(58)【調査した分野】(Int.Cl.,DB名)
ポリアリーレンサルファイド系樹脂A、無機充填剤B、及びα−オレフィン由来の構成単位とα,β−不飽和酸のグリシジルエステル由来の構成単位とを含有するオレフィン系共重合体Cを含有し、
無機充填剤Bが、板状無機充填剤B1、繊維状無機充填剤B2、及び粉粒状無機充填剤B3を含有し、
板状無機充填剤B1の含有量が、ポリアリーレンサルファイド系樹脂Aとの質量比B1/Aとして0.20以上0.85以下であり、
繊維状無機充填剤B2の含有量が、ポリアリーレンサルファイド系樹脂Aとの質量比B2/Aとして0.30以上1.1以下であり、
粉粒状無機充填剤B3の含有量が、ポリアリーレンサルファイド系樹脂Aとの質量比B3/Aとして0.20を超え0.80以下であり、
粉粒状無機充填剤B3の平均粒子径が10μm以上である、ポリアリーレンサルファイド系樹脂組成物。
樹脂部材が、前記樹脂組成物の流動末端同士が接合したウェルド部、及び膨張収縮により発生する応力が集中する応力集中部をそれぞれ一以上有し、少なくとも一つのウェルド部及び応力集中部が、少なくとも一部の領域で一致している、請求項2に記載のインサート成形品。
【発明を実施するための形態】
【0012】
以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。
【0013】
[ポリアリーレンサルファイド系樹脂組成物]
ポリアリーレンサルファイド系樹脂組成物(以下、単に「樹脂組成物」ともいう。)は、ポリアリーレンサルファイド系樹脂を主成分とする樹脂を含む樹脂組成物である。「主成分とする」とは、樹脂成分中、80質量%以上、85質量%以上、90質量%以上であることを意味する。本実施形態に係る樹脂組成物は、ポリアリーレンサルファイド系樹脂A、無機充填剤B及びオレフィン系共重合体Cを含有する。
【0014】
(ポリアリーレンサルファイド系樹脂A)
ポリアリーレンサルファイド系樹脂Aは、以下の一般式(I)で示される繰り返し単位を有する樹脂である。
−(Ar−S)− ・・・(I)
(但し、Arは、アリーレン基を示す。)
【0015】
アリーレン基は、特に限定されないが、例えば、p−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p’−ジフェニレンスルフォン基、p,p’−ビフェニレン基、p,p’−ジフェニレンエーテル基、p,p’−ジフェニレンカルボニル基、ナフタレン基等を挙げることができる。ポリアリーレンサルファイド系樹脂Aは、上記一般式(I)で示される繰り返し単位の中で、同一の繰り返し単位を用いたホモポリマーの他、用途によっては異種の繰り返し単位を含むコポリマーとすることができる。
【0016】
ホモポリマーとしては、アリーレン基としてp−フェニレン基を有する、p−フェニレンサルファイド基を繰り返し単位とするものが好ましい。p−フェニレンサルファイド基を繰り返し単位とするホモポリマーは、極めて高い耐熱性を持ち、広範な温度領域で高強度、高剛性、さらに高い寸法安定性を示すからである。このようなホモポリマーを用いることで非常に優れた物性を備える成形品を得ることができる。
【0017】
コポリマーとしては、上記のアリーレン基を含むアリーレンサルファイド基の中で異なる2種以上のアリーレンサルファイド基の組み合わせが使用できる。これらの中では、p−フェニレンサルファイド基とm−フェニレンサルファイド基とを含む組み合わせが、耐熱性、成形性、機械的特性等の高い物性を備える成形品を得るという観点から好ましい。p−フェニレンサルファイド基を70mol%以上含むポリマーがより好ましく、80mol%以上含むポリマーがさらに好ましい。なお、フェニレンサルファイド基を有するポリアリーレンサルファイド系樹脂Aは、ポリフェニレンサルファイド樹脂(PPS樹脂)である。
【0018】
ポリアリーレンサルファイド系樹脂Aは、一般にその製造方法により、実質的に線状で分岐や架橋構造を有しない分子構造のものと、分岐や架橋を有する構造のものが知られているが、本実施形態においてはその何れのタイプのものについても有効である。
【0019】
ポリアリーレンサルファイド系樹脂Aの溶融粘度は、310℃及びせん断速度1216sec
−1で測定した溶融粘度が、5Pa・s以上50Pa・s以下であることが好ましく、7Pa・s以上40Pa・s以下であることがより好ましい。溶融粘度が5Pa・s以上50Pa・s以下の場合、優れた高低温衝撃性及び良好な流動性を維持することができる。
【0020】
ポリアリーレンサルファイド系樹脂Aの製造方法は、特に限定されず、従来公知の製造方法によって製造することができる。例えば、低分子量のポリアリーレンサルファイド系樹脂Aを合成後、公知の重合助剤の存在下で、高温下で重合して高分子量化することで製造することができる。
【0021】
(無機充填剤B)
無機充填剤Bは、板状無機充填剤B1、繊維状無機充填剤B2、及び粉粒状無機充填剤B3(以下、単に「無機充填剤B1〜B3」ともいう。)を含有する。無機充填剤Bとして、板状、繊維状及び粉粒状の3種類の無機充填剤B1〜B3を併用することにより、後述するような、樹脂部材のウェルド部が機械的強度の弱い応力集中部に形成されているインサート成形品でも、優れた高低温衝撃性及び低反り性を両立可能な樹脂組成物にすることができる。
【0022】
本実施形態において、「板状」とは、異径比が4より大きく、かつ、アスペクト比が1以上1500以下の形状をいい、「繊維状」とは、異径比が1以上4以下、かつ、アスペクト比が2を超え1500以下の形状をいい、「粉粒状」とは、異径比が1以上4以下、かつ、アスペクト比が1以上2以下の形状(球状を含む。)をいう。いずれの形状も初期形状(溶融混練前の形状)である。異径比とは、「長手方向に直角の断面の長径(断面の最長の直線距離)/
当該断面の短径(長径と直角方向の最長の直線距離)」であり、アスペクト比とは、「長手方向の最長の直線距離/長手方向に直角の断面の短径(
当該断面の最
長距離
の直線と直角方向の最長の直線距離)」である。異径比及びアスペクト比は、いずれも、走査型電子顕微鏡及び画像処理ソフトを用いて算出することができる。
【0023】
板状無機充填剤B1としては、例えば、ガラスフレーク、タルク(板状)、マイカ、カオリン、クレイ、アルミナ、各種の金属箔等を挙げることができ、これらを1種又は2種以上併用することができる。中でも、ガラスフレーク、タルクを好ましく用いることができる。板状無機充填剤B1は、一般的に知られているエポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物、脂肪酸等の各種表面処理剤により表面処理することができる。表面処理により、ポリアリーレンサルファイド系樹脂Aとの密着性を向上させることができる。表面処理剤は、材料調製の前に予め板状無機充填剤B1に適用して表面処理又は収束処理を施しておくか、または材料調製の際に同時に添加してもよい。
【0024】
板状無機充填剤B1の平均粒子径(50%d)は、初期形状(溶融混練前の形状)において、10μm以上1000μm以下であることが好ましく、30μm以上800μm以下であることがより好ましい。なお、平均粒子径(50%d)とは、レーザー回折・散乱法により測定した粒度分布における積算値50%のメジアン径を意味する。板状無機充填剤B1の厚みは、好ましくは平均厚みが0.1μm以上20μm以下、より好ましくは0.5μm以上10μm以下である。
【0025】
板状無機充填剤B1の配合量は、ポリアリーレンサルファイド系樹脂Aとの質量比B1/Aとして、0.20以上0.85以下であり、0.20以上0.80以下であることが好ましく、0.25以上0.75以下であることがより好ましい。板状無機充填剤B1の配合量をポリアリーレンサルファイド系樹脂Aとの質量比で0.20以上にすることで、樹脂組成物の収縮率の異方性を低減することができ、インサート成形品の低反り性を向上させることができる。板状無機充填剤B1の配合量をポリアリーレンサルファイド系樹脂Aとの質量比で0.85以下にすることで、機械的強度や高低温衝撃性が低下することを抑制することができる。
【0026】
繊維状無機充填剤B2としては、ガラス繊維、カーボン繊維、シリカ繊維、シリカ−アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイト、さらにステンレス、アルミニウム、チタン、銅、真鍮等の金属繊維状物質等を挙げることができ、これらを1種又は2種以上併用することができる。中でも、ガラス繊維、カーボン繊維を好ましく用いることができる。繊維状無機充填剤B2は、板状無機充填剤B1と同様に表面処理されていてもよい。
【0027】
繊維状無機充填剤B2は、初期形状(溶融混練前の形状)において、平均繊維径が、5μm以上30μm以下であることが好ましく、平均長さが、1mm以上5mm以下であることが好ましい。ここでいう「平均繊維径」は、JIS R 3420ガラス繊維一般試験方法に準拠して測定される単繊維直径を意味する。「平均長さ」は、JIS R 3420ガラス繊維一般試験方法に準拠して測定されるチョップドストランドの長さを意味する。断面形状は特に限定されないが丸型形状や扁平形状等を挙げることができる。
【0028】
繊維状無機充填剤B2の配合量は、ポリアリーレンサルファイド系樹脂Aとの質量比B2/Aとして、0.30以上1.1以下であり、0.35以上1.1以下であることが好ましく、0.40以上1.1以下であることがより好ましい。繊維状無機充填剤B2の配合量をポリアリーレンサルファイド系樹脂Aとの質量比で0.30以上とすることで、樹脂組成物の線膨張を低減することができ、インサート成形品の高低温衝撃性が低下することを抑制することができる。繊維状無機充填剤B2の配合量をポリアリーレンサルファイド系樹脂Aとの質量比で1.1以下とすることで、樹脂組成物の収縮率の異方性を低減することができ、インサート成形品の低反り性を向上させることができる。
【0029】
粉粒状無機充填剤B3としては、カーボンブラック、シリカ、石英粉末、ガラスビーズ、ガラス粉、タルク(粒状)、ケイ酸カルシウム、ケイ酸アルミニウム、珪藻土等のケイ酸塩、酸化鉄、酸化チタン、酸化亜鉛、アルミナ等の金属酸化物、炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩、硫酸カルシウム、硫酸バリウム等の金属硫酸塩、その他炭化ケイ素、窒化ケイ素、窒化ホウ素、各種金属粉末等を挙げることができ、これらを1種又は2種以上併用することができる。中でも、炭酸カルシウム、ガラスビーズを好ましく用いることができる。
【0030】
粉粒状無機充填剤B3を含有することで、樹脂部材のウェルド部の靱性を向上させ、高低温衝撃性を高めることができる。粉粒状無機充填剤B3を上記板状無機充填剤B1及び繊維状無機充填剤B2と組み合わせて用い、さらに各成分の組成比を調整することで、板状無機充填剤B1及び繊維状無機充填剤B2の各作用と相乗的に作用を発揮して、ウェルド部の靱性向上、線膨張係数の低下、線膨張係数の異方性の低下、補強効果、及び低反り性の全てを満足できる樹脂組成物とすることができる。これによって、インサート成形品の樹脂部材のウェルド部が機械的強度の弱い領域に形成される場合でも高低温衝撃性及び低反り性が優れた樹脂組成物とすることができる。加えて、ポリアリーレンサルファイド系樹脂組成物は、加熱溶融されると、硫酸系ガスや塩化水素系ガス等の酸性の金属腐食性ガスを発生する場合があるが、粉粒状無機充填剤B3を含有することで、こうした金属腐食性ガスの発生を抑制することもできる。その結果、金型の取り換え頻度が少なく済む。
【0031】
粉粒状無機充填剤B3の平均粒子径(50%d)は、初期形状(溶融混練前の形状)において、10μm以上であることが好ましく、12μm以上であることがより好ましく、15μm以上であることがさらに好ましい。粉粒状無機充填剤B3の平均粒子径の上限値は、ポリアリーレンサルファイド系樹脂Aと粉粒状無機充填剤B3との相溶性が低下しにくく、機械強度等が低下しにくい点で、50μm以下であることが好ましく、40μm以下であることがより好ましい。なお、平均粒子径(50%d)については上記のとおりである。
【0032】
粉粒状無機充填剤B3の配合量の下限値は、ポリアリーレンサルファイド系樹脂Aとの質量比B3/Aとして、0.20を超え、0.21以上であることが好ましく、0.23以上であることがより好ましい。粉粒状無機充填剤B3の配合量をポリアリーレンサルファイド系樹脂Aとの質量比で0.20を超える量とすることで、樹脂部材のウェルド部の高低温衝撃性を向上させることができるとともに、成形時の金属腐食性ガスの発生を抑制することができる。粉粒状無機充填剤B3の配合量の上限値は、樹脂組成物の靭性が低下し、高低温衝撃性が低下することを抑制する点で、ポリアリーレンサルファイド系樹脂Aとの質量比で0.80以下であり、0.70以下であることが好ましく、0.60以下であることがより好ましい。
【0033】
上記した板状、繊維状及び粉粒状の無機充填剤B1〜B3を含む無機充填剤Bの含有量は、ポリアリーレンサルファイド系樹脂Aの特性を維持しながら上記無機充填剤B1〜B3の作用を発揮させる点で、ポリアリーレンサルファイド樹脂A100質量部に対して80質量部以上250質量部以下であることが好ましく、100質量部以上220質量部以下であることがさらに好ましい。
【0034】
(オレフィン系共重合体C)
オレフィン系共重合体Cは、共重合成分としてα−オレフィン由来の構成単位とα,β−不飽和酸のグリシジルエステル由来の構成単位とを含有する。オレフィン系共重合体Cを含有するので、インサート成形品の高低温衝撃性を著しく高めることができる。中でも、(メタ)アクリル酸エステル由来の構成単位を含有するオレフィン系共重合体であることが好ましい。オレフィン系共重合体は、1種単独で又は2種以上組み合わせて使用することができる。なお、以下、(メタ)アクリル酸エステルを(メタ)アクリレートともいう。例えば、(メタ)アクリル酸グリシジルエステルをグリシジル(メタ)アクリレートともいう。また、本明細書において、「(メタ)アクリル酸」は、アクリル酸とメタクリル酸との両方を意味し、「(メタ)アクリレート」は、アクリレートとメタクリレートとの両方を意味する。
【0035】
α−オレフィンとしては、特に限定されないが、エチレン、プロピレン、ブチレン等を挙げることができる。中でも、エチレンが好ましい。α−オレフィンは、上記から選ばれる1種又は2種以上を用いることができる。α−オレフィンに由来する共重合成分の含有量は、特に限定されないが、例えば、全樹脂組成物中1質量%以上8質量%以下とすることができる。
【0036】
α,β−不飽和酸のグリシジルエステルとしては、例えば、以下の一般式(II)に示される構造を有するものを挙げることができる。
【化1】
(但し、R1は、水素又は炭素数1以上10以下のアルキル基を示す。)
【0037】
上記一般式(II)で示される化合物としては、例えば、アクリル酸グリシジルエステル、メタクリル酸グリシジルエステ
ル、エタクリル酸グリシジルエステル等を挙げることができる。中でも、メタクリル酸グリシジルエステルが好ましい。α,β−不飽和酸のグリシジルエステルは、1種単独で使用することもでき、2種以上を併用することもできる。α,β−不飽和酸のグリシジルエステルに由来する共重合成分の含有量は、全樹脂組成物中0.05質量%以上0.6質量%以下であることが好ましい。α,β−不飽和酸のグリシジルエステルに由来する共重合成分の含有量がこの範囲である場合、高低温衝撃性を維持しつつモールドデポジットの析出をより抑制することができる。
【0038】
(メタ)アクリル酸エステルとしては、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸−n−プロピル、アクリル酸イソプロピル、アクリル酸−n−ブチル、アクリル酸−n−ヘキシル、アクリル酸−n−オクチル、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸−n−プロピル、メタクリル酸イソプロピル、メタクリル酸−n−ブチル、メタクリル酸イソブチル、メタクリル酸−n−アミル、メタクリル酸−n−オクチル)等を挙げることができる。中でも、アクリル酸メチルが好ましい。(メタ)アクリル酸エステルは、1種単独で使用することもでき、2種以上を併用することもできる。(メタ)アクリル酸エステルに由来する共重合成分の含有量は、特に限定されないが、例えば、全樹脂組成物中0.5質量%以上3質量%以下とすることができる。
【0039】
α−オレフィン由来の構成単位とα,β−不飽和酸のグリシジルエステル由来の構成単位とを含むオレフィン系共重合体、及び、さらに(メタ)アクリル酸エステル由来の構成単位を含むオレフィン系共重合体は、従来公知の方法で共重合を行うことにより製造することができる。例えば、通常よく知られたラジカル重合反応により共重合を行うことによって、上記オレフィン系共重合体を得ることができる。オレフィン系共重合体の種類は、特に問われず、例えば、ランダム共重合体であっても、ブロック共重合体であってもよい。また、上記オレフィン系共重合体に、例えば、ポリメタアクリル酸メチル、ポリメタアクリル酸エチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、ポリアクリル酸−2エチルヘキシル、ポリスチレン、ポリアクリロニトリル、アクリロニトリル−スチレン共重合体、アクリル酸ブチル−スチレン共重合体等が、分岐状に又は架橋構造的に化学結合したオレフィン系グラフト共重合体であってもよい。
【0040】
本実施形態で用いるオレフィン系共重合体は、本発明の効果を害さない範囲で、他の共重合成分由来の構成単位を含有することができる。
【0041】
オレフィン系共重合体としては、より具体的には、例えば、グリシジルメタクリレート変性エチレン系共重合体、グリシジルエーテル変性エチレン共重合体等が挙げられ、中でも、グリシジルメタクリレート変性エチレン系共重合体が好ましい。
【0042】
グリシジルメタクリレート変性エチレン系共重合体としては、グリシジルメタクリレートグラフト変性エチレン重合体、エチレン−グリシジルメタクリレート共重合体、エチレン−グリシジルメタクリレート−アクリル酸メチル共重合体を挙げることができる。中でも、特に優れた金属樹脂複合成形体が得られることから、エチレン−グリシジルメタクリレート共重合体及びエチレン−グリシジルメタクリレート−アクリル酸メチル共重合体が好ましく、エチレン−グリシジルメタクリレート−アクリル酸メチル共重合体が特に好ましい。エチレン−グリシジルメタクリレート共重合体及びエチレン−グリシジルメタクリレート−アクリル酸メチル共重合体の具体例としては、「ボンドファースト」(住友化学株式会社製)等を挙げることができる。
【0043】
グリシジルエーテル変性エチレン共重合体としては、例えば、グリシジルエーテルグラフト変性エチレン共重合体、グリシジルエーテル−エチレン共重合体を挙げることができる。
【0044】
オレフィン系共重合体Cの含有量は、高低温衝撃性をより高めつつモールドデポジットを抑制する点で、ポリアリーレンサルファイド系樹脂A100質量部に対して3質量部以上30質量部未満であることが好ましく、5質量部以上30質量部以下であることがより好ましく、10質量部以上25質量部以下であることがさらに好ましい。
【0045】
(その他の添加剤等)
樹脂組成物は、本発明の効果を損なわない範囲で、その目的に応じた所望の特性を付与するために、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の添加剤、即ちバリ抑制剤、離型剤、潤滑剤、可塑剤、難燃剤、染料や顔料等の着色剤、結晶化促進剤、結晶核剤、各種酸化防止剤、熱安定剤、耐候性安定剤、腐食防止剤等を要求性能に応じ配合することが可能である。バリ抑制剤としては、例えば、国際公開第2006/068161号や国際公開第2006/068159号等に記載されているような、溶融粘度が非常に高い分岐型ポリフェニレンサルファイド系樹脂、シラン化合物等を挙げることができる。シラン化合物としては、ビニルシラン、メタクリロキシシラン、エポキシシラン、アミノシラン、メルカプトシラン等の各種タイプが含まれ、例えばビニルトリクロロシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトトリメトキシシラン等が例示されるが、これらに限定されるものではない。添加剤の含有量は、例えば、全樹脂組成物中5質量%以下にすることができる。
【0046】
また、樹脂組成物には、その目的に応じ前記成分の他に、他の熱可塑性樹脂成分を補助的に少量併用することも可能である。ここで用いられる他の熱可塑性樹脂としては、高温において安定な樹脂であれば何れのものでもよい。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ジカルボン酸とジオール或いはオキシカルボン酸等からなる芳香族ポリエステル、ポリアミド、ポリカーボネート、ABS、ポリフェニレンオキサイド、ポリアルキルアクリレート、ポリサルホン、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトン、フッ素樹脂等を挙げることができる。また、これらの熱可塑性樹脂は、2種以上混合して使用することもできる。他の熱可塑性樹脂成分の含有量は、例えば、全樹脂組成物中20質量%以下、15質量%以下、又は10質量%以下にすることができる。
【0047】
樹脂組成物の調製は、従来の樹脂組成物調製法として一般に用いられる設備と方法を用いて容易に調製できる。例えば、1)各成分を混合した後、1軸又は2軸の押出機により練り込み押出してペレットを調製し、その後成形する方法、2)一旦組成の異なるペレットを調製し、そのペレットを所定量混合して成形し成形後に目的組成の成形品を得る方法、3)成形機に各成分の1又は2以上を直接仕込む方法等、何れも使用できる。また、樹脂成分の一部を細かい粉体として、これ以外の成分と混合して添加する方法は、これらの成分の均一配合を図る上で好ましい方法である。
【0048】
[インサート成形品]
図1(A),(B)に、本実施形態に係るインサート成形品の一例を模式的に示す。(A)は斜視図であり、(B)は(A)の平面図である。
図1(A)に示すように、インサート成形品1は、インサート部材11と、インサート部材の表面の少なくとも一部を覆う樹脂部材12とを有する。インサート部材11は、金属、合金又は無機固体物で形成されており、4つの角部120a〜dを有する角柱状で、一部が樹脂部材12に埋設されている。樹脂部材12は、上記したポリアリーレンサルファイド系樹脂組成物で形成され、ウェルド部R及び応力集中部130a〜dをそれぞれ一以上有している。これらのうち、ウェルド部R及び応力集中部130aは、少なくとも一部の領域で一致するように形成されている。
【0049】
「応力集中部」は、膨張収縮により発生する応力が集中する部分である。応力集中部としては、例えば、角部(コーナー部)、切り欠き部、傷部、貫通孔、肉抜き部、肉薄部、肉厚変化が大きい箇所及びフローマーク部等を挙げることができる。応力集中部は、1又は2以上形成されていてもよい。
図1(A)に示すインサート成形品1は、四角柱状のインサート部材11の角部120a〜dが、樹脂部材12の側面に向かうように配置されている。そして、インサート部材11の角部(シャープコーナー)の先端と、樹脂部材12の側面との距離dは約1mmであり、その近傍が肉薄な応力集中部130a〜dとなっている。応力集中部130a〜dは、斜線領域で示すように、インサート部材1
1の角部120a〜dの樹脂部材12に埋設されている領域の稜線から樹脂部材12の側面にかけて略長方形状に形成されている。
【0050】
「ウェルド部」は、樹脂組成物の流動末端同士が接合(溶接)した部分である。
図1(B)に、ウェルド部Rが形成される様子を示す。
図1(B)に示すように、金型のゲート(図示しない)からキャビティ内に注入された樹脂流Qは、インサート部材11を起点として複数の樹脂流Q
1,Q
2に分流する。樹脂流Q
1,Q
2は、インサート部材11の周囲を回り込んだ後、再度合流して樹脂流Q
1,Q
2の界面で接合され、ウェルド部Rが形成される。なお、
図1(B)では、説明の便宜上、ウェルド部Rは一部の領域についてのみ図示しているが、ウェルド部Rが形成されている領域は、応力集中部130aが形成されている領域と一致しており、応力集中部130aと同様に、インサート部材1
1の角部の稜線から樹脂部材12の側面にかけて長方形状に形成されている。
【0051】
ウェルド部Rが形成されるか否か、ウェルド部Rの数、形状及び位置は、樹脂部材12の形状や、樹脂部材12を形成するための金型が有するゲートの位置等に依存する。例えば、樹脂部材12が角柱状のインサート部材11の一部の周囲を囲むように略均一な肉厚で形成される場合は、樹脂流Q
1,Q
2は、ゲートの略反対側で合流するため、ウェルド部Rが形成される位置は、ゲート位置の略反対側の位置となる。この場合のインサート成形品1の例としては、樹脂部材12が、少なくとも一つの応力集中部130aを含む表面Xの反対側の表面Y上にゲート痕(図示しない)を有するものを挙げることができる。当該ゲート痕は、当該表面Yを平面視したときに、当該応力集中部130aと重なる位置に形成されていてもよい。また、
図1(A),(B)では、ウェルド部Rは一か所にのみ形成されている例を示しているが、ゲートの数に応じて2以上のウェルド部を有していてもよい。
【0052】
ウェルド部が応力集中部に形成されている場合、ウェルド部の高低温衝撃性がより低下してしまうが、本実施形態に係るインサート成形品によれば、この問題を解決して、高低温衝撃性と低反り性とを優れたものにすることができる。加えて、成形時に金属腐食性ガスが発生することを抑制することができるので金型の取り換え頻度が少なく済む。
【0053】
インサート部材11を構成する金属、合金又は無機固体物は、特に限定されないが、成形時に樹脂と接触したとき、変形したり溶融したりしないものが好ましい。例えば、アルミニウム、マグネシウム、銅、鉄等の金属、真鍮等の上記金属の合金、及びガラス、セラミックス等の無機固体物等を挙げることができる。
【0054】
インサート成形品の製造方法は、特に限定されず、例えば、上記した樹脂組成物と予め所望の形状に成形されたインサート部材とをインサート成形することができる。インサート成形は、例えば、金型にインサート部材を予め装着し、その外側に上記樹脂組成物を射出成形又は押出圧縮成形等により充填して複合成形することができる。なお、インサート成形品の形状及び大きさは、特に限定されない。
【実施例】
【0055】
以下に実施例を示して本発明をさらに具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。
【0056】
[実施例1〜4、比較例1〜5]
以下に示す材料を用いて、表1に示す組成及び含有割合で、ポリアリーレンサルファイド系樹脂、無機充填剤、オレフィン系共重合体をドライブレンドした。これをシリンダー温度320℃の二軸押出機に投入して溶融混練することで、実施例及び比較例の樹脂組成物ペレットを得た。
【0057】
ポリアリーレンサルファイド系樹脂A:ポリフェニレンサルファイド樹脂(PPS)、株式会社クレハ製「フォートロンKPS」(溶融粘度:20Pa・s(せん断速度:1216sec
−1、310℃))
板状無機充填剤B1:ガラスフレーク、平均粒子径(50%d)623μm、平均厚み5μm、日本板硝子株式会社製「フレカREFG−108」
繊維状無機充填剤B2:ガラス繊維、平均繊維径10.5μm、平均長さ3mm、日本電気硝子株式会社製「チョップドストランドECS03T−747H」
粉粒状無機充填剤B3:炭酸カルシウム、平均粒子径(50%d)25μm、旭鉱末株式会社製「MC−35W」
オレフィン系共重合体C:住友化学株式会社製「ボンドファースト7L」、共重合成分として、エチレンを70質量%、メタクリル酸グリシジルエステルを3質量%、及びアクリル酸メチルを27質量%含む。
【0058】
[評価]
(高低温衝撃性)
実施例及び比較例で得られた樹脂組成物と、JIS G4051:2005 機械構造用炭素鋼鋼材で規定されるS35C製のインサート部材(1.41cm×1.41cm×高さ2.4cmの角柱形状)とを用い、射出成形によりシリンダー温度320℃、金型温度150℃の条件で、
図1中の表面Y側にあるゲートから樹脂組成物を金型内に流し込み、樹脂部の最小肉厚が1mmとなるようにインサート射出成形し、
図1に示すインサート成形品1を製造し試験片とした。なお、ゲートの位置は、表面Yを平面視したときに、インサート成形品の表面X側の角部の一つ(
図1(A)の120a)と重なる位置であった。
この試験片について、冷熱衝撃試験機(エスペック株式会社製)を用い、−40℃にて1.5時間冷却後、180℃にて1.5時間加熱するというサイクルを繰り返し、20サイクル毎にウェルド部Rを観察した。ウェルド部Rにクラックが発生したときのサイクル数を高低温衝撃性の指標として評価した。結果を表1に示す。サイクル数が140以上である場合に高低温衝撃性が優れており、170以上である場合に高低温衝撃性が特に優れている。
【0059】
(低反り性)
実施例及び比較例で得られた樹脂組成物を用いて、射出成形によりシリンダー温度320℃、金型温度150℃、保圧力70MPaの条件で、80mm×80mm×厚さ1.5mmの平板状樹脂成形品2を5枚作製した。1枚目の平板状樹脂成形品2を水平面に静置し、株式会社ミツトヨ製のCNC画像測定機(型式:QVBHU404−PRO1F)を用いて、上記平板状樹脂成形品2上の9箇所において、上記水平面からの高さを測定し、得られた測定値から平均の高さを算出した。
図2中に黒丸で高さを測定した位置を示す(d
1=3mm、d
2=37mm)。上記水平面からの高さが上記平均の高さと同一であり、上記水平面と平行な面を基準面とした。上記9箇所で測定された高さから、基準面からの最大高さと最小高さとを選択し、両者の差を算出した。同様にして、他の4枚の平板状樹脂成形品についても上記の差を算出し、得られた5個の値を平均して、反り量の値とした。結果を表1に示す。反り量が少ない程、低反り性が優れている。
【0060】
(金属腐食性)
試験管の底部に実施例及び比較例の樹脂組成物ペレットを4g入れ、金属試験片(SKD−11)をペレット最上部から吊し、試験管上部に栓をして350℃で3時間保持した。その後、金属試験片を調湿箱(23℃、95%RH)中に24時間放置し、得られた金属試験片を目視にて3段階評価した。
3:腐食が確認されなかった。
2:一部に腐食が確認された。
1:大部分に腐食が確認された。
【0061】
【表1】