接着性を高めようとするものであるが、いずれもエポキシ接着性向上に余地があること、さらにエポキシ樹脂ないしポリエーテルポリオール樹脂の添加によりウェルドラインの強度低下を招くものであった。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−306926号公報
【特許文献2】国際公開第2015/098703号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0006】
そこで本発明が解決しようとする課題は、エポキシ接着性に優れつつ、かつウェルドラインの強度低下を抑えたポリアリーレンスルフィド樹脂組成物の成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品およびその製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明者は上記課題を解決するために鋭意研究した結果、ポリアリーレンスルフィド樹脂に、ノボラック型フェノール樹脂またはビスフェノール型フェノール樹脂を必須成分として配合することにより、該エポキシ樹脂中のポリアリーレンエーテル構造に由来して耐熱分解性に優れ、溶融時のガス発生量を低減できること、前記フェノール樹脂の水酸基に由来して優れたエポキシ樹脂接着性を奏することを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、
ポリアリーレンスルフィド樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品であって、
前記ポリアリーレンスルフィド樹脂組成物がポリアリーレンスルフィド樹脂(A)と、フェノール樹脂(B)とを必須成分として配合してなること、前記フェノール樹脂(B)がノボラック型フェノール樹脂またはレゾール型フェノール樹脂(B)であること、かつ、ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記フェノール樹脂(B)が0.01〜50質量部の範囲であること、を特徴とする複合成形品に関する。
【0009】
加えて本発明は、ポリアリーレンスルフィド樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品であって、
前記ポリアリーレンスルフィド樹脂組成物がポリアリーレンスルフィド樹脂(A)と、フェノール樹脂(B)とを必須成分として配合してなること、前記フェノール樹脂(B)がノボラック型フェノール樹脂またはレゾール型フェノール樹脂(B)であること、かつ、ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記フェノール樹脂(B)が0.01〜50質量部の範囲であること、を特徴とする複合成形品に関する。
【発明の効果】
【0010】
本発明によれば、エポキシ接着性に優れつつ、かつウェルドラインの強度低下を抑えたポリアリーレンスルフィド樹脂組成物の成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品およびその製造方法を提供することができる。
【発明を実施するための形態】
【0011】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、
ポリアリーレンスルフィド樹脂(A)と、フェノール樹脂(B)と、を必須成分として配合してなること、
前記フェノール樹脂(B)がノボラック型フェノール樹脂またはレゾール型フェノール樹脂(B)であり、かつ、
ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記フェノール樹脂(B)が0.01〜50質量部の範囲であること、を特徴とする。
【0012】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂(A)を必須成分として配合してなる。本発明で用いるポリアリーレンスルフィド樹脂は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記一般式(1)
【0013】
【化1】
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位と、必要に応じてさらに下記一般式(2)
【0014】
【化2】
で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。式(2)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して0.001〜3モル%の範囲が好ましく、特に0.01〜1モル%の範囲であることが好ましい。
【0015】
ここで、前記一般式(1)で表される構造部位は、特に該式中のR及びRは、前記ポリアリーレンスルフィド樹脂の機械的強度の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。
【0016】
【化3】
これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記一般式(3)で表されるパラ位で結合した構造であることが前記ポリアリーレンスルフィド樹脂の耐熱性や結晶性の面で好ましい。
【0017】
また、前記ポリアリーレンスルフィド樹脂は、前記一般式(1)や(2)で表される構造部位のみならず、下記の構造式(5)〜(8)
【0018】
【化4】
で表される構造部位を、前記一般式(1)と一般式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記一般式(5)〜(8)で表される構造部位は10モル%以下であることが、ポリアリーレンスルフィド樹脂の耐熱性、機械的強度の点から好ましい。前記ポリアリーレンスルフィド樹脂中に、上記一般式(5)〜(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
【0019】
また、前記ポリアリーレンスルフィド樹脂は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。
【0020】
また、ポリアリーレンスルフィド樹脂の物性は、本発明の効果を損ねない限り特に限定されないが、以下の通りである。
【0021】
(溶融粘度)
本発明に用いるポリアリーレンスルフィド樹脂の溶融粘度は特に限定されないが、300℃で測定した溶融粘度(V6)が2〜1000〔Pa・s〕の範囲であることが好ましく、さらに流動性および機械的強度のバランスが良好となることから10〜500〔Pa・s〕の範囲がより好ましく、特に60〜200〔Pa・s〕の範囲であることが特に好ましい。但し、本発明において、溶融粘度(V6)は、ポリアリーレンスルフィド樹脂を島津製作所製フローテスター、CFT−500Dを用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に溶融粘度を測定した値とする。
【0022】
(非ニュートン指数)
本発明に用いるポリアリーレンスルフィド樹脂(A)の非ニュートン指数は、本発明の効果を損ねない限り特に限定されないが、0.90〜2.00の範囲であることが好ましい。リニア型ポリアリーレンスルフィド樹脂を用いる場合には、非ニュートン指数が0.90〜1.50の範囲であることが好ましく、さらに0.95〜1.20の範囲であることがより好ましい。このようなポリアリーレンスルフィド樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、非ニュートン指数(N値)は、キャピログラフを用いて300℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度及び剪断応力を測定し、下記式を用いて算出した値である。
【0023】
【数1】
[ただし、SRは剪断速度(秒−1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]N値は1に近いほどPPSは線状に近い構造であり、N値が高いほど分岐が進んだ構造であることを示す。
【0024】
(製造方法)
前記ポリアリーレンスルフィド樹脂(A)の製造方法としては、特に限定されないが、例えば1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、3)p−クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、等が挙げられる。これらの方法のなかでも、2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02〜0.5モルの範囲にコントロールすることによりポリアリーレンスルフィド樹脂を製造する方法(特開平07−228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01〜0.9モルの範囲の有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物の具体的な例としては、p−ジハロベンゼン、m−ジハロベンゼン、o−ジハロベンゼン、2,5−ジハロトルエン、1,4−ジハロナフタレン、1−メトキシ−2,5−ジハロベンゼン、4,4’−ジハロビフェニル、3,5−ジハロ安息香酸、2,4−ジハロ安息香酸、2,5−ジハロニトロベンゼン、2,4−ジハロニトロベンゼン、2,4−ジハロアニソール、p,p’−ジハロジフェニルエーテル、4,4’−ジハロベンゾフェノン、4,4’−ジハロジフェニルスルホン、4,4’−ジハロジフェニルスルホキシド、4,4’−ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1〜18の範囲のアルキル基を有する化合物が挙げられ、ポリハロゲノ芳香族化合物としては1,2,3−トリハロベンゼン、1,2,4−トリハロベンゼン、1,3,5−トリハロベンゼン、1,2,3,5−テトラハロベンゼン、1,2,4,5−テトラハロベンゼン、1,4,6−トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
【0025】
重合工程により得られたポリアリーレンスルフィド樹脂を含む反応混合物の後処理方法としては、特に制限されるものではないが、例えば、(1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、(2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、(4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、(5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法、等が挙げられる。
【0026】
尚、上記(1)〜(5)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。
【0027】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、フェノール樹脂(B)を必須成分として配合してなる。
【0028】
本発明で用いるフェノール樹脂は、フェノール骨格を有する重合体を指し、ノボラック型フェノール樹脂またはレゾール型フェノール樹脂の何れもが好ましいものとして使用できるが、ポリアリーレンスルフィド樹脂組成物が熱可塑性を良好に保持できる点で、さらにノボラック型フェノール樹脂がより好ましい。ノボラック型フェノール樹脂もレゾール型フェノール樹脂もいずれも公知の方法にて製造することができる。
【0029】
フェノール樹脂は、一般的に、フェノール化合物とアルデヒド化合物とを、酸触媒または塩基性触媒の存在下、40〜150℃で1〜5時間反応させ、次いで、常圧脱水、又は減圧脱水工程を経て、残留した水分を反応系内から除去し、さらに、反応系内にある縮合物をメタノール等の溶剤に溶解することにより得られる。〔アルデヒド化合物〕/〔フェノール化合物〕の比率は、公知の範囲で特に制限されないが、好ましくはモル比で0.3〜1.0となる範囲である。該フェノール骨格は、原料のフェノール化合物に由来する。当該フェノール化合物としては公知の範囲で特に限定されるものではなく、たとえばフェノール、ナフトールあるいはクレゾール、キシレノール、エチルフェノール、ブチルフェノール、オクチルフェノールなどのアルキルフェノール類;レゾルシン、カテコールなどの多価フェノール類;ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールE、チオビスフェノール、ビス(ヒドロキシフェニル)エーテル、ジヒドロキシベンゾフェノン、ビスフェノールフルオレン等のビスフェノール類;ハロゲン化フェノール、フェニルフェノール、アミノフェノール等が挙げられる。またこれらのフェノール化合物は、その使用にあたって1種類のみに限定されるものではなく、2種以上の併用も可能である。
【0030】
前記アルデヒド化合物はフェノール樹脂製造の際に一般的に用いられるものであれば特に制限なく用いることができ、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン等のホルムアルデヒド、アセトアルデヒド等が挙げられ、ヘキサメチレンテトラミンもまた用いることができる。
【0031】
前記酸触媒としては、ノボラック型フェノール樹脂の製造の際に用いられる酸類を用いることができ、例えば、蟻酸、塩酸、燐酸、硫酸、パラトルエンスルホン酸、フェノールスルホン酸等が挙げられる。また前記塩基性触媒としては、レゾール型フェノール樹脂の製造の際に用いられる塩基性化合物を用いることができ、水酸化ナトリウム、炭酸ナトリウム、アルカリ土類金属の水酸化物、アンモニアや第三アミンなどが挙げられる。
【0032】
フェノール樹脂の配合は、ポリアリーレンスルフィド樹脂組成物をより低粘度化することができ、成形時の流動性を向上できることから、金属部材の接着表面の凹凸の細部まで該組成物が流入して、アンカー効果を増大させることができる。さらに、水酸基の存在により、金属部材の接着表面において多数の水素結合を形成し密着力を向上させることができる。さらに、高温高湿環境下であっても、該接着表面への水分の浸入を抑制し、高い接着保持率を発現することができる。
【0033】
フェノール樹脂の水酸基当量は、高い方が好ましく、その範囲については公知の範囲のものでよいが、より接着力または密着力を向上させることが可能なことから、80〜200g/当量の範囲であるものが好ましく、100〜180g/当量の範囲であるものがより好ましく、110〜150g/当量の範囲であるものがさらに好ましい。
【0034】
フェノール樹脂は固形タイプ、溶剤タイプいずれでもよいが、固形タイプを用いることがより好ましい。固形タイプを用いる際は軟化点が50〜180℃の範囲であるものを用いることが好ましく、70〜150℃の範囲である物を用いることがより好ましい。溶剤タイプを用いる際は粘度(固形分60%MEK溶液として)が50〜2000(25℃、mPa・s)の範囲であるものを用いることが好ましく、70〜1500(25℃、mPa・s)の範囲であるものを用いることがより好ましい。
【0035】
ポリアリーレンスルフィド樹脂組成物中における前記フェノール樹脂(B)の配合の割合は、ポリアリーレンスルフィド樹脂(A)100質量部に対して、0.05〜20質量部の範囲であることが好ましく、0.1〜15質量部の範囲であることが好ましく、さらに0.5〜10質量部の範囲であることが好ましい。上記範囲内であると、優れた金属部材接着性と溶融混練時や溶融成形時の低ガス性とを両立することができる。
【0036】
ポリアリーレンスルフィド樹脂組成物中における前記フェノール樹脂(B)の配合の割合は、ポリアリーレンスルフィド樹脂(A)100質量部に対して、0.01〜50質量部の範囲であることが好ましく、0.1〜35質量部の範囲であることが好ましく、さらに1〜10質量部の範囲であることが好ましい。上記範囲内であると、ポリアリーレンスルフィド樹脂成形品が優れたエポキシ樹脂接着性、機械的強度および難燃性を有しつつ、かつポリアリーレンスルフィド樹脂組成物の溶融時におけるガス発生量の低減と溶融成形時の増粘を抑えることにより流動性に優れたものとすることができる。
【0037】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、必要に応じて、カルボキシ基、カルボン酸無水物基および水酸基からなる群から選ばれる一種以上の置換基を有するオレフィンワックス(C)を任意成分として配合していてもよい。なお、カルボン酸無水物基は(−CO−O−CO−)で表される基を意味するものとする。オレフィンワックス(C)は、カルボキシ基、カルボン酸無水物基および水酸基からなる群から選ばれる少なくとも一種の極性基と、ポリオレフィンからなる非極性基とを有しているため、成形時に極性基は樹脂成形物側に配向し、逆に非極性基は金型側に配向することにより離型剤として作用するポリオレフィン構造を有するワックスである。ただし、本発明においてワックスとは、重合により製造され、通常25℃で固体状の低分子量樹脂で、ポリアリーレンスルフィド樹脂組成物に対する添加剤として少なくとも離形効果を呈するものを言う。通常、分子量(Mn)が250〜10000の範囲、好ましくは300〜7000の範囲のものを言う。分子量が250未満の場合は、溶融混練時などに真空ベントから揮発しやすくなり、離型剤としての効果を発揮し難い傾向にある。また、成形中、ワックスが必要以上にブリードアウトし金型汚れの原因ともなる場合がある。一方、分子量が10,000を超える場合は、ブリードアウトしにくい傾向となり離型剤としての効果が低減する場合がある。
【0038】
分子量(Mw)は、以下の条件を用いたGPC測定法によるものとする。
測定装置 :東ソー株式会社製「HLC−8320 GPC」
カラム :東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G1000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器 :RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
カラム温度:40℃
展開溶媒 :テトラヒドロフラン
流速 :1.0ml/分
標準試料 :前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
単分散ポリスチレン:
東ソー株式会社製「A−500」
東ソー株式会社製「A−2500」
東ソー株式会社製「F−1」
東ソー株式会社製「F−4」
東ソー株式会社製「F−20」
東ソー株式会社製「F−128」
東ソー株式会社製「F−380」
測定試料 :樹脂1mg(溶剤可溶分)をテトラヒドロフラン1mlに溶解させた後、マイクロフィルター(ポアサイズ0.45μm)でろ過したもの(50μl)。
【0039】
本発明に用いるカルボキシ基、カルボン酸無水物基および水酸基からなる群から選ばれる一種以上の置換基を有するオレフィンワックス(C)は、オレフィンワックス(c)を後処理により、カルボキシ基、カルボン酸無水物基および水酸基からなる群から選ばれる一種以上の置換基を含有させた化合物、好ましくはマレイン酸および/または無水マレイン酸で後処理により変性したものが挙げられる。該オレフィンワックス(c)としては、特にポリエチレンワックスおよび/または1−アルケン重合体の使用が好ましくきわめて良好な離型効果が得られる。ポリエチレンワックスの製造方法としては現在一般に広く知られているものが使用でき、エチレンを高温高圧下で重合したもの、ポリエチレンを熱分解したもの、ポリエチレン重合物より低分子量成分を分離精製したもの等が挙げられる。さらにエチレンおよび/または1−アルケンを重合または共重合する際にかかるモノマーと共重合可能なカルボキシ基および/またはカルボン酸無水物基を含有する化合物、好ましくは無水マレイン酸または無水マレイン酸およびマレイン酸を共重合したものも挙げられ、かかる共重合をしたものはカルボキシ基およびカルボン酸無水物基が高濃度かつ安定して含まれるので好ましい。1−アルケンとしてはプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン、1−ヘンエイコセン、1−ドコセン、1−トリコセン、1−テトラコセン、1−ペンタコセン、1−ヘキサコセン、1−ヘプタコセン、1−オクタコセン、1−ノナコセン等が挙げられる。本発明に用いるオレフィンワックス(C)を構成する脂肪族炭化水素基は直鎖型、分枝型の双方を使用でき、また一部に不飽和結合やエステル結合、エーテル結合を含んでいても良い。このようなオレフィンワックス(C)の具体例としては、ダイヤカルナ3(三菱化学株式会社)、リコルブCE2(クラリアントジャパン株式会社)、リコルブH12(製品名。クラリアントジャパン株式会社製)、HW2203A(製品名。三井化学株式会社製)などが挙げられる。
【0040】
本発明に用いるオレフィンワックス(C)の酸価は、本発明の効果を奏する範囲であれば特に制限されるものではない。オレフィンワックス(C)の酸価の下限としては15mgKOH/g以上が好ましく、25mgKOH/g以上であることがさらに好ましく、65mgKOH/g以上であることが特に好ましい。また、オレフィンワックス(C)の酸価の上限としては150mgKOH/g以下が好ましく、140mgKOH/g以下がさらに好ましく、120mgKOH/gが特に好ましい。酸価が上記範囲である場合、本発明のポリアリーレンスルフィド樹脂組成物を成形した成形物とエポキシ樹脂との接着性が特に向上するため好ましい。酸価は、JIS K 0070に準拠した方法により測定することができる。具体的には、ワックス1g中に含有する遊離脂肪酸を中和するのに要する水酸化カリウムのミリグラム数として測定される。
【0041】
本発明に用いるオレフィンワックス(C)の滴点は、50℃以上、100℃以下の範囲が好ましく、60℃以上、90℃以下の範囲がさらに好ましく、70℃以上、80℃以下の範囲が最も好ましい。滴点は、ASTM D127に準拠した方法により測定することができる。具体的には、金属ニップルを用いて、溶融したワックスが金属ニップルから最初に滴下するときの温度として測定される。以下の例においても、同様の方法により測定することができる。滴点が上記範囲内であると、オレフィンワックス(C)は金型からの成形物の離型性を良好にするだけでなく、連続成形性にも好適な影響を与える。さらに、上記範囲内であると、成形物表面にオレフィンワックス(C)が染み出しやすくなる。また、ポリアリーレンスルフィド樹脂組成物を溶融混練させる際、オレフィンワックス(C)が十分に溶融する。これにより、成形物中にオレフィンワックス(C)が略均一に分散する。そのため、成形物表面におけるオレフィンワックス(C)の偏析が抑制され、金型の汚れや成形物の外観の悪化を低減することができる。
【0042】
ポリアリーレンスルフィド樹脂組成物中におけるオレフィンワックス(C)は任意成分であるが、配合する場合、その配合の割合は、ポリアリーレンスルフィド樹脂(A)100質量部に対して、0.01〜5質量部の範囲であることが好ましく、0.05〜4.5質量部の範囲であることが好ましく、さらに0.1〜4質量部の範囲であることが好ましい。上記範囲内であると、金型からの成形物の離型性に優れつつ、さらに、エポキシ樹脂接着性に優れる。また、成形時における金型の汚れや成形物の外観の悪化を抑制することもできる。
【0043】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、必要に応じて、脂肪酸アルカリ金属塩および脂肪酸アルカリ金属土類塩からなる群から選ばれる一種以上の脂肪酸金属塩(D)を任意成分として配合してもよい。
【0044】
本発明で用いる脂肪酸金属塩(D)としては、本発明の効果を奏するものであれば特に限定されるものではないが、炭素原子数12以上の範囲の長鎖脂肪酸の塩を用いることが好ましく、特に炭素原子数20〜30の範囲の長鎖脂肪酸の塩を用いることが好ましい。また、これら脂肪酸としては、飽和脂肪酸、不飽和脂肪酸、およびこれらの誘導体を用いることができるが、飽和脂肪酸を用いることが特に好ましい。本発明で用いる脂肪酸金属塩(D)に含まれる脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、アラキジン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、アジピン酸、セバシン酸、およびこれらの誘導体を用いることが好ましく、アラキジン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、およびこれらの誘導体がより好ましく、ベヘン酸、モンタン酸およびこれらの誘導体が特に好ましい。
【0045】
本発明で用いる脂肪酸金属塩(D)に含まれる塩としては、アルカリ金属塩および/または脂肪酸アルカリ金属土類塩から選択される一種以上の脂肪酸金属塩であり、本発明の効果を奏するものであれば特に限定されるものではないが、例えばカリウム、ナトリウム、リチウムなどのアルカリ金属、カルシウム、マグネシウム、バリウムなどのアルカリ土類金属からなる群から選ばれる一種以上であればよく、さらにカリウム、ナトリウム、カルシウム、リチウムから選択される一種以上の塩を含む脂肪酸金属塩であることが特に好ましい。これらの脂肪酸金属塩を用いた場合には、ポリアリーレンスルフィド樹脂組成物を成形してなる成形品の表面において、エポキシ樹脂を含む硬化性樹脂組成物中のエポキシ基の開環が促進されるため好ましい。
【0046】
ポリアリーレンスルフィド樹脂組成物中におけるアルカリ金属塩および脂肪酸アルカリ金属土類塩からなる群から選ばれる一種以上の脂肪酸金属塩(D)は任意成分であるが、配合する場合、その配合の割合は、ポリアリーレンスルフィド樹脂(A)100質量部に対して0.01〜5質量部の範囲であることが好ましく、0.05〜4.5質量部の範囲であることがより好ましく、0.1〜4質量部の範囲であることが最も好ましい。脂肪酸金属塩(D)の配合の割合が上記範囲内であるとエポキシ樹脂との接着性を向上させ、さらに成形時における金型からの離型性を向上させることができる。
【0047】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、必要に応じて、充填剤を任意成分として含有することができる。これら充填剤としては本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、例えば、繊維状のものや、粒状や板状などの非繊維状のものなど、さまざまな形状の充填剤等が挙げられる。具体的には、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、珪酸カルシウム、ワラストナイト等の繊維、天然繊維等の繊維状充填剤が使用でき、またガラスビーズ、ガラスフレーク、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、雲母、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ、ゼオライト、ミルドファイバー、硫酸カルシウム等の非繊維状充填剤も使用できる。
【0048】
本発明において充填剤は必須成分ではなく、添加する場合、その含有量は本発明の効果を損ねなければ特に限定されるものではない。充填剤の含有量としては例えば、ポリアリーレンスルフィド樹脂(A)100質量部に対して、1〜600質量部の範囲であることが好ましく、さらに10〜200質量部の範囲であることがより好ましい。かかる範囲において、樹脂組成物が良好な機械強度と成形性を示すため好ましい。
【0049】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、必要に応じて、シランカップリング剤を任意成分として含有することができる。シランカップリング剤としては、本発明の効果を損ねなければ特に限定されないが、カルボキシ基と反応する官能基、例えば、エポキシ基、イソシアナト基、アミノ基または水酸基を有するシランカップリング剤が好ましいものとして挙げられる。このようなシランカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ−イソシアナトプロピルトリメトキシシラン、γ−イソシアナトプロピルトリエトキシシラン、γ−イソシアナトプロピルメチルジメトキシシラン、γ−イソシアナトプロピルメチルジエトキシシラン、γ−イソシアナトプロピルエチルジメトキシシラン、γ−イソシアナトプロピルエチルジエトキシシラン、γ−イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ−ヒドロキシプロピルトリメトキシシラン、γ−ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。本発明においてシランカップリング剤は必須成分ではないが、添加する場合、その配合量は、本発明の効果を損ねなければその添加量は特に限定されないが、ポリアリーレンスルフィド樹脂(A)100質量部に対して、0.01〜10質量部の範囲であることが好ましく、さらに0.1〜5質量部の範囲であることがより好ましい。かかる範囲において、樹脂組成物が良好な耐コロナ性と成形性、特に離形性を有し、かつ成形品がエポキシ樹脂と優れた接着性を呈しつつ、さらに機械的強度が向上するため好ましい。
【0050】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、必要に応じて、熱可塑性エラストマーを任意成分として含有することができる。熱可塑性エラストマーとしては、ポリオレフィン系エラストマー、弗素系エラストマーまたはシリコーン系エラストマーが挙げられ、このうちポリオレフィン系エラストマーが好ましいものとして挙げられる。これらのエラストマーを添加する場合、その含有量は、本発明の効果を損ねなければ特に限定されないが、ポリアリーレンスルフィド樹脂(A)100質量部に対して、0.01〜10質量部の範囲であることが好ましく、さらに0.1〜5質量部の範囲であることがより好ましい。かかる範囲において、得られるポリアリーレンスルフィド樹脂組成物の耐衝撃性が向上するため好ましい。
【0051】
前記ポリオレフィン系エラストマーは、例えば、α−オレフィンの単独重合または異なるα−オレフィン同士の共重合により、さらに、官能基を付与する場合には、α−オレフィンと官能基を有するビニル重合性化合物との共重合により得ることができる。α−オレフィンは、例えば、エチレン、プロピレン及びブテン−1等の炭素原子数2〜8の範囲のものが挙げられる。また、官能基としては、カルボキシ基、式−(CO)O(CO)−で表される酸無水物基、それらのエステル、エポキシ基、アミノ基、水酸基、メルカプト基、イソシアネート基、またはオキサゾリン基などが挙げられる。
【0052】
このような官能基を有するビニル重合性化合物の具体例としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα,β−不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4〜10のα,β−不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、上述したエポキシ基、カルボキシ基、及び、該酸無水物基からなる群から選ばれる少なくとも1種の官能基を有するエチレン−プロピレン共重合体及びエチレン−ブテン共重合体が、機械的強度、特に靭性及び耐衝撃性の向上の点から好ましい。
【0053】
更に、本発明に用いるポリアリーレンスルフィド樹脂組成物は、上記成分に加えて、さらに用途に応じて、適宜、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四弗化エチレン樹脂、ポリ二弗化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂などを任意成分として含有することができる。また、これらの樹脂の含有量は、それぞれの目的に応じて異なり、一概に規定することはできないが、ポリアリーレンスルフィド樹脂(A)100質量部に対して0.01〜1000質量部の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。
【0054】
また本発明に用いるポリアリーレンスルフィド樹脂組成物は、その他にも着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、およびカップリング剤等の公知慣用の添加剤を必要に応じ、任意成分として含有してもよい。これらの添加剤は必須成分ではなく、例えば、ポリアリーレンスルフィド樹脂(A)100質量部に対して、好ましくは0.01〜1000質量部の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。
【0055】
本発明に用いるポリアリーレンスルフィド樹脂組成物の製造方法は、ポリアリーレンスルフィド樹脂(A)と、前記フェノール樹脂(B)と、を必須成分として、ポリアリーレンスルフィド樹脂(A)の融点以上で溶融混練する。
【0056】
本発明に用いるポリアリーレンスルフィド樹脂組成物の好ましい製造方法は、上述した含有量となるよう、ポリアリーレンスルフィド樹脂(A)と、前記フェノール樹脂(B)の各必須成分と、必要に応じて、充填剤などの任意成分を、粉末、ペレット、細片など様々な形態でリボンブレンター、ヘンシェルミキサー、Vブレンダーなどに投入してドライブレンドした後、バンバリーミキサー、ミキシングロール、単軸または2軸の押出機およびニーダーなどの公知の溶融混練機に投入し、樹脂温度がポリアリーレンスルフィド樹脂の融点以上となる温度範囲、好ましくは融点+10℃以上となる温度範囲、より好ましくは融点+10℃〜融点+100℃となる温度範囲、さらに好ましくは融点+20〜融点+50℃となる温度範囲で溶融混練する工程を経て製造することができる。溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。
【0057】
前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5〜500(kg/hr)の範囲と、スクリュー回転数50〜500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02〜5(kg/hr/rpm)の範囲となる条件下に溶融混練することがさらに好ましい。また、前記成分のうち、充填剤や添加剤を添加する場合は、前記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部から該サイドフィーダーまでの距離の比率が、0.1〜0.9の範囲であることが好ましい。中でも0.3〜0.7の範囲であることが特に好ましい。
【0058】
このように溶融混練して得られる本発明に用いるポリアリーレンスルフィド樹脂組成物は、必須成分であるポリアリーレンスルフィド樹脂(A)と、前記フェノール樹脂(B)と、必要に応じて加える任意成分およびそれらの由来成分を含む溶融混合物であり、該溶融混練後に、公知の方法でペレット、チップ、顆粒、粉末等の形態に加工してから、必要に応じて100〜150℃の温度で予備乾燥を施して、各種成形に供することが好ましい。
【0059】
上記製造方法により製造される本発明に用いるポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂をマトリックスとし、当該マトリックス中に、必須成分である前記フェノール樹脂(B)、それらに由来する成分、必要に応じて添加する任意成分が分散したモルフォロジーを形成する。その結果、ポリアリーレンスルフィド樹脂成形品が優れたエポキシ樹脂接着性、機械的強度および難燃性を有しつつ、かつポリアリーレンスルフィド樹脂組成物の溶融時におけるガス発生量の低減と溶融成形時の増粘を抑えることにより流動性に優れたものとすることができる。
【0060】
本発明に用いるポリアリーレンスルフィド樹脂組成物は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に離形性にも優れるため射出成形用途に適している。射出成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。例えば、射出成形機内で、樹脂温度がポリアリーレンスルフィド樹脂の融点以上の温度範囲、好ましくは該融点+10℃以上の温度範囲、より好ましくは融点+10℃〜融点+100℃の温度範囲、さらに好ましくは融点+20〜融点+50℃の温度範囲で前記ポリアリーレンスルフィド樹脂組成物を溶融する工程を経た後、樹脂吐出口よりを金型内に注入して成形すればよい。その際、金型温度も公知の温度範囲、例えば、室温(23℃)〜300℃、好ましくは120〜180℃に設定すればよい。
【0061】
本発明に用いるポリアリーレンスルフィド樹脂組成物を成形してなる成形品は、エポキシ樹脂との接着性に優れるだけでなく、機械的強度、特に射出成型時に流動先端同士が合流して形成されるウェルドラインにおける引張強さ、及び曲げ強さ、および難燃性に優れる。
【0062】
本発明に用いるポリアリーレンスルフィド樹脂成形品は、エポキシ樹脂を含む硬化性樹脂組成物との接着性に優れる。ここで言うエポキシ樹脂を含む硬化性樹脂組成物とは、エポキシ樹脂と硬化剤とを混合して得られる組成物であることが好ましい。
【0063】
本発明において用いる前記エポキシ樹脂としては、本発明の効果を損ねなければ特に限定されず、たとえば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂やポリアリーレンエーテル構造(α)を有するエポキシ樹脂などが挙げられ、このうち、接着性に優れることからビスフェノール型エポキシ樹脂が好ましいものとして挙げられる。
【0064】
前記ビスフェノール型エポキシ樹脂のエポキシ樹脂の種類としては、ビスフェノール類のグリシジルエーテルが挙げられ、具体的にはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、またはテトラブロモビスフェノールA型エポキシ樹脂などが挙げられる。
【0065】
また、前記ノボラック型エポキシ樹脂の種類としてはフェノール類とアルデヒドとの縮合反応により得られたノボラック型フェノール樹脂をエピハロヒドリンと反応させて得られるノボラック型エポキシ樹脂が挙げられ、具体例には、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂が挙げられる。
【0066】
本発明に用いる硬化性樹脂組成物に含まれるこれらのエポキシ樹脂は、硬化剤により硬化反応させ使用されることが好ましい。当該硬化剤としては、一般にエポキシ樹脂の硬化剤として用いられるものであれば特に制限されるものではないが、例えば、アミン型硬化剤、フェノール樹脂型硬化剤、酸無水物型硬化剤、潜在性硬化剤等が挙げられる。
【0067】
アミン型硬化剤としては、公知のものを用いることができ、脂肪族ポリアミン、芳香族ポリアミン、複素環式ポリアミン等やそれらのエポキシ付加物、マンニッヒ変性化物、ポリアミドの変性物を用いることができる。具体的には、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、m−キシレンジアミン、トリメチルへキサメチレンジアミン、2−メチルペンタメチレンジアミン、イソフォロンジアミン、1,3−ビスアミノメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2−ジアミノシクロヘキサン、ジアミノジフェニルメタン、m−フェニレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4−アミノベンゾエート)、ポリテトラメチレンオキシド−ジ−p−アミノベンゾエート等が挙げられる。このうち、硬化性に優れることから、m−キシレンジアミン、1,3−ビスアミノメチルシクロヘキサンが特に好ましいものとして挙げられる。
【0068】
フェノール樹脂型硬化剤としては、公知のものを用いることができ、例えば、ビスフェノールA、ビスフェノールF、ビフェノール等のビスフェノール類、トリ(ヒドロキシフェニル)メタン、1,1,1−トリ(ヒドロキシフェニル)エタン等の3官能フェノール化合物、フェノールノボラック、又はクレゾールノボラック等が挙げられる。
【0069】
酸無水物型硬化剤としては、公知のものを用いることができ、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
【0070】
潜在性硬化剤としては、ジシアンジアミド、イミダゾール、BF3−アミン錯体、グアニジン誘導体等が挙げられる。
【0071】
これらの硬化剤は、単独で用いることも2種以上併用することもできる。また、本発明の効果を損なわない範囲において、硬化促進剤を適宜併用して用いることも可能である。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。
【0072】
本発明に用いるエポキシ樹脂を含む硬化性樹脂組成物は、無溶媒下で硬化反応をさせても良いが、ベンゼン、トルエン、キシレン、酢酸エチル、アセトン、メチルエチルケトン、ジエチルエーテル、テトラヒドロフラン、酢酸メチル、アセトニトリル、クロロホルム、塩化メチレン、四塩化炭素、1,2−ジクロロエタン、1,1,2−トリクロロエタン、テトラクロロエチレン、N−メチルピロリドン、イソプロピルアルコールやイソブタノール、t−ブチルアルコール等の溶媒下で硬化反応をさせてもよい。
【0073】
本発明に用いる硬化性樹脂組成物において、エポキシ樹脂と硬化剤との使用割合は、本発明の効果を損なわない範囲において公知の割合であれば特に限定されるものではないが、硬化性に優れ、硬化物の耐熱性や耐薬品性に優れる硬化物が得られることから、エポキシ樹脂成分中のエポキシ基の合計1当量に対して、硬化剤中の活性基が0.7〜1.5当量になる量が好ましい。
【0074】
本発明に用いるポリアリーレンスルフィド樹脂組成物を成形してなる成形品は、エポキシ樹脂との接着性に優れることから、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品として好適に用いることができる。
その製造方法としては、本発明の効果を損なわない範囲において公知の方法でよいが、ポリアリーレンスルフィド樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物とを接触させ、該硬化性樹脂組成物を硬化させる方法が挙げられる。
【0075】
前記複合成形体の主な用途例としては、各種家電製品、携帯電話、及びPC(Personal Computer)等の電子機器の筐体、箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体またはモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ブラシホルダー、スリップリング、ICレギュレータ、ライトディヤ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイルおよびそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース等の自動車・車両関連部品、その他各種用途にも適用可能である。
【実施例】
【0076】
以下に具体的な例を挙げて、本発明をさらに詳しく説明する。なお、部、%は、特に断りがない場合、質量基準とする。また、製造例にて製造した樹脂の分析はそれぞれ以下の条件で行った。
【0077】
(測定例1)ポリフェニレンスルフィド樹脂の溶融粘度の測定
参考例で製造したポリフェニレンスルフィド樹脂を島津製作所製フローテスター、CFT−500Dを用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に測定した。
【0078】
(製造例1) ポリフェニレンスルフィド樹脂(A−1)の製造
[工程1]
圧力計、温度計、コンデンサ、デカンタ、精留塔を連結した撹拌翼付き150リットルオートクレーブにp−ジクロロベンゼン(以下、「p−DCB」と略記する。)33.222kg(226モル)、NMP3.420kg(34.5モル)、47.23質量%NaSH水溶液27.300kg(NaSHとして230モル)、及び49.21質量%NaOH水溶液18.533g(NaOHとして228モル)を仕込み、撹拌しながら窒素雰囲気下で173℃まで5時間掛けて昇温して、水27.300kgを留出させた後、オートクレーブを密閉した。脱水時に共沸により留出したp−DCBはデカンターで分離して、随時オートクレーブ内に戻した。脱水終了後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がp−DCB中に分散した状態であった。この組成物中のNMP含有量は0.079kg(0.8モル)であったことから、仕込んだNMPの98モル%(33.7モル)がNMPの開環体(4−(メチルアミノ)酪酸)のナトリウム塩(以下、「SMAB」と略記する。)に加水分解されていることが示された。オートクレーブ内のSMAB量は、オートクレーブ中に存在する硫黄原子1モル当たり0.147モルであった。仕込んだNaSHとNaOHが全量、無水NaSに変わる場合の理論脱水量は27.921gであることから、オートクレーブ内の残水量878g(48.8モル)の内、609g(33.8モル)はNMPとNaOHとの加水分解反応に消費されて、水としてオートクレーブ内に存在せず、残りの269g(14.9モル)は水、あるいは結晶水の形でオートクレーブ内に残留していることを示していた。オートクレーブ内の水分量はオートクレーブ中に存在する硫黄原子1モル当たり0.065モルであった。
【0079】
[工程2]
上記脱水工程終了後に、内温を160℃に冷却し、NMP46.343kg(467.5モル)を仕込み、185℃まで昇温した。オートクレーブ内の水分量は、工程2で仕込んだNMP1モル当たり0.025モルであった。ゲージ圧が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したp−DCBと水の混合蒸気はコンデンサーで凝縮し、デカンターで分離して、p−DCBはオートクレーブへ戻した。留出水量は228g(12.7モル)であった。
【0080】
[工程3]
工程3開始時のオートクレーブ内水分量は41g(2.3モル)で、工程2で仕込んだNMP1モル当たり0.005モルで、オートクレーブ中に存在する硫黄原子1モル当たり0.010モルであった。オートクレーブ内のSMAB量は工程1と同じく、オートクレーブ中に存在する硫黄原子1モル当たり0.147モルであった。次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で1時間撹拌した後、250℃まで昇温し、1時間撹拌した。内温200℃時点のゲージ圧は0.03MPaで、最終ゲージ圧は0.40MPaであった。冷却後、得られたスラリーの内、650gを3リットルの水に注いで80℃で1時間撹拌した後、濾過した。このケーキを再び3リットルの温水で1時間撹拌し、洗浄した後、濾過した。この操作を4回繰り返した。このケーキを再び3リットルの温水と、酢酸を加え、pH4.0に調整した後、1時間撹拌し、洗浄した後、濾過した。このケーキを再び3リットルの温水で1時間撹拌し、洗浄した後、濾過した。この操作を2回繰り返した。熱風乾燥機を用いて120℃で一晩乾燥して白色の粉末状のPPS樹脂(A−1)を得た。このポリマーの300℃における溶融粘度は41Pa・sであった。非ニュートン指数は1.07であった。
【0081】
(製造例2) ポリフェニレンスルフィド樹脂(A−2)の製造
「次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で1時間撹拌した後、250℃まで昇温し、1時間撹拌した。」とする部分を「次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で1.5時間撹拌した後、250℃まで昇温し、1時間撹拌した。」としたこと以外は製造例1と同様にして、白色の粉末状のPPS樹脂(以下、A−2)を得た。得られたポリマーの溶融粘度は73Pa・s、非ニュートン指数が1.07であった。
【0082】
(製造例3) ポリフェニレンスルフィド樹脂(A−3)の製造
圧力計、温度計、コンデンサを連結した撹拌翼および底弁付き150リットルオートクレーブに、フレーク状硫化ソーダ(60.3重量%NaS)19.413kgと、NMP45.0kgを仕込んだ。窒素気流下攪拌しながら209℃まで昇温して、水4.644kgを留出させた(残存する水分量は硫化ソーダ1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン22.185kg、1,2,4−トリクロロベンゼン0.027kg及びNMP18.0kgを仕込んだ。液温150℃で窒素ガスを用いてゲージ圧で0.1MPaに加圧して昇温を開始した。液温240℃で2時間保持したのち、液温260℃で3時間攪拌しつつ反応を進め、オートクレーブ上部を散水することにより冷却した。次に降温させると共にオートクレーブ上部の冷却を止めた。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。反応中の最高圧力は、0.85MPaであった。反応後、冷却し、温度170℃の時点でシュウ酸・2水和物0.284kg(2.25モル)をNMP0.663kgに含む溶液を加圧注入した。30分間撹拌後、冷却し、100℃で底弁を開き、反応スラリーを150リットル平板ろ過機に移送し120℃で加圧ろ過したのち、NMP16kgを加え、加圧ろ過した。ろ過後、撹拌翼付き150リットル真空乾燥機を用いて、減圧下150℃で2時間撹拌してNMPを除去し、白色の粉末状のPPS樹脂(A−3)を得た。 このポリマーの300℃における溶融粘度は77Pa・sであった。非ニュートン指数は1.25であった。
【0083】
(実施例1〜8及び比較例1〜6)PPS樹脂組成物の製造
表1〜4に記載する組成成分および配合量(全て質量部)にしたがい、各材料をタンブラーで均一に混合した。その後、株式会社日本製鋼所ベント付き2軸押出機「TEX30α」に前記配合材料を投入し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、設定樹脂温度を330℃に設定して溶融混練し、樹脂組成物のペレットを得た。このペレットを用いて以下の各種評価試験を行った。試験及び評価の結果は、表1〜4に示す。
【0084】
(測定例2)PPS成形品とエポキシ樹脂との密着強度
得られたペレットをシリンダー温度320℃に設定した住友重機械工業株式会社製SE50EV-Aに供給し、金型温度140℃に温調した金型を用いた射出成形によってASTM D790に沿ったテストピース(長さ×幅×厚み=127mm×12.9mm×3.1mm)を成形した。このテストピースの中央で切断し、一方にエポキシ接着剤(ナガセケムテックス株式会社製2液型エポキシ樹脂、主剤:XNR5002、硬化剤:XNH5002、配合質量比は主剤:硬化剤=100:90)を塗布した(塗布面積:12.9mm×13.0mm)。もう一方を塗布面に張り合わせて固定し、オーブンで加熱(100℃で1時間加熱後、150℃で2時間加熱)して、エポキシ樹脂と接着剤を硬化させてせん断型の試験片を作成した。
得られた試験片に引張試験(引張速度1mm/分、つかみ具間距離54mm、23℃下で島津社製引張試験機「AG−Xシリーズ」を使用)を実施し、得られた最大試験力を接着面積で割って密着強度とした。
【0085】
(測定例3)ウェルド強度
射出成形によって試験片中央にウェルドラインを持つISO Type−A型試験片を作成した。得られた試験片に引張試験(引張速度5mm/分)を実施し、得られた最大試験力をウェルドライン部分の断面積で割って応力とした。
【0086】
【表1】
【0087】
【表2】
【0088】
【表3】
【0089】
【表4】
【0090】
なお、表1〜4中の配合樹脂、材料の配合比率は質量部を表し、下記のものを用いた。
フェノール樹脂
B−1:フェノールノボラック DIC株式会社製「TD−2090」(水酸基当量105g/当量、軟化点117−123℃)
B−2:フェノールノボラック DIC株式会社製「TD−2093」(水酸基当量104g/当量、軟化点98−102℃)
B−3:フェノールノボラック DIC株式会社製「TD−2131」(水酸基当量104g/当量、軟化点78−82℃)
B−4:クレゾールノボラック DIC株式会社製「KA−1165」(水酸基当量119g/当量、軟化点117−130℃)
b−5:分岐ポリエーテルポリオール樹脂 DIC株式会社製「HBP−100」
(水酸基価260mgKOH/g、数平均分子量2600)
b−6:ビスフェノールA型エポキシ樹脂 DIC株式会社製「エピクロン7050」
【0091】
ガラス繊維
C−1:ガラス繊維(チョップドストランド、Eガラス、平均繊維長200μm、平均直径10μm、エポキシ系集束剤による表面処理品)
※なお、フェノール樹脂の軟化点測定は、メイホー社製環球式軟化点測定装置ASP−M4SPを用い、昇温3℃/分で測定した値とする。またフェノール樹脂の水酸基当量の測定はJIS K 0070(1992)に規定される中和滴定法に準拠した方法で測定した値とする。