特許第6894617号(P6894617)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ NOK株式会社の特許一覧 ▶ 国立大学法人 東京大学の特許一覧

特許6894617マイクロ流体チップおよびマイクロ流体デバイス
<>
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000002
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000003
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000004
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000005
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000006
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000007
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000008
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000009
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000010
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000011
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000012
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000013
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000014
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000015
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000016
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000017
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000018
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000019
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000020
  • 特許6894617-マイクロ流体チップおよびマイクロ流体デバイス 図000021
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6894617
(24)【登録日】2021年6月8日
(45)【発行日】2021年6月30日
(54)【発明の名称】マイクロ流体チップおよびマイクロ流体デバイス
(51)【国際特許分類】
   C12M 3/00 20060101AFI20210621BHJP
【FI】
   C12M3/00 Z
【請求項の数】7
【全頁数】20
(21)【出願番号】特願2020-553767(P2020-553767)
(86)(22)【出願日】2019年10月16日
(86)【国際出願番号】JP2019040736
(87)【国際公開番号】WO2020090480
(87)【国際公開日】20200507
【審査請求日】2021年2月26日
(31)【優先権主張番号】特願2018-202990(P2018-202990)
(32)【優先日】2018年10月29日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000004385
【氏名又は名称】NOK株式会社
(73)【特許権者】
【識別番号】504137912
【氏名又は名称】国立大学法人 東京大学
(74)【代理人】
【識別番号】100109380
【弁理士】
【氏名又は名称】小西 恵
(74)【代理人】
【識別番号】100109036
【弁理士】
【氏名又は名称】永岡 重幸
(74)【代理人】
【識別番号】100125335
【弁理士】
【氏名又は名称】矢代 仁
(72)【発明者】
【氏名】吉富 匠
(72)【発明者】
【氏名】金 秀▲弦▼
(72)【発明者】
【氏名】藤井 輝夫
(72)【発明者】
【氏名】孫 明▲げつ▼
【審査官】 中野 あい
(56)【参考文献】
【文献】 国際公開第2019/069900(WO,A1)
【文献】 KIMURA H., et al., "Organ/body-on-a-chip based on microfluidic technology for drug discovery.",Drug metabolism and pharmacokinetics, 2018 Feb (Epub 2017 Nov 13), vol. 33, no. 1, pp. 43-48
【文献】 SATOH T., et al., "A pneumatic pressure-driven multi-throughput microfluidic circulation culture sys,Lab on a chip, 2016 Jun 21 (Epub 2016 May 27), vol. 16, no. 12, pp. 2339-2348.
【文献】 ROGAL J., et al., "Integration concepts for multi-organ chips: how to maintain flexibility?!",Future science OA, 2017 Mar 13, vol. 3, no. 2, p. FSO180
【文献】 孫明げつ他, "3Dプリンタで製作したマイクロ流体デバイスを用いる生体機能性チップのモジュール化",化学とマイクロ・ナノシステム学会 第38会研究会講演要旨集, 2018.10.30, p. 79 (3P17)
(58)【調査した分野】(Int.Cl.,DB名)
C12M 3/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
上面と、
前記上面の反対側にある下面と、
前記上面と前記下面との間に配置された流体の流路と、
前記流路に通じており、前記上面と前記下面の少なくとも一方で開口する少なくとも1つの連通孔と、
前記連通孔が開口する面に接触するよう配置されるか、前記面に形成され、前記連通孔を囲む、エラストマーから形成された少なくとも1つの環状シールと、
前記流路の内部における前記環状シールに重なる位置に固定されて、前記流路が閉塞されないよう前記流路の高さを確保する少なくとも1つの支持構造物とを
備えることを特徴とするマイクロ流体チップ。
【請求項2】
前記上面と前記下面の少なくとも一方で、前記流路に通ずる2つの連通孔が開口し、
2つの環状シールがそれぞれ前記連通孔を囲むように、前記連通孔が開口する面に接触するよう配置されるか、前記面に形成され、
少なくとも2つの支持構造物がそれぞれ前記環状シールに重なる位置に固定されている
ことを特徴とする請求項1に記載のマイクロ流体チップ。
【請求項3】
請求項1または2に記載の少なくとも1つの前記マイクロ流体チップと、
前記マイクロ流体チップに重ねられ、前記連通孔が開口する前記面に対面し、前記環状シールを前記マイクロ流体チップに向けて圧縮する壁構造とを備え、
前記壁構造は、前記壁構造に前記マイクロ流体チップが重ねられると、前記マイクロ流体チップの少なくとも1つの前記連通孔に通じ、前記環状シールに囲まれる少なくとも1つの孔を有する
ことを特徴とするマイクロ流体デバイス。
【請求項4】
請求項2に記載の複数の前記マイクロ流体チップと、
複数の前記マイクロ流体チップに重ねられ、複数の前記マイクロ流体チップの前記連通孔が開口する前記面に対面し、前記環状シールを複数の前記マイクロ流体チップに向けて圧縮する壁構造とを備え、
前記壁構造は、前記壁構造に前記マイクロ流体チップが重ねられると、複数の前記マイクロ流体チップの前記連通孔にそれぞれ通じ、複数の前記環状シールにそれぞれ囲まれる複数の孔と、2つの前記マイクロ流体チップの前記流路にそれぞれ通ずる2つの前記孔を接続する接続流路とを有する
ことを特徴とするマイクロ流体デバイス。
【請求項5】
少なくとも1つの前記マイクロ流体チップが保持されるホルダーを備え、
前記マイクロ流体チップの前記連通孔は、前記上面で開口し、前記環状シールは、前記上面に接触するよう配置されるか、前記上面に形成され、
前記ホルダーは、
前記マイクロ流体チップが挿入される、水平方向に延びる少なくとも1つのスロットと、
前記スロットに前記マイクロ流体チップが挿入されると、前記上面に対面し、前記環状シールを前記上面に向けて圧縮する、前記壁構造である上壁構造と、
前記スロットに前記マイクロ流体チップが挿入されると、前記下面に面接触する下壁とを有する
ことを特徴とする請求項3に記載のマイクロ流体デバイス。
【請求項6】
複数の前記マイクロ流体チップが保持されるホルダーを備え、
複数の前記マイクロ流体チップの前記連通孔は、前記上面で開口し、前記環状シールは、前記上面に接触するよう配置されるか、前記上面に形成され、
前記ホルダーは、
複数の前記マイクロ流体チップがそれぞれ挿入される、水平方向に延びる複数のスロットと、
前記スロットに前記マイクロ流体チップが挿入されると、複数の前記マイクロ流体チップの前記上面に対面し、前記環状シールを前記上面に向けて圧縮する、前記壁構造である上壁構造と、
前記スロットに前記マイクロ流体チップが挿入されると、複数の前記マイクロ流体チップの前記下面に面接触する下壁とを有する
ことを特徴とする請求項4に記載のマイクロ流体デバイス。
【請求項7】
前記上壁構造は、前記ホルダーに固定される接続流路チップを備えており、前記接続流路は、前記接続流路チップに形成されている
ことを特徴とする請求項6に記載のマイクロ流体デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロ流体チップおよびマイクロ流体デバイスに関する。
【背景技術】
【0002】
マイクロ流体デバイスは、流体の分析または合成を行うために、液体が流れる微小な流路を有するデバイスである。マイクロ流体デバイスを構成するマイクロ流体チップの一種として、動物の臓器または組織を模倣して、流路で細胞を培養する、organ-on-a-chipが開発されている(非特許文献1)。
【0003】
Organ-on-a-chipは、例えば創薬分野において、動物実験の代替実験に使用される。動物実験は、薬物の作用および副作用を評価する上で有用であるが、動物愛護の観点から望ましくない。また、たとえ動物実験を行って、ある種の動物に対する薬物の影響を評価できても、他の種の動物にその評価が当てはまるとは限らない。例えば、マウスに薬物を投与する実験では、ヒトへの薬物の作用および副作用を十分に把握することはできない。ある動物のための薬物の影響を調べるためには、その動物由来の細胞を培養するorgan-on-a-chipを使用することが望ましい。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】Julia Rogal, et al., "Integration concepts for multi-organ chips: how to maintain flexibility?!", Future Science OA, 2017, [online]、[平成30年9月10日検索]、インターネット(URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481865/)
【発明の概要】
【発明が解決しようとする課題】
【0005】
Organ-on-a-chipを含むマイクロ流体チップは、他の部材(例えば、マイクロ流体チップが挿入されるホルダーまたはマイクロ流体チップに重ねられる板)と結合されて使用される。このような使用状態において、液体の密封が重要であり、かつ流路が閉塞されないことが望ましい。
【0006】
そこで、本発明は、他の部材と結合されて使用される場合に、液体の密封性が高く、流路が閉塞されないマイクロ流体チップおよびこれを有するマイクロ流体デバイスを提供する。
【課題を解決するための手段】
【0007】
本発明のある態様に係るマイクロ流体チップは、上面と、前記上面の反対側にある下面と、前記上面と前記下面との間に配置された流体の流路と、前記流路に通じており、前記上面と前記下面の少なくとも一方で開口する少なくとも1つの連通孔と、前記連通孔が開口する面に接触するよう配置されるか、前記面に形成され、前記連通孔を囲む、エラストマーから形成された少なくとも1つの環状シールと、前記流路の内部における前記環状シールに重なる位置に固定されて、前記流路が閉塞されないよう前記流路の高さを確保する少なくとも1つの支持構造物とを備える。
【0008】
この態様においては、上面と下面の少なくとも一方に他の部材が対面するように、マイクロ流体チップが他の部材と結合されて使用される場合に、環状シールが他の部材に接触させられる。環状シールは、他の部材によって圧縮される。環状シールは、他の部材に形成された孔と、マイクロ流体チップに形成された連通孔を囲むように使用され、圧縮されることにより、孔から連通孔に流れる液体、または連通孔から孔に流れる液体を密封することができる。環状シールが圧縮されることに伴い、マイクロ流体チップは環状シールから反力を受けるが、流路の内部における環状シールに重なる位置に固定された支持構造物が、流路が閉塞されないよう流路の高さを確保する。
【図面の簡単な説明】
【0009】
図1】本発明の実施形態に係るマイクロ流体デバイスを示す平面図である。
図2図1のマイクロ流体デバイスを分解した各要素を示す平面図である。
図3図1のマイクロ流体デバイスの接続流路チップを示す平面図である。
図4図3の接続流路チップのIV-IV線矢視断面図である。
図5図1のマイクロ流体デバイスのマイクロ流体チップを示す平面図である。
図6図1のマイクロ流体デバイスのVI-VI線矢視断面図である。
図7図5のマイクロ流体チップの流路板を示す裏面図である。
図8】実施形態と異なるマイクロ流体デバイスを示す側面断面図である。
図9図7のマイクロ流体チップのIX-IX線矢視拡大断面図である。
図10】マイクロ流体チップの流路板の一部を示す拡大裏面図である。
図11】マイクロ流体チップの要素の配置を示す斜視図である。
図12】実施形態の変形例に係るマイクロ流体デバイスを示す側面断面図である。
図13】実施形態の他の変形例に係るマイクロ流体デバイスを示す側面断面図である。
図14】実施形態の他の変形例に係るマイクロ流体チップの流路板の一部を示す拡大裏面図である。
図15】実施形態の他の変形例に係るマイクロ流体チップの流路板の一部を示す拡大裏面図である。
図16】実施形態の他の変形例に係るマイクロ流体デバイスを示す側面断面図である。
図17】実施形態の他の変形例に係るマイクロ流体デバイスを示す側面断面図である。
図18】実施形態におけるマイクロ流体チップがホルダーのスロットに挿入される最初の段階を示す側面断面図である。
図19図18の後の段階を示す側面断面図である。
図20】他の変形例に係るマイクロ流体デバイスを示す側面断面図である。
【発明を実施するための形態】
【0010】
以下、添付の図面を参照しながら本発明に係る実施形態を説明する。図面において縮尺は、必ずしも実施形態の製品を正確に表してはおらず、一部の寸法を誇張して表現している場合もある。
【0011】
実施形態に係るマイクロ流体デバイスは、organ-on-a-chipデバイスである。図1に示すように、マイクロ流体デバイスは、ホルダー1と、ホルダー1に保持される複数の(この実施形態では2つの)マイクロ流体チップ2と、ホルダー1に保持されてマイクロ流体チップ2を接続する接続流路チップ3を備える。
【0012】
各マイクロ流体チップ2は、矩形の板である。図1および図2に示すように、ホルダー1は、ほぼ矩形の板であり、複数のマイクロ流体チップ2が水平方向に沿ってそれぞれ挿入される、水平方向に延びる複数のスロット4を有する。また、ホルダー1の上部には、矩形の長尺な接続流路チップ3が嵌め込まれる矩形の長尺な開口部5が形成されている。
【0013】
図3および図4に示すように、接続流路チップ3の両端部には、2つの孔28が形成され、接続流路チップ3の中央部には、孔28を接続する接続流路30が形成されている。接続流路30は、接続流路チップ3の長手方向に沿って延びている。2つの孔28は、接続流路チップ3を貫通せず、接続流路チップ3の一面で開口する。
【0014】
接続流路チップ3は、透明なエラストマー、例えばポリジメチルシロキサン(PDMS)を主成分とするシリコーンゴムまたはアクリルゴムから形成されている。接続流路チップ3を製造する方法は限定されないが、例えば3Dプリンターによって、接続流路チップ3を製造することができる。具体的には、孔28と接続流路30を形成するサポート材(中子)の周囲に、例えば、光造形法を用いて、紫外線硬化型のPDMSで接続流路チップ3の外形を形成し、この後、アルカリ溶液でサポート材を溶解して除去することによって、孔28と接続流路30を開通させることができる。但し、フォトリソグラフィまたは3Dプリンターで形成したモールドを用いて成形した部品を接合することにより、接続流路チップ3を製造してもよい。
【0015】
図5および図6に示すように、各マイクロ流体チップ2は、矩形の一様な厚さを有する平板6と、平板6に重ねられた矩形の一様な厚さを有する平板である流路板8を有する。平板6は、平坦な上面6aと、平坦で上面6aに平行な下面6bを有する。流路板8は、平坦な上面8aと、平坦で上面8aに平行な下面8bを有する。平板6および流路板8は水平に配置され、流路板8は平板6の上方に配置されている。平板6の上面6aは流路板8の下面8bに接合されている。したがって、流路板8の上面8aはマイクロ流体チップ2の上面であり、平板6の下面6bはマイクロ流体チップ2の下面である。
【0016】
平板6は、例えばガラスまたはアクリル樹脂のような透明材料から形成されている。流路板8は、透明なエラストマー、例えばPDMSを主成分とするシリコーンゴムまたはアクリルゴムから形成されている。平板6の厚さは、例えば1mmであり、流路板8の厚さは、例えば2mmであり、マイクロ流体チップ2全体の厚さは、例えば3mmである。
【0017】
平板6は、流路板8よりも大きな長さを有し、図1に示すように、マイクロ流体チップ2がスロット4に挿入された場合、流路板8の全体および平板6の一部はスロット4の内部に配置されるが、平板6の端部は露出する。
【0018】
図5および図7に示すように、流路板8の下面8bには、液体の流路となる凹部が形成されている。凹部は、培養チャンバー凹部14hと、培養チャンバー凹部14hの両端にそれぞれ通ずる通路凹部16h,18hを有する。流路板8には、通路凹部16hに通ずる連通孔10と、通路凹部18hに通ずる連通孔12が形成されており、連通孔10,12は上面8aで開口する。
【0019】
平板6は、流路板8に接合され、凹部を覆って、流路板8と協働して流路を画定する。この実施形態では、流路は、動物(ヒトを含む)の細胞が培養される培養チャンバー14と、連通孔10と培養チャンバー14の間に介在する通路16と、連通孔12と培養チャンバー14の間に介在する通路18とを有する。通路16と通路18は、培養チャンバー14よりも小さい幅を有する。通路16と通路18は、互いに同じ幅と長さを有する。
【0020】
培養チャンバー14は、直線に沿って延びる長尺の空間であり、通路16,18は、同じ直線に沿って延びている。培養チャンバー14と通路16,18を有する流路は、1つの連通孔から他の1つの連通孔に向けて直線状に延びる(曲折または湾曲しない)ので、流路の構造が単純である。但し、培養チャンバー14および通路16,18は、曲折または湾曲していてもよい。この実施形態では、各マイクロ流体チップ2において、流路の両端に配置された2つの連通孔10,12を結ぶ線分は、マイクロ流体チップ2がスロット4に挿入される挿入方向に対して傾斜しており、培養チャンバー14および通路16,18は、この線分に沿って直線状に延びている。但し、2つの連通孔10,12を結ぶ線分は、挿入方向に沿って延びていてもよい。
【0021】
このように、マイクロ流体チップ2は、上面8aと下面6bとの間に配置された流体の流路と、流路に通じており上面8aで開口する2つの連通孔10,12を有する。
【0022】
図6に示すように、ホルダー1は、積層された上壁20、中壁22、および下壁24を有する。スロット4の天井面は上壁20の下面であり、スロット4の底面は下壁24の上面である。スロット4にマイクロ流体チップ2が挿入されると、上壁20は、複数のマイクロ流体チップ2の流路板8の上面8aに対面し、下壁24は、複数のマイクロ流体チップ2の平板6の下面6bに対面する。中壁22は、上壁20と下壁24の間に配置され、スロット4の側部を画定する。
【0023】
上壁20、中壁22および下壁24は、互いに固定されている。これらの固定には、例えば、図1に示すように、複数の留め具25を使用してよい。各留め具25は、例えば、上壁20、中壁22および下壁24を貫通する貫通孔25A(図2参照)に挿入されるネジと、ネジに螺合されるナットを備えてよい。あるいは、各留め具25は、クランプ機構であってもよい。あるいは、上壁20、中壁22および下壁24は、一体成形されていてもよい。あるいは、上壁20、中壁22および下壁24は、接着剤、化学的反応、または熱的反応を用いて、接合されていてもよい。
【0024】
上壁20、中壁22および下壁24は、例えば不透明な樹脂材料によって形成されているが、透明な材料によって形成されてもよい。
【0025】
図1図2および図6に示すように、上壁20には、複数の孔26が形成されている。複数の孔26は、上壁20を貫通し、液体の入口もしくは出口、または液体に押されて流れる空気の出口として使用される。
【0026】
また、上壁20には開口部5が形成されている。開口部5は上壁20を貫通し、開口部5には接続流路チップ3が嵌め込まれて固定されている。開口部5に嵌め込まれた接続流路チップ3に形成された複数の孔28は、スロット4内で開口する。図示しないが、接続流路チップ3を開口部5に固定する留め具が使用されてもよい。
【0027】
接続流路チップ3は、ホルダー1の一部であると考えることもできる。すなわち、ホルダー1は、上壁20と接続流路チップ3を有する上壁構造19、中壁22および下壁24を備えると考えることもできる。スロット4の天井面は上壁構造19の下面であり、スロット4の底面は下壁24の上面である。
【0028】
さらに、上壁20には、複数の観察窓29が形成されている。観察窓29は上壁20を貫通する。スロット4にマイクロ流体チップ2が挿入された後、各観察窓29は、マイクロ流体チップ2の培養チャンバー14に重なる。観察窓29を通じて、培養チャンバー14内の細胞を観察することが可能である。細胞の観察には、例えば顕微鏡を使用することができる。細胞の観察のための明るさを高めるために、下壁24に下壁24を貫通する採光窓を形成してもよい。この実施形態では、上壁20は不透明な材料から形成されているが、上壁20が透明な材料から形成されている場合であっても、顕微鏡による細胞の観察を良好に行うため、上壁20を貫通する観察窓29が形成されていることが好ましい。
【0029】
上壁20の下面には、複数の溝32,34が形成されている。溝32,34は、スロット4の長手方向(マイクロ流体チップ2がスロット4に挿入される挿入方向)に沿って直線状に延びる。図1および図2に示すように、溝32の延長線上には、孔26が存在し、溝34の延長線上には、孔28が存在する。スロット4にマイクロ流体チップ2が挿入される際、各マイクロ流体チップ2の連通孔10は、溝32に重なりながら、スロット4内を移動し、各マイクロ流体チップ2の連通孔12は、溝34に重なりながら、スロット4内を移動する。スロット4の深部側に配置された孔28が延長線上に存在する溝34は、観察窓29を跨って延びる。
【0030】
スロット4にマイクロ流体チップ2が挿入された後、上壁構造19の上壁20に形成された複数の孔26は、複数のマイクロ流体チップ2の流路板8の連通孔10にそれぞれほぼ同軸に配置されて、連通孔10にそれぞれ通じ、上壁構造19の接続流路チップ3に形成された複数の孔28は、複数のマイクロ流体チップ2の流路板8の連通孔12にそれぞれほぼ同軸に配置されて、連通孔12にそれぞれ通ずる。
【0031】
図1に示すように、2つの孔28は接続流路30で接続されている。接続流路30は、水平に延びて2つのスロット4を跨る。接続流路30を介して、1つのマイクロ流体チップ2の流路から他のマイクロ流体チップ2の流路に液体を移送することができる。
【0032】
連通孔10,12が開口する流路板8の上面8aには、エラストマーから形成された複数の環状シール36,38が配置されている。この実施形態では、環状シール36,38は、Oリングであるが、例えばDリングのような他の断面形状を有するリングであってもよい。環状シール36,38の材料は、例えばシリコーンゴムであるが、他のエラストマーであってもよい。この実施形態では、環状シール36,38は、同じ大きさを有するが、異なる大きさを有してもよい。
【0033】
この実施形態では、図6に示すように、流路板8の上面8aに環状シール36,38が嵌め込まれる凹溝が形成されており、各凹溝に環状シール36または38が嵌め込まれることによって、環状シール36,38が上面8aに固定されている。環状シール36,38は、上面8aに接合されてもよい。接合の手法としては、例えば接着剤による接着でもよいし、酸素プラズマを照射するか、真空下で紫外線を照射することによって、部材表面を活性化して、2つの部材を化学的に結合してもよい。
【0034】
環状シール36は、流路板8に形成された連通孔10にほぼ同軸に配置されて連通孔10を囲み、環状シール38は、流路板8に形成された連通孔12にほぼ同軸に配置されて連通孔12を囲む。環状シール36の一部は通路16に重なり、環状シール38の一部は通路18に重なっている。
【0035】
マイクロ流体チップ2がスロット4に挿入された後、環状シール36は、上壁20に形成された孔26にほぼ同軸に配置されて孔26を囲み、環状シール38は、接続流路チップ3に形成された孔28にほぼ同軸に配置されて孔28を囲む。したがって、環状シール36は、上壁20に形成された孔26および流路板8に形成された連通孔10を囲み、環状シール38は、接続流路チップ3に形成された孔28および流路板8に形成された連通孔12を囲む。
【0036】
マイクロ流体チップ2がスロット4に挿入される際には、マイクロ流体チップ2の平板6の下面6bはホルダー1の下壁24を摺動し、流路板8の上面8aに固定された環状シール36,38はホルダー1の上壁20を摺動する。スロット4にマイクロ流体チップ2が挿入された後、下壁24は、複数のマイクロ流体チップ2の平板6に面接触し続ける。スロット4にマイクロ流体チップ2が挿入された後、ホルダー1の上壁20および接続流路チップ3は、複数のマイクロ流体チップ2の流路板8の上面8aに対面し、環状シール36,38を流路板8に向けて圧縮し続ける。
【0037】
このように、環状シール36または38は、上壁20または接続流路チップ3に形成された孔26または28と、流路板8に形成された連通孔10または12を囲むように使用され、圧縮されることにより、孔26もしくは28から連通孔10もしくは12に流れる液体、または連通孔10もしくは12から孔26もしくは28に流れる液体を密封することができる。
【0038】
環状シール36,38が圧縮されることに伴い、流路板8は環状シール36,38から反力を受ける。このため、図8に示すように、通路16,18内に何もない場合には、流路板8が弾性変形して、通路16,18が閉塞されるおそれがある。図8は、環状シール36から受けた力による流路板8の弾性変形に伴って、通路16に閉塞部16Aが生じた状態を示す。図示しないが、通路18にも同様に、環状シール38から受けた力による流路板8の弾性変形に伴って、閉塞部が生じうる。
【0039】
そこで、この実施形態では、図9図11に示すように、通路16の内部における環状シール36に重なる位置に、通路16が閉塞されないよう通路16の高さを確保する支持構造物40が固定されている。また、通路18の内部における環状シール38に重なる位置に、通路18が閉塞されないよう通路18の高さを確保する支持構造物42が固定されている。図9図11は、通路16内に設けられる支持構造物40を示すが、図9図11において、通路16、通路凹部16h、支持構造物40、連通孔10および孔26を、通路18、通路凹部18h、支持構造物42、連通孔12および孔28と読み替えてよい。
【0040】
支持構造物40,42は、長尺なほぼ直方体の突起であり、流路板8に形成されている。支持構造物40は、通路16を構成する長尺な通路凹部16hの幅方向の中央に配置され、通路凹部16hの長手方向に沿って延びている。支持構造物42も、通路18を構成する長尺な通路凹部18hの幅方向の中央に配置され、通路凹部18hの長手方向に沿って延びている。
【0041】
通路凹部16h,18hの深さD(培養チャンバー凹部14hの深さ)は、例えば0.1mmであり、支持構造物40,42の高さは深さDと同じでよい。
【0042】
通路凹部16h,18hの幅Wに対する支持構造物40,42の幅wの比w/Wは、限定されないが、例えば0.2〜0.5であることが望ましい。w/Wが大きすぎると、通路16,18での液体の流れが阻害され、圧力損失が大きい。例えば、通路凹部16h,18hの幅Wは1mmであってよく、支持構造物40,42の幅wは0.4mmであってよい。この場合、比w/Wは0.4である。
【0043】
環状シール36,38が圧縮されることに伴い、流路板8は環状シール36,38から反力を受けるが、通路16,18の内部における環状シール36,38に重なる位置に固定された支持構造物40,42が、通路16,18が閉塞されないよう通路16,18の高さを確保する。この実施形態では、2つの環状シール36,38により2箇所で密封が行われ、2つの支持構造物40,42により当該2箇所での流路の閉塞が防止される。
【0044】
支持構造物40,42を通路凹部16h,18hに有する流路板8は、例えばソフトリソグラフィによって製造することができる。例えば、流路板8を成形するモールドを、基板上に突起を形成することにより、製造してもよい。あるいは、流路板8を成形するモールドを3Dプリンターで製造してもよい。あるいは、流路板8自体を3Dプリンターで製造してもよい。これらの場合、通路凹部16h,18h内の支持構造物40,42は流路板8の部分として、流路板8と一体に製造される。但し、通路凹部16h,18hが形成された流路板8に、支持構造物40,42を接着剤、化学的反応、または熱的反応を用いて、接合してもよい。
【0045】
流路板8は、平板6に接着剤、化学的反応、または熱的反応を用いて、接合してよい。例えば、流路板8がPDMSを主成分とするシリコーンゴムから形成され、平板6がガラスから形成される場合には、シロキサン結合によって、流路板8を平板6に接合してよい。
【0046】
実施形態において、支持構造物40,42の高さは、通路凹部16h,18hの深さと同じでよい。但し、図12に示すように、支持構造物40の高さは、通路凹部16hの深さより小さくてもよく、支持構造物42の高さも、通路凹部18hの深さより小さくてもよい。
【0047】
実施形態において、支持構造物40,42は、流路板8に形成されている。但し、図13に示すように、通路凹部16hに向けて突出する支持構造物43を平板6に形成または固定してもよく、通路凹部18hに向けて突出する支持構造物を平板6に形成または固定してもよい。図示しないが、流路板8と平板6の両方に、支持構造物を形成または固定してもよい。
【0048】
実施形態において、通路16には1つの支持構造物40が配置され、通路18にも1つの支持構造物42が配置されている。但し、図14に示すように、通路16には複数の支持構造物40が配置されてもよく、通路18にも複数の支持構造物42が配置されてもよい。通路凹部16h,18hに複数の直線状の支持構造物40,42が配置される場合、通路凹部16h,18hの幅Wに対する支持構造物40,42の幅wの比w/Wは、限定されないが、通路16,18での液体の流れを円滑にするため、例えば0.2/n〜0.5/nであることが望ましい。nは、1つの通路凹部に配置される直線状の支持構造物の数である。例えば、通路凹部16h,18hの幅Wは1mmであってよく、支持構造物40,42の幅wは0.2mmであってよい。この場合、n・w/Wは0.4である。
【0049】
また、支持構造物40,42の形状は、実施形態のものに限定されない。例えば、図15に示すように、円柱状の支持構造物44を通路16,18に配置してもよい。図15において、支持構造物44は、3列に配列されており、2列は通路の長手方向に揃えられ、中央の1列は、他の2列とずれている。通路凹部16h,18hに複数の円柱状の支持構造物44が配置される場合、通路凹部16h,18hの幅Wに対する支持構造物44の直径Dの比D/Wは、限定されないが、通路16,18での液体の流れを円滑にするため、例えば0.2/n〜0.5/nであることが望ましい。nは、1つの通路凹部に配置される支持構造物44の長手方向に揃えられた列の数であり、図15の例では2である。例えば、通路凹部16h,18hの幅Wは1mmであってよく、支持構造物40,42の直径Dは0.2mmであってよい。この場合、n・D/Wは0.4である。
【0050】
実施形態において、環状シール36,38は、流路板8と別個のリングであって、流路板8の外面(上面)に固定されている。但し、図16に示すように、連通孔10を囲むように、流路板8の一部として流路板8と同じ材料から環状シール46を形成してもよく、連通孔12を囲むように、流路板8の一部として流路板8と同じ材料から環状シールを形成してもよい。つまり、環状シール46は、流路板8から突出するバンプまたはリップであってもよい。この場合、好ましくは、例えばソフトリソグラフィによって、環状シールは、流路板8の部分として、流路板8と一体に製造される。
【0051】
あるいは、図17に示すように、連通孔10を囲むように、流路板8と異なる材料から環状シール48を形成してもよく、連通孔12を囲むように、流路板8と異なる材料から環状シールを形成してもよい。この場合、流路板8の外面(上面)に環状シールを接着剤、化学的反応、または熱的反応を用いて、接合してもよい。
【0052】
次に、実施形態に係るorgan-on-a-chipデバイスであるマイクロ流体デバイスの使用例を説明する。organ-on-a-chipデバイスにおいて、1つのマイクロ流体チップ2は動物の1つの臓器(例えば肝臓)を模倣し、他の1つのマイクロ流体チップ2は当該動物の他の1つの臓器(例えば肺)を模倣する。例えば、1つのマイクロ流体チップ2の培養チャンバー14には、肝臓由来の細胞と薬剤(例えば抗がん剤)を含む培養液が配備され、他の1つのマイクロ流体チップ2の培養チャンバー14には、肺由来の細胞を含む培養液が配備される。前者の培養チャンバー14において、薬剤の反応として肝臓由来の細胞がなんらかの物質を生成する。十分な時間の経過後、前者の培養チャンバー14で生成された物質を後者の培養チャンバー14に移送し、当該物質が肺由来の細胞に及ぼす作用または副作用を、上記の観察窓29を用いて観察することができる。
【0053】
この実施形態では、マイクロ流体チップ2の流路(培養チャンバー14および通路16,18)と連通孔10,12に、培養液(細胞または細胞と薬剤を含む)を満たした後に、培養液に気泡が混入することを抑制しながら、マイクロ流体チップ2をスロット4に水平方向に沿って挿入することが容易である。図18は、マイクロ流体チップ2がホルダーのスロット4に挿入される最初の段階を示す側面断面図である。図18に示すように、マイクロ流体チップ2がスロット4に挿入される前に、流路と連通孔10,12だけでなく連通孔10,12を囲む環状シール36,38に培養液50を貯留する。培養液50の上面は、表面張力により盛り上がる。図18は、連通孔12を囲む環状シール38内の培養液50の上面が盛り上がった状態を示すが、連通孔10を囲む環状シール36内の培養液50の上面も同様に盛り上がる。マイクロ流体チップ2に貯留される培養液50の量が少ない場合には、マイクロ流体チップ2がスロット4に挿入される際に、培養液50内に気泡が混入するおそれがある。動物の細胞は、空気にさらされると、成長が阻害されたり死滅したりするので、培養液50内の細胞は気泡に触れないことが好ましい。この実施形態では、環状シール36,38を用いて多量の培養液50を貯留することにより、マイクロ流体チップ2がスロット4に挿入される際に、培養液50に気泡が混入することを抑制することができる。
【0054】
マイクロ流体チップ2がスロット4に挿入される前に、接続流路チップ3はホルダー1の開口部5に固定される。したがって、ホルダー1は、各マイクロ流体チップ2について、2つの連通孔10,12とそれぞれ通ずる2つの孔26,28を有する。この後、図2の矢印に示すように、マイクロ流体チップ2はスロット4の深部に向けて水平方向に沿って移動させられる。マイクロ流体チップ2がスロット4に挿入された後、各連通孔10または12はホルダー1の1つの所望の孔26または28に通ずる。マイクロ流体チップ2がスロット4に挿入される際、スロット4の深部側に配置される連通孔12が移動しながら、所望でない孔26を通過すると、培養液50に気泡が混入するおそれがある。仮に、連通孔10,12を結ぶ線分、ひいては孔26,28を結ぶ線分がマイクロ流体チップ2の挿入方向に沿って延びている場合には、この事態が生じる。
【0055】
しかし、この実施形態では、2つの連通孔10,12を結ぶ線分は、挿入方向に対して傾斜しており、ホルダー1の2つの孔26,28を結ぶ線分も同様に挿入方向に対して傾斜しているため、マイクロ流体チップ2がスロット4に挿入される際、スロット4の深部側に配置される連通孔12は所望でない孔を通過することがなく、培養液50に気泡が混入することを抑制することができる。挿入方向に対する連通孔10,12を結ぶ線分の傾斜角度は、限定されないが、例えば15°〜35°である。
【0056】
また、ホルダー1の上壁20の下面には、スロット4の挿入方向に沿って延びる複数の溝32,34が形成されている。スロット4にマイクロ流体チップ2が挿入される際、各マイクロ流体チップ2の連通孔10は、溝32に重なりながら、スロット4内を移動し、最終的に所望の孔26に到達し、各マイクロ流体チップ2の連通孔12は、溝34に重なりながら、スロット4内を移動し、最終的に所望の孔28に到達する(図19参照)。マイクロ流体チップ2がスロット4に挿入される際、連通孔10,12および環状シール36,38に満たされて盛り上がった培養液50が上壁構造19の下面に接触する場合には、下面から培養液50が剪断力を受け続けながらスロット4内を移動するので、培養液50の一部が環状シール36,38から溢れ続け、連通孔10,12が所望の孔26,28に到達した時、連通孔10,12内の培養液50の量が大幅に減少し、培養液50内に気泡が混入するおそれがある。この実施形態では、連通孔10,12が、上壁構造19の下面に形成された溝32,34に重なりながら、スロット4内を移動することにより、培養液50が上壁構造19の下面に接触する時間を最小限にし、培養液50に気泡が混入することを抑制することができる。
【0057】
溝32の幅は、環状シール36で貯留される培養液50の直径より大きいことが好ましい。また、マイクロ流体チップ2の移動の間、上壁構造19の下面から環状シール36に衝撃が与えられないように、溝32の幅は、環状シール36の外径より大きいことが好ましい。溝34の幅は、環状シール38で貯留される培養液50の直径より大きいことが好ましい。また、マイクロ流体チップ2の移動の間、上壁構造19の下面から環状シール38に衝撃が与えられないように、溝34の幅は、環状シール38の外径より大きいことが好ましい。
【0058】
図1に示すように、溝32は孔26から離間しており、溝34は孔28から離間している。これは、孔26,28の周囲に配置される環状シール36,38に上壁構造19の下面が周方向にわたって均一な力を与えるためである。
【0059】
ホルダー1の上壁構造19は、ホルダー1に固定される接続流路チップ3を備えており、接続流路30および孔28は、接続流路30に形成されている。図19から明らかなように、接続流路30および孔28に培養液50(例えば細胞も薬剤も含まない培養液)を充填した後、ホルダー1に接続流路チップ3を固定することが可能である。好ましくは、マイクロ流体チップ2がスロット4に挿入される前に、接続流路30および孔28に培養液50が充填された接続流路チップ3をホルダー1に固定する。界面張力により培養液50は接続流路チップ3から流れ落ちない。この後、マイクロ流体チップ2を水平に移動しながら、図19に示すように、連通孔12と環状シール38に満たされた培養液50を、接続流路チップ3の接続流路30および孔28に満たされた培養液50と接続させる。逆に、マイクロ流体チップ2がスロット4に挿入された後で、接続流路チップ3をホルダー1に固定する場合には、接続流路チップ3を下方に移動させる際に、培養液50内に気泡が混入するおそれがある。
【0060】
このorgan-on-a-chipデバイスの使用において、1つのマイクロ流体チップ2(例えば肝臓を模倣するマイクロ流体チップ)の培養チャンバー14で生成された物質を他の1つのマイクロ流体チップ2(例えば肺を模倣するマイクロ流体チップ)の培養チャンバー14に移送する場合には、前者のマイクロ流体チップ2の連通孔10に通ずる貫通孔26に新たな培養液を注入する。新たな培養液の注入には、シリンジ(例えばシリンジポンプ)を利用してよい。この貫通孔26および連通孔10に新たな培養液が注入されることにより、肝臓を模倣する培養チャンバー14で生成された物質を含む培養液50が新たな培養液に押されて連通孔12および孔28に流れ、さらに接続流路30を通過して、他の孔28および連通孔12を経て、肺を模倣する培養チャンバー14に流入する。肺を模倣する培養チャンバー14にあった培養液50のうち余分な量は、この培養チャンバー14に通ずる連通孔10および貫通孔26から排出される。上記の圧縮された環状シール36,38は、液体を密封することができる。また、接続流路30および孔28に培養液50を充填した後、1つのマイクロ流体チップ2の流路から他のマイクロ流体チップ2の流路に培養液50を移送することによって、培養液50内に空気が混入することを抑制することができる。
【0061】
他の変形例
以上、本発明の実施形態を説明したが、上記の説明は本発明を限定するものではなく、本発明の技術的範囲において、構成要素の削除、追加、置換を含む様々な変形例が考えられる。
【0062】
例えば、実施形態および変形例では、接続流路30および孔28は、単一の接続流路チップ3に形成されている。但し、孔28が形成された部材と異なる部材に接続流路30を形成して、これらの部材を接合してもよい。また、接続流路30および孔28は上壁20に形成してもよい。
【0063】
実施形態に係るマイクロ流体デバイスは、organ-on-a-chipデバイスである。但し、本発明は、他のマイクロ流体デバイス、例えば動物の体液またはその他の液体を分析するための他のデバイスに適用してもよい。
【0064】
実施形態においては、複数のマイクロ流体チップ2がホルダー1の複数のスロット4に水平方向に沿って挿入されて、マイクロ流体デバイスが構成されている。しかし、1つのマイクロ流体チップ2がホルダー1の1つのスロット4に水平方向に沿って挿入されて、マイクロ流体デバイスが構成されてもよい。
【0065】
実施形態においては、ホルダー1の上壁構造19に溝32,34が形成されている。但し、溝32,34は必ずしも不可欠ではない。
【0066】
また、マイクロ流体デバイスは、ホルダー1の代わりに、少なくとも1つのマイクロ流体チップに重ねられる少なくとも1つの壁構造を備える積層構造を有していてもよい。図20は、このような積層構造のマイクロ流体デバイスの一例を示す。このマイクロ流体デバイスは、上壁(上壁構造)52、下壁53、およびマイクロ流体チップ54を有する。上壁52と下壁53は水平に配置され、マイクロ流体チップ54は上壁52と下壁53の間に配置されている。マイクロ流体デバイスは、上壁52の上にさらに図示しない上方構造を有してよいし、下壁53の下にさらに図示しない下方構造を有してよい。
【0067】
マイクロ流体チップ54は、一様な厚さを有する平板56と、平板56に重ねられた一様な厚さを有する平板である流路板58を有する。平板56は、平坦な上面56aと、平坦で上面56aに平行な下面56bを有する。流路板58は、平坦な上面58aと、平坦で上面58aに平行な下面58bを有する。平板56および流路板58は水平に配置され、流路板58は平板56の上方に配置されている。平板56の上面56aは流路板58の下面58bに接合されている。したがって、流路板58の上面58aはマイクロ流体チップ54の上面であり、平板56の下面56bはマイクロ流体チップ54の下面である。
【0068】
平板56は、例えばガラスまたはアクリル樹脂のような透明材料から形成されている。流路板58は、透明なエラストマー、例えばPDMSを主成分とするシリコーンゴムまたはアクリルゴムから形成されている。流路板58は、平板56に接着剤、化学的反応、または熱的反応を用いて、接合してよい。例えば、流路板58がPDMSを主成分とするシリコーンゴムから形成され、平板56がガラスから形成される場合には、シロキサン結合によって、流路板58を平板56に接合してよい。
【0069】
流路板58の下面58bには、液体の流路60となる凹部60hが形成されている。平板56は、流路板58に接合され、凹部60hを覆って、流路板58と協働して流路60を画定する。流路板58には、凹部60hに通ずる連通孔62が形成され、連通孔62は上面58aで開口する。平板56には、凹部60hに通ずる連通孔64が形成され、連通孔64は下面56bで開口する。
【0070】
上壁52には、上壁52を貫通する孔66が形成されている。孔66は、マイクロ流体チップ54の連通孔62にほぼ同軸に配置されて、連通孔62に通ずる。下壁53には、下壁53を貫通する孔68が形成されている。孔68は、マイクロ流体チップ54の連通孔64にほぼ同軸に配置されて、連通孔64に通ずる。
【0071】
マイクロ流体チップ54の上面58aには、エラストマーから形成された環状シール70が接触させられている。環状シール70は、マイクロ流体チップ54の連通孔62と上壁52の孔66を囲む。環状シール70は、上面58aに接合されていてもよいし、接合されていなくてもよい。
【0072】
マイクロ流体チップ54の下面56bには、エラストマーから形成された環状シール72が接触させられている。環状シール72は、マイクロ流体チップ54の連通孔64と下壁53の孔68を囲む。環状シール72は、下面56bに接合されていてもよいし、接合されていなくてもよい。
【0073】
上壁52は、マイクロ流体チップ54の上面58aに対面し、環状シール70を上面58aに向けて圧縮する。流路60の内部における環状シール70に重なる位置には、支持構造物74が固定されており、支持構造物74は流路60が閉塞されないよう流路60の高さを確保する。
【0074】
下壁53は、マイクロ流体チップ54の下面56bに対面し、環状シール72を下面56bに向けて圧縮する。流路60の内部における環状シール72に重なる位置には、支持構造物76が固定されており、支持構造物76は流路60が閉塞されないよう流路60の高さを確保する。
【0075】
上記の変形例は、矛盾しない限り、組み合わせてもよい。
【0076】
本発明の態様は、下記の番号付けされた条項にも記載される。
【0077】
条項1.上面と、
前記上面の反対側にある下面と、
前記上面と前記下面との間に配置された流体の流路と、
前記流路に通じており、前記上面と前記下面の少なくとも一方で開口する少なくとも1つの連通孔と、
前記連通孔が開口する面に接触するよう配置されるか、前記面に形成され、前記連通孔を囲む、エラストマーから形成された少なくとも1つの環状シールと、
前記流路の内部における前記環状シールに重なる位置に固定されて、前記流路が閉塞されないよう前記流路の高さを確保する少なくとも1つの支持構造物とを
備えることを特徴とするマイクロ流体チップ。
【0078】
この態様においては、上面と下面の少なくとも一方に他の部材が対面するように、マイクロ流体チップが他の部材と結合されて使用される場合に、環状シールが他の部材に接触させられる。環状シールは、他の部材によって圧縮される。環状シールは、他の部材に形成された孔と、マイクロ流体チップに形成された連通孔を囲むように使用され、圧縮されることにより、孔から連通孔に流れる液体、または連通孔から孔に流れる液体を密封することができる。環状シールが圧縮されることに伴い、マイクロ流体チップは環状シールから反力を受けるが、流路の内部における環状シールに重なる位置に固定された支持構造物が、流路が閉塞されないよう流路の高さを確保する。
【0079】
条項2.前記上面と前記下面の少なくとも一方で、前記流路に通ずる2つの連通孔が開口し、
2つの環状シールがそれぞれ前記連通孔を囲むように、前記連通孔が開口する面に接触するよう配置されるか、前記面に形成され、
少なくとも2つの支持構造物がそれぞれ前記環状シールに重なる位置に固定されている
ことを特徴とする条項1に記載のマイクロ流体チップ。
【0080】
この場合には、2つの環状シールにより2箇所で密封が行われ、少なくとも2つの支持構造物により当該2箇所での流路の閉塞が防止される。
【0081】
条項3.条項1または2に記載の少なくとも1つの前記マイクロ流体チップと、
前記マイクロ流体チップに重ねられ、前記連通孔が開口する前記面に対面し、前記環状シールを前記マイクロ流体チップに向けて圧縮する壁構造とを備え、
前記壁構造は、前記壁構造に前記マイクロ流体チップが重ねられると、前記マイクロ流体チップの少なくとも1つの前記連通孔に通じ、前記環状シールに囲まれる少なくとも1つの孔を有する
ことを特徴とするマイクロ流体デバイス。
【0082】
この場合には、壁構造にマイクロ流体チップが重ねられると、環状シールが壁構造によって圧縮される。圧縮された環状シールは、壁構造に形成された孔からマイクロ流体チップに形成された連通孔に流れる液体、または連通孔から孔に流れる液体を密封することができる。環状シールが圧縮されることに伴い、マイクロ流体チップは環状シールから反力を受けるが、流路の内部における環状シールに重なる位置に固定された支持構造物が、流路が閉塞されないよう流路の高さを確保する。
【0083】
条項4.条項2に記載の複数の前記マイクロ流体チップと、
複数の前記マイクロ流体チップに重ねられ、複数の前記マイクロ流体チップの前記連通孔が開口する前記面に対面し、前記環状シールを複数の前記マイクロ流体チップに向けて圧縮する壁構造とを備え、
前記壁構造は、前記壁構造に前記マイクロ流体チップが重ねられると、複数の前記マイクロ流体チップの前記連通孔にそれぞれ通じ、複数の前記環状シールにそれぞれ囲まれる複数の孔と、2つの前記マイクロ流体チップの前記流路にそれぞれ通ずる2つの前記孔を接続する接続流路とを有する
ことを特徴とするマイクロ流体デバイス。
【0084】
この場合には、壁構造には接続流路が設けられ、接続流路は2つのマイクロ流体チップの流路を接続する。接続流路を介して、1つのマイクロ流体チップの流路から他のマイクロ流体チップの流路に液体を移送することができる。
【0085】
条項5.少なくとも1つの前記マイクロ流体チップが保持されるホルダーを備え、
前記マイクロ流体チップの前記連通孔は、前記上面で開口し、前記環状シールは、前記上面に接触するよう配置されるか、前記上面に形成され、
前記ホルダーは、
前記マイクロ流体チップが挿入される、水平方向に延びる少なくとも1つのスロットと、
前記スロットに前記マイクロ流体チップが挿入されると、前記上面に対面し、前記環状シールを前記上面に向けて圧縮する、前記壁構造である上壁構造と、
前記スロットに前記マイクロ流体チップが挿入されると、前記下面に面接触する下壁とを有する
ことを特徴とする条項3に記載のマイクロ流体デバイス。
【0086】
この場合には、ホルダーのスロットにマイクロ流体チップが挿入された後、環状シールがホルダーの上壁構造とマイクロ流体チップの上面の間で圧縮される。圧縮された環状シールは、ホルダーの上壁構造に形成された孔からマイクロ流体チップの連通孔に流れる液体、または連通孔から孔に流れる液体を密封することができる。
【0087】
条項6.複数の前記マイクロ流体チップが保持されるホルダーを備え、
複数の前記マイクロ流体チップの前記連通孔は、前記上面で開口し、前記環状シールは、前記上面に接触するよう配置されるか、前記上面に形成され、
前記ホルダーは、
複数の前記マイクロ流体チップがそれぞれ挿入される、水平方向に延びる複数のスロットと、
前記スロットに前記マイクロ流体チップが挿入されると、複数の前記マイクロ流体チップの前記上面に対面し、前記環状シールを前記上面に向けて圧縮する、前記壁構造である上壁構造と、
前記スロットに前記マイクロ流体チップが挿入されると、複数の前記マイクロ流体チップの前記下面に面接触する下壁とを有する
ことを特徴とする条項4に記載のマイクロ流体デバイス。
【0088】
この場合には、ホルダーの複数のスロットに複数のマイクロ流体チップが挿入された後、環状シールがホルダーの上壁構造とマイクロ流体チップの上面の間で圧縮される。上壁構造に設けられた接続流路を介して、1つのマイクロ流体チップの流路から他のマイクロ流体チップの流路に液体を移送することができる。
【0089】
条項7.前記上壁構造は、前記ホルダーに固定される接続流路チップを備えており、前記接続流路は、前記接続流路チップに形成されている
ことを特徴とする条項6に記載のマイクロ流体デバイス。
【0090】
この場合には、接続流路に液体を充填した後、ホルダーに接続流路チップを固定することが可能である。マイクロ流体デバイスの使用において、接続流路に液体を充填した後、1つのマイクロ流体チップの流路から他のマイクロ流体チップの流路に液体を移送することによって、液体内に空気が混入することを抑制することができる。
【符号の説明】
【0091】
1 ホルダー
2 マイクロ流体チップ
3 接続流路チップ
4 スロット
5 開口部
6 平板
6a 上面
6b 下面
8 流路板
8a 上面
8b 下面
10,12 連通孔
14 培養チャンバー
16,18 通路
19 上壁構造
20 上壁
22 中壁
24 下壁
26,28 孔
29 観察窓
30 接続流路
32,34 溝
36,38,46,48, 環状シール
40,42 支持構造物
50 培養液
52 上壁(上壁構造)
53 下壁
54 マイクロ流体チップ
56 平板
56a 上面
56b 下面
58 流路板
58a 上面
58b 下面
60 流路
62,64 連通孔
66,68 孔
70,72 環状シール
74,76 支持構造物
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20