(58)【調査した分野】(Int.Cl.,DB名)
前記セパレータの前記負極板側の表面に、アルミナ及びシリカから選ばれる少なくとも1種の親水性材料と、アクリルアミド、シリカゾル及びシランカップリング剤から選ばれる少なくとも1種の保持体材料とを含む親水被膜が更に形成されている、請求項1〜5のいずれか一項に記載の液式鉛蓄電池。
【発明を実施するための形態】
【0021】
以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。
【0022】
図1は、一実施形態に係る液式鉛蓄電池(以下、単に「鉛蓄電池」ともいう)の全体構成及び内部構造を示す斜視図である。
図1に示すように、本実施形態に係る鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。
【0023】
電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。
【0024】
鉛蓄電池1は、一実施形態において、JIS D5301において規定される区分でD以上の幅寸法を有する。鉛蓄電池1の幅寸法は、例えば、JIS D5301において規定される区分でD、E、F、G又はHであってよい。
【0025】
鉛蓄電池1は、一実施形態において、EN 50342−2において規定される区分でLBN0以上又はLN0以上の幅寸法を有する。鉛蓄電池1の幅寸法は、例えば、EN 50342−2において規定される区分でLBN0〜6又はLN0〜6であってよい。
【0026】
鉛蓄電池1は、一実施形態において、170mm以上の幅寸法を有する。鉛蓄電池1の幅寸法は、例えば、175mm以上又は180mm以上であってもよく、280mm以下又は225mm以下であってもよい。
【0027】
図2は、電極群7を示す斜視図である。
図2に示すように、電極群7は、金属鉛(Pb)を活物質として含む板状の負極板9と、二酸化鉛(PbO
2)を活物質として含む板状の正極板10と、負極板9と正極板10との間に配置されたセパレータ11とを備えている。電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。
【0028】
セパレータ11は、例えば、負極板9を収容可能なように袋状に形成されている。セパレータ11を形成する材料の例としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO
2、Al
2O
3等の無機系粒子を付着させたものであってよい。
【0029】
セパレータ11の厚さは、好ましくは0.1mm〜0.5mm、より好ましくは0.2mm〜0.3mmである。セパレータ11の厚さが0.1mm以上であると、セパレータの強度を確保できる。セパレータ11の厚さが0.5mm以下であると、電池の内部抵抗の上昇を抑制できる。
【0030】
セパレータ11の平均孔径は、好ましくは10nm〜500nm、より好ましくは30nm〜200nmである。セパレータ11の平均孔径が10nm以上であると、硫酸イオンを好適に通過させ、硫酸イオンの拡散速度を確保できる。セパレータ11の平均孔径が500nm以下であると、鉛のデンドライトの成長が抑制され、短絡が生じにくくなる。
【0031】
複数の負極板9の耳部9a同士は、負極側ストラップ12で集合溶接されている。同様に、複数の正極板10の耳部10a同士は、正極側ストラップ13で集合溶接されている。そして、負極側ストラップ12及び正極側ストラップ13のが、それぞれ負極柱8及び正極柱を介して負極端子4及び正極端子5に接続される。
【0032】
図3は、
図2におけるI−I線に沿った矢視断面を示す模式断面図である。
図3に示すように、負極板9とセパレータ11との間には膜体14が設けられている。本実施形態では、膜体14は、負極板9の表面を覆うように負極板9に密着した状態で設けられている。
【0033】
膜体14は、例えばシート状又は袋状であってよい。膜体14がシート状である場合、膜体14は負極板9に巻きつけられるようにして負極板9の表面を覆っている。膜体14が袋状である場合、負極板9は膜体14内に収容されている。
【0034】
図4は、負極板9を示す平面図である。
図4に示すように、負極板9は、略長方形の平面形状を有し、鉛合金で形成された格子体9bと、略長方形の平面形状を有し、格子体9bの一辺から負極板9の外側へ突出する耳部9aと、格子体9bに充填された活物質(図示せず)と、活物質を覆うように負極板9の表面に設けられた膜体14とを備えている。
【0035】
負極板9の幅W(負極板9の耳部9aが設けられている辺の長さ)は、電解液の成層化を更に抑制できる観点から、好ましくは120mm以上、より好ましくは130mm以上、更に好ましくは140mm以上である。
【0036】
膜体14としては、好ましくは、無機不織布、有機織布、有機不織布又は多孔質膜の細孔を有する膜体(多孔性膜体)を含む。膜体14は、好ましくは親水性を有している。無機不織布を形成する材料の例としては、電解液中で−OH基等の親水性基を形成可能な材料が挙げられ、具体的にはSiO
2等が挙げられる。このような無機不織布を用いる場合、親水処理は不要となる。
【0037】
有機織布、有機不織布又は多孔質膜が用いられる場合、これらの表面には、好ましくは親水被膜が形成されている。有機織布、有機不織布又は多孔質膜を形成する材料の例としては、ポリプロピレン、セルロース、ポリエチレン、ナイロン、アラミド、ポリエステル等が挙げられる。有機織布、有機不織布又は多孔質膜としては、無処理のもの(表面処理がなされていないもの)であっても親水処理(後述する親水被膜を設ける処理とは別の親水処理)がなされているものであってもよいが、工程短縮の観点から無処理のものが好ましく用いられる。
【0038】
図5(a)は、
図4の負極板9の一部分Pを示す要部平面図であり、膜体14が有機不織布を含む場合を示している。この場合、
図5(a)に示すように、膜体14では、糸状の繊維が不規則に絡み合った構成となっており、これにより細孔が形成されている。
【0039】
図5(b)は、
図5(a)の膜体14の要部断面図である。
図5(b)に示すように、膜体14が有機不織布(又は有機織布若しくは多孔質膜)を含む場合、膜体14は親水性材料15及び保持体材料16を含む親水被膜17を更に含んでおり、親水被膜17は有機不織布(又は有機織布若しくは多孔質膜)である基材18上に形成されている。
【0040】
親水性材料15と保持体材料16との質量比(親水性材料:保持体材料)は、親水性材料15がシリカの場合、固形分換算で、好ましくは90:10〜70:30、より好ましくは86:14〜74:26、更に好ましくは82:18〜78:22である。親水性材料15がアルミナの場合、当該質量比(親水性材料:保持耐材料)は、好ましくは96:4〜84:16、より好ましくは93:7〜87:13、更に好ましくは91:9〜89:11である。
【0041】
ここで、親水被膜17は、硫酸イオンとの相互作用を大きくし、電解液の成層化を更に抑制するために形成されるが、硫酸イオンの挙動を阻害する障害物ともなり得る。そのような障害物は、硫酸イオンの拡散速度を低下させ、鉛蓄電池の内部抵抗を上昇させるおそれがある。また、親水被膜17は、吸着して集めた硫酸イオンを電極へ供給し、親水被膜から電極への硫酸イオンの供給効率が、高率放電性能、充電受入性等の電池性能に影響すると考えられる。したがって、電解液の成層化に加えて、鉛蓄電池の内部抵抗等の他の電池性能にも優れる観点から、親水被膜17の構成を後述のように選択することが好ましい。
【0042】
親水性材料15は、酸性水溶液に浸漬されても溶解せず、硫酸イオンとの間に働く化学的相互作用によって親水性を長期間保てることから、好ましくは無機材料である。このような無機材料としては、親水性シリカ粒子(コロイダルシリカ)等のシリカ(SiO
2)、親水性アルミナゾル等のアルミナ(Al
2O
3)、BaSO
4、TiO
2などが挙げられる。
【0043】
親水性材料15は、好ましくは、シリカ単体、アルミナ単体、又はシリカとアルミナとの混合物からなる。コロイダルシリカはアルコールを分散媒とし、アルミナゾルは水を分散媒としているため、これらは混ぜ合わせて容易に混合物を得ることができる。これらの無機材料のより具体な例としては、日産化学工業(株)製コロイダルシリカIPA−ST−UP、IPA−ST、ST−OXS、ST−K2及びLSS−35、日産化学工業(株)製アルミナゾルAS−200等が挙げられる。
【0044】
コロイダルシリカとしては、比表面積が130m
2/g〜1000m
2/gである粒子を用いることが好ましい。このようなコロイダルシリカの形状が球形であると仮定すると、その粒子径は2nm〜20nmである。アルミナゾルとしては、比表面積が200m
2/g〜400m
2/gである粒子を用いることが好ましい。このようなアルミナ粒子の形状が板状であると仮定すると、その寸法(縦、横及び高さ)は例えば10nm×10nm×100nm程度である。
【0045】
保持体材料16としては、有機材料又は無機材料を用いることができる。有機材料の例としては、アクリルアミド等の有機低分子材料、又は、ポリエチレングリコール、ポリビニルアルコール等の有機高分子材料が挙げられる。無機材料の例としては、アクリルアミド、シリカゾル又はシランカップリング剤のように、加熱により親水性材料を保持し得る材料が挙げられる。
【0046】
これらの中でも、酸性水溶液中での長期安定性に優れる観点から、保持体材料は、好ましくは、アクリルアミド、シリカゾル又はシランカップリング剤である。シランカップリング剤は、シランカップリング剤を構成する官能基の選択の自由度が高く、官能基の種類によって保持体材料の配向性を制御しやすいため(詳細は後述)、特に好ましく用いられる。
【0047】
シリカゾルの具体例としては、コルコート(株)コルコートPX等が挙げられる。シランカップリング剤は、信越化学工業(株)等で市販されているシランカップリング剤であってよい。なお、シランカップリング剤は、実際には有機材料に分類される物質が多いが、本明細書においては、膜体に親水性官能基を付与するために用いるため、無機材料として記載している。
【0048】
保持体材料16は、基材18の表面に存在する官能基の種類に合わせて、例えば以下のように選択される。基材18が無処理である(表面処理されていない)場合は、基材18の表面にはメチル基、メチレン基等の疎水性官能基が多く存在していると考えられる。その場合には、ビニル基、メタクリロイル基、アクリロイル基、スチリル基等の官能基を有するシランカップリング剤(保持体材料)を選択すると、ビニル基、メタクリロイル基、アクリロイル基、スチリル基等が基材18の表面側に配向し、加水分解反応で生じたシラノール基は基材18と反対側の表面に配向すると考えられる。
【0049】
一方、基材18が親水処理されている場合は、基材18の表面には水酸基(−OH基)、カルボキシル基、アミノ基等の親水性官能基が多く存在していると考えられる。その場合には、アミノ基、エポキシ基等を有するシランカップリング剤(保持体材料)を選択すると、アミノ基、エポキシ基等が基材18の表面の官能基と反応するため、加水分解で生じたシラノール基は基材18の表面と反対側に配向すると考えられる。アミノ基は、水酸基と水素結合を形成しやすく、シラノール基を親水被膜の最表面側に配向させやすいことから、特に好ましく用いられる。
【0050】
このように基材18の表面の官能基の種類に合わせて保持体材料16を選択することで、保持体材料中の官能基の配向性を制御でき、親水被膜の最表面(電解液に接する面)にシラノール基を配置することができる。
【0051】
これにより、親水被膜17の表面に存在する−OH基等の親水性官能基の量が多く、親水被膜17の親水性が高くなるため、親水被膜17と硫酸イオンとの相互作用が大きく働き、電槽2内における硫酸の濃度勾配が生じることを更に解消しやすくなると共に、電極への硫酸イオンの供給速度を向上させることも可能になる。
【0052】
上記のような組合せの中でも、無処理の基材18と、ビニル基、メタクリロイル基、アクリロイル基、スチリル基等の官能基を有するシランカップリング剤との組合せは、基材18の親水処理が不要であるために工程を短縮できることから、特に好ましく用いられる。
【0053】
親水被膜17の水又は硫酸に対する接触角は、例えば10°以下である。ただし、例えばAl
2O
3のように硫酸イオンの吸着力が高い親水性材料を用いる場合には、接触角が30°程度であるレベルの親水性が得られていれば、硫酸イオンの吸着との相乗効果が得られるため、接触角は必ずしも10°以下でなくてもよい。
【0054】
親水被膜17は、例えば、親水塗料を膜体上に塗布し、加熱して熱硬化させることで得られる。親水塗料は、例えば、上記の親水性材料、上記の保持体材料、及び溶媒を含有する。
【0055】
親水性材料及び保持体材料は、それぞれ、固形成分が一定の濃度で分散媒中に分散した状態で存在している。親水塗料を好適に作製できる観点から、親水性材料の固形成分と保持体材料の固形成分の質量比(親水性材料:保持体材料)が90:10〜70:30となるように、親水性材料が含まれる分散液と保持体材料が含まれる分散液とを混合することが好ましい。次いで、親水性材料が含まれる分散液と保持体材料が含まれる分散液とを混合した後、親水性材料及び保持体材料の固形成分の合計濃度が、混合して得た分散液(混合分散液)全量に対して0.5質量%〜5質量%となるように、混合分散液を溶媒で希釈する。混合分散液における固形成分の濃度が0.5質量%以上であると、親水被膜の厚さを均一にすることができる。混合分散液における固形成分の濃度が5質量%以下であると、親水被膜を好適に形成できる。
【0056】
親水性材料と保持体材料との混合分散液を希釈するために用いられる溶媒は、好ましくは、親水性材料及び保持体材料の分散性及び相溶性が良好であり、熱硬化の際に揮発しやすい溶媒である。膜体の耐熱性を考慮すると、溶媒の沸点は好ましくは100℃以下である。これらの条件を満たす溶媒としては、好ましくは、アルコール系の溶媒、水等が挙げられ、より好ましくは、水、メタノール、エタノール及びイソプロピルアルコールが挙げられる。
【0057】
以上の実施形態では、湿式親水処理により親水被膜17を形成して膜体14に親水性を付与したが、他の実施形態では、スルホン化処理、フッ素処理等の乾式親水処理により膜体14に親水性を付与してもよい。膜体14の親水性を持続させる観点からは、無機不織布を用いるか、又は、湿式親水処理により親水性を付与された有機織布、有機不織布又は多孔質膜を用いることが好ましい。
【0058】
親水被膜17の厚さは、好ましくは10nm〜1000nm、より好ましくは10nm〜500nm、更に好ましくは100nm〜400nmである。親水被膜の厚さが10nm以上であると、親水被膜が一様に形成されやすく、硫酸イオンを吸着して保持する効果が更に大きくなる。親水被膜の厚さが1000nm以下であると、電池の内部抵抗を抑制できる。親水被膜の厚さは、親水被膜の断面をSEM観察することにより算出される。親水被膜の厚さは、親水塗料の濃度を調整する、あるいは、基材上に親水塗料を塗布した後に余分な塗料を除去する際の圧力を調整することにより、調整可能である。
【0059】
以上説明したような細孔を有する膜体14では、電解液の成層化を抑制する観点から、平均細孔径が15μm以下である。膜体14の平均細孔径は、電解液の成層化を更に抑制する観点から、好ましくは、12μm以下、10μm以下、7μm以下、5μm以下、3μm以下又は2μm以下である。膜体14の平均細孔径は、例えば1μm以上であってよい。
【0060】
膜体の平均細孔径は、水銀圧入法により測定される積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出される。膜体の平均細孔径は、例えば、株式会社島津製作所製、オートポアIV 9500で測定できる。
【0061】
膜体14の空孔率は、成層化を抑制する観点から、93%以下であり、好ましくは92%以下、より好ましくは91%以下、更に好ましくは90%以下である。膜体14の空孔率は、硫酸イオンの拡散性を確保すると共に、硫酸イオンを保持する空間を大きくする観点から、好ましくは80%以上、より好ましくは82%以上、更に好ましくは84%以上、特に好ましくは85%以上である。膜体の空孔率は、膜体から適当な大きさの直方体状に切り取った試料について、下記式(1)〜(3)に従い実際の体積と見かけの体積とから算出される。
空孔率(%)={1−(実際の体積/見かけの体積)}×100 …(1)
実際の体積(cm
3)=重量の実測値(g)/密度(g/cm
3) …(2)
見かけの体積(cm
3)=縦(cm)×横(cm)×厚さ(cm) …(3)
なお、見かけの体積を算出する際の試料の縦、横及び厚さはいずれも実測値を用いる。
【0062】
上述のような膜体14を負極板9とセパレータ11との間に設けることにより、電槽2下部における硫酸イオンの蓄積を抑制し、電解液の成層化を抑制することができる。言い換えると、膜体14を設けることにより、電槽2内部の硫酸イオンの濃度を均一に保持することができる。このような膜体14をセパレータ11と別にセパレータ11よりも負極板9の近傍に設けることにより、例えばセパレータ11に成層化抑制のための処理を施した場合に比べて、より高い成層化の抑制効果が得られる。
【0063】
膜体14を設けることにより電解液の成層化が抑制される理由を、本発明者らは以下のように考えている。すなわち、充電反応で生成した硫酸イオンの集合体は膜体14の細孔によって分断されながら高濃度粒子となってゆっくりと電解液中を沈降する。特定の平均細孔径及び空孔率を有する膜体14を設ける場合、膜体14を設けない場合に比べて、硫酸イオンの沈降速度が低減されるため、成層化の抑制が可能となる。
【0064】
膜体14における細孔の構造は、例えば有機織布の繊維と繊維との間に生じるような規則的な構造でもよいし、例えば有機不織布の繊維と繊維との間に生じるような不規則な構造でもよい。
【0065】
ISS車用途のように大電流で充電する際には、電極板から硫酸イオンが大量に放出されるため、膜体14の硫酸イオンの保持能力は高いほど好ましい。膜体14が無機不織布、有機織布又は有機不織布を含む場合、それらを構成する繊維の繊維径は、好ましくは10μm以下、より好ましくは5μm以下である。繊維径が10μm以下であると、膜体14の比表面積が大きくなると共に、硫酸イオンを保持する空間を増やすことが可能となるため、膜体14の硫酸イオンの保持能力を更に向上させることができる。繊維径は、繊維の切れ、膜体の破れ等を抑制し、耐久性を確保する観点から、好ましくは1μm以上である。
【0066】
膜体14の厚さは、内部抵抗の上昇を抑制する観点から、好ましくは0.3mm以下、より好ましくは0.25mm以下、更に好ましくは0.2mm以下、特に好ましくは0.15mm以下である。膜体14の厚さは、硫酸イオンの沈降の防止能力、電池反応への影響、強度等の観点から、例えば0.03mm以上である。膜体14が無機不織布、有機織布又は有機不織布を含む場合には、それらを構成する繊維の太さ等に応じて膜体14の厚さが決定される。膜体14が多孔質膜を含む場合には、多孔質膜の孔径、材料等に応じて膜体14の厚さが決定される。
【0067】
膜体14の目付けは、成層化抑制と内部抵抗上昇の抑制との両立の観点から、好ましくは30g/m
2〜50g/m
2、より好ましくは35g/m
2〜50g/m
2、更に好ましくは40g/m
2〜50g/m
2である。目付けは、膜体14の単位面積あたりの質量として算出される。
【0068】
上記実施形態では、膜体14は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆い、それらの表面に接触するように(密着した状態で)設けられていたが、他の実施形態では、膜体は、負極板9から離間するように、負極板9とセパレータ11との間に設けられていてもよい。この場合、膜体14は、例えばセパレータ11の負極側の面上に設けられていてよい。電解液の成層化をより抑制する観点からは、膜体14は、負極板9の表面に接触するように(密着した状態で)設けられていることが好ましい。
【0069】
上記実施形態では、膜体14は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆っていたが、他の実施形態では、膜体は、負極板9の主面(セパレータ11に対向する面)のみを覆うように設けられていてもよい。
【0070】
一実施形態においては、セパレータ11の負極板9側の表面上に、膜体14に含まれている親水被膜17と同様の構成を有する親水被膜が更に形成されていてもよい。
【実施例】
【0071】
<実施例1>
一酸化鉛を主成分とする鉛粉を希硫酸で練って調製したペーストを鉛合金格子に充填したペースト式極板を用いた。その後、熟成と乾燥工程とを経て未化成極板が得られた。なお、未化成の正極板及び負極板は、いずれも2価の鉛化合物である一酸化鉛(PbO)、三塩基性希硫酸鉛(3PbO・PbSO
4・H
2O)等の混合物で構成されている。化成により、正極板の未化成物質は二酸化鉛(PbO
2)に酸化され、負極板の未化成物質は海綿状鉛(Pb)に還元され、既化極板(正極板、負極板)が得られた。
【0072】
膜体として表1に示すとおりの無機不織布(主成分:SiO
2)を用い、負極板上に配置した。セパレータとしては、厚さが0.25mm、平均孔径が30nm〜200nmであるセパレータを用い、電解液としては希硫酸を用いて、成層化抑制が困難なDサイズ(JIS D5301。幅:173mm、箱高さ:204mm。負極板の幅:145mm、負極板の高さ(上枠部込み):113mm。)の定格容量60(Ah)の鉛蓄電池を作製した。
【0073】
(平均細孔径の算出)
膜体の平均細孔径は、株式会社島津製作所製、オートポアIV 9500で測定した。膜体の平均細孔径は、水銀圧入法により測定された積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出した。
【0074】
(内部抵抗の評価)
予め初充電が完了した鉛蓄電池の内部抵抗を、1kHz交流mΩメータを用いて評価した。具体的な評価基準は、膜体を設けない場合(比較例1)の鉛蓄電池の内部抵抗を100としたときの内部抵抗の値で示した。内部抵抗の値は、好ましくは125未満であり、より好ましくは120未満であり、更に好ましくは110未満である。結果を表1に示す。
【0075】
(DOD17.5%寿命試験(耐久性))
DOD17.5%寿命性能は次のように測定した。まず始めに、充電が完了した鉛蓄電池を、湯浴温度が25℃±2℃に設定された水槽中に配置した。DOD17.5%の寿命試験では、以下のサイクルユニット(a)〜(g)の順に実施した。なお、60Ahの鉛蓄電池では、20時間率電流は3Aである。また、この試験は、ISS車での鉛蓄電池の使われ方を模擬したサイクル試験であり、鉛蓄電池の電圧が10.0Vを下回った時点で寿命に達したと判断した。結果を表1に示す。
(a)12A(20時間率電流の4倍に相当)で2.5時間放電。
放電下限電圧は10.0Vよりも大きいものとした。
(b)21A(20時間率電流の7倍に相当)で40分間充電。
充電上限電圧は14.4±0.05Vであった。
(c)21A(20時間率電流の7倍に相当)で30分間放電。
放電下限電圧は10.0Vよりも大きいものとした。
(d)上記(b)及び(c)を交互に85回繰り返す。
(e)6A(20時間率電流の2倍に相当)で18時間充電。
CC(定電流)−CV(定電圧)充電とし、CV充電時の電圧は16.0V±0.05Vとした。
(f)3A(20時間率電流±1.0%)で放電終止電圧10.5±0.1Vに到達するまで放電させて鉛蓄電池の容量を確認し、容量低下率が5%よりも小さいことを確認した。
(g)15A(20時間率電流の5倍)で24時間充電。
CC−CV充電とし、CV充電時の電圧は16.0V±0.05Vとした。
【0076】
(成層化抑制効果の評価)
電解液の成層化を抑制する効果を評価した。DOD17.5%寿命試験と同様に充放電を繰り返し、255サイクル目における電槽内の上部と下部での電解液の上下比重差を成層化の指標とした。具体的には、電極群の上端(セパレータの上端)から1cm上までの領域を電槽内の上部とし、電極群の下端から1cm下までの領域を電槽内の下部とした。なお、電極群の高さ(電極群の下端からセパレータの上端までの長さ)は、116mmであった。そして、膜体を設けない場合(比較例1)の上下比重差を100として、上下比重差を算出した。上下比重差は、好ましくは70未満であり、より好ましくは50未満である。上下比重差が70未満であれば、成層化が抑制されたと判断した。
【0077】
<実施例2〜6>
膜体の構成を表1に示すとおりに変更した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
【0078】
<実施例7>
膜体として、無機不織布に代えて、以下のとおり作製した膜体を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
【0079】
まず、膜体の基材として、未処理のポリプロピレン(表面官能基:−CH
2基及び−CH
3基)からなる有機不織布を用いた。親水性材料として、コロイダルシリカ(SiO
2、IPA−ST−UP(日産化学工業(株)製))及びアルミナゾル(Al
2O
3、AS−200(日産化学工業(株)製))を用い、保持体材料としてシリカゾル(コルコートPX(コルコート(株)製))を用いた。
【0080】
次に、親水性材料におけるアルミナゾルとコロイダルシリカとの質量比が固形成分換算で80:20となるように(すなわち、親水性材料中に80質量%のアルミナゾル(Al
2O
3)が含まれるように)、親水性材料と保持体材料とを混合した。この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。
【0081】
この親水塗料に膜体を浸漬させた後、速度156mm/分にて膜体を引き上げた。キムタオル(登録商標)に親水塗料を塗布した膜体を挟んで、上から約5kgで加圧しながらローラーを転がすことで膜体に付着した余分な親水塗料を除去した後、膜体を60℃に加温した恒温槽内に1時間置いて溶媒を除去した。このようにして、膜体上に親水被膜を形成した。得られた親水被膜をSEMにより観察したところ、その膜厚は約100nmであった。膜体の平均細孔径、厚さ、空孔率及び目付けを表1に示す。
【0082】
<実施例8〜14>
膜体の構成を表1に示すとおりに変更した以外は、実施例7と同様にして鉛蓄電池の作製及び評価を行った。
【0083】
<実施例15>
膜体として表1に示すとおりの無機不織布を用い、鉛蓄電池のサイズを欧州で一般的なLN1サイズ(EN 50342−2。幅:175mm、箱高さ:190mm。負極板の幅:143mm、負極板の高さ(上枠部込み):100mm。)に変更した以外は、実施例9と同様にして鉛蓄電池の作製及び評価を行った。
【0084】
<実施例16,17>
膜体として表1に示すとおりの無機不織布を用いた以外は、実施例15と同様にして鉛蓄電池の作製及び評価を行った。
【0085】
<実施例18>
膜体として、無機不織布に代えて、表面(両面)にフッ素ガス処理が施された混合繊維から構成される不織布(多孔シート。パルプ、ガラス繊維及びシリカ粉末を含む混合繊維。)を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
【0086】
<比較例1>
負極板上に膜体を設けなかった以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
【0087】
<比較例2,3>
膜体として表2に示すとおりの無機不織布を用いた以外は、実施例9と同様にして鉛蓄電池の作製及び評価を行った。
【0088】
<比較例4,5>
膜体として表2に示すとおりの無機不織布を用いた以外は、実施例15と同様にして鉛蓄電池の作製及び評価を行った。
【0089】
<参考例1〜3>
膜体として表2に示すとおりの無機不織布を用い、鉛蓄電池のサイズを主に国内向けのBサイズ(JIS D5301。幅:127mm、箱高さ:203mm。負極板の幅:101mm、負極板の高さ(上枠部込み):103mm。)に変更した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
【0090】
【表1】
【0091】
【表2】
【0092】
以上の結果から、所定の幅寸法を有する鉛蓄電池において、実施例では成層化が抑制されているのに対し、比較例では成層化が抑制されないことが分かった。一方、Bサイズの鉛蓄電池(参考例1〜3)においては、膜体の空孔率による成層化抑制の程度に顕著な差は見られなかった。
【0093】
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。