【文献】
HAOYU Tang et al.,Synthesis, preparation and properties of novel high-performance allyl-maleimide resins,Polymer,2009年 月 日,Vol.50,p.1414-1422
【文献】
Elango Kumarasamy et al.,Tailoring Atropisomeric Maleimides for Stereospecific [2+2] Photocycloaddition-Photochemical and Pho,Journal of the American Chemical Society,2014年 月 日,136,8729-8737
【文献】
Jin Wen Bin et al.,Structure-Activity Relationship Study of Permethyl Ningalin B Analogues as P-Glycoprotein Chemosensi,Journal of Medicinal Chemistry,2013年 月 日,56,9057-9070
【文献】
Chia-Fu Cheng et al.,Total synthesis of (+-)-camphorataimides and (+-)-himanimides by NaBH4/Ni(OAC)2 or Zn/AcOH stereosel,Tetrahedron,2008年 月 日,Vol. 64,4347-4353
(58)【調査した分野】(Int.Cl.,DB名)
前記反応性化合物が、エポキシ基、シアナト基、マレイミド基、フェノール性水酸基、オキサジン環、アミノ基、炭素―炭素間二重結合を有する基の中から選ばれる少なくとも1つを有する化合物である、請求項3に記載の組成物。
【発明を実施するための形態】
【0011】
<置換または非置換アリル基含有マレイミド化合物>
本発明の置換または非置換アリル基含有マレイミド化合物は、ベンゼン環を3個以上有する構造を有し、置換または非置換アリル基を有する基を1個以上有し、さらにマレイミド基を1個以上有する。
【0012】
置換または非置換アリル基含有マレイミド化合物が上記構成を有することで、従来のマレイミド化合物と比べて、より優れた耐熱性を実現することができる。特に、置換または非置換アリル基含有マレイミド化合物がベンゼン環を3個以上有することで、耐熱分解温度が向上しうる。
【0013】
また、一実施形態において、置換または非置換アリル基含有マレイミド化合物は、低融点となりうる。
【0014】
従来のマレイミド化合物は、融点が高く、低温では溶融しないためハンドリング性が悪く、また、例えば、硬化性樹脂に含有させても、相溶性が著しく悪いために、各成分が局所的に反応、硬化するため、均一な硬化物を製造することができなかった。このような事項は、マレイミド化合物の用途が限定される要因の1つとなっていた。
【0015】
これに対し、置換または非置換アリル基含有マレイミド化合物は、低融点であるため、ハンドリング性が高く、また、例えば、硬化性樹脂中で硬化性樹脂との相溶性に優れ、均一な組成物を調製することができ、好適に硬化物を製造することが可能となりうる。
【0016】
なお、置換または非置換アリル基含有マレイミド化合物が溶剤溶解性に優れる理由は必ずしも明らかではないが、構造中の置換または非置換アリル基が芳香環由来の結晶性を緩和することによるものと推察される。
【0017】
さらに、一実施形態において、置換または非置換アリル基含有マレイミド化合物は、溶剤溶解性にも優れる。
【0018】
従来のマレイミド化合物は、溶剤溶解性が低く、塗布液など溶剤を併用した形態で使用することができず、マレイミド化合物の用途が限定される要因の1つとなっていた。
【0019】
これに対し、置換または非置換アリル基含有マレイミド化合物は、溶剤溶解性に優れるため、塗布液等の形態でも使用することができる。これにより、従来のマレイミド化合物では適用することができなかった耐熱塗料用樹脂等の用途にも好適に適用することができる。
【0020】
なお、置換または非置換アリル基含有マレイミド化合物が溶剤溶解性に優れる理由は必ずしも明らかではないが、構造中の置換または非置換アリル基が存在することにより溶剤への親和性が高まったことによるものと推察される。
【0021】
本発明の置換または非置換アリル基含有マレイミド化合物は、ベンゼン環を3個以上有する構造を有することを特徴とする。この際、ベンゼン環は置換基を有していても有していなくてもよく、結合方式に特に限定は無い。ベンゼン環同士は、直接結合していてもよく、連結基を介して結合していてもよく、ベンゼン環同士が縮合して縮合環を形成していてもかまわない。
【0022】
前記ベンゼン環を3個以上有する構造として、好ましくは以下の式(1−1)〜(1−11)の構造が挙げられる。
【0024】
式(1−1)〜(1−11)中、ベンゼン環は置換基を有していてもよい。
【0025】
この際、前記ベンゼン環の置換基としては、特に制限されないが、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基、炭素数6〜10のアリール基、炭素数1〜10のアルコキシ基、炭素数2〜10のアルキルカルボニル基、炭素数2〜10のアルキルオキシカルボニル基、炭素数2〜10のアルキルカルボニルオキシ基、ハロゲン原子、水酸基、アミノ基、アミド基、ウレイド基、ウレタン基、カルボキシ基、チオエーテル基、シアノ基、ニトロ基等が挙げられる。
【0026】
前記炭素数1〜10のアルキル基としては、特に制限されないが、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、2−メチルブチル基、3−メチルブチル基、ヘキシル基、シクロヘキシル基、ノニル基、デシル基等が挙げられる。
【0027】
前記炭素数2〜10のアルケニル基としては、特に制限されないが、ビニル基、アリル基、プロペニル基、イソプロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基等が挙げられる。
【0028】
前記炭素数2〜10のアルキニル基としては、特に制限されないが、エチニル基、プロピニル基、1−ブチニル基、2−ブチニル基、3−ブチニル基、1−ヘキシニル基、2−ヘキシニル基、3−ヘキシニル基、4−ヘキシニル基、5−ヘキシニル基等が挙げられる。
【0029】
前記炭素数6〜10のアリール基としては、特に制限されないが、フェニル基、ナフチル基等が挙げられる。
【0030】
前記炭素数1〜10のアルコキシ基としては、特に制限されないが、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等が挙げられる。
【0031】
前記炭素数2〜10のアルキルカルボニル基としては、特に制限されないが、メチルカルボニル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基、ペンチルカルボニル基、ヘキシルカルボニル基、シクロヘキシルカルボニル基、ノニルカルボニル基等が挙げられる。
【0032】
前記炭素数2〜10のアルキルオキシカルボニル基としては、特に制限されないが、メチルオキシカルボニル基、エチルオキシカルボニル基、プロピルオキシカルボニル基、ブチルオキシカルボニル基、ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基等が挙げられる。
【0033】
前記炭素数2〜10のアルキルカルボニルオキシ基としては、特に制限されないが、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、ブチルカルボニルオキシ基、ヘキシルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等が挙げられる。
【0034】
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
【0035】
なお、上述のベンゼン環の置換基は単独で有していても、2以上が組み合されて有していてもよい。
【0036】
前記X
1〜X
10は、それぞれ独立して、直接結合、置換基を有していてもよい炭素数1〜3の炭化水素基、酸素原子、硫黄原子、スルホニル基を表す。なお、通常X
1〜X
10は、2価の連結基である。
【0037】
前記炭素数1〜3の炭化水素基としては、メチレン、エチレン、プロピレン等が挙げられる。
【0038】
この際、前記炭化水素基の置換基としては、メチル基、エチル基、プロピル基、ブチル基等の炭素数1〜5のアルキル基;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、クロロフルオロメチル基、ペンタフルオロエチル基等の炭素数1〜5のハロゲン化アルキル基等が挙げられる。
【0039】
上述のうち、X
1〜X
10は、直接結合、炭素数1の炭化水素基、酸素原子、硫黄原子であることが好ましい。
【0040】
前記Yは、置換基を有していてもよい炭素原子または窒素原子を表す。この際、炭素原子が有しうる置換基は、上述の炭化水素基の置換基と同様である。なお、通常、Yは3価または4価の連結基であり、好ましくは3価の連結基である。
【0041】
上述のベンゼン環を3個以上有する構造のうち、式(1−4)、(1−5)、(1−8)、(1−9)、(1−10)、(1−11)であることが好ましく、式(1−5)、(1−8)、(1−10)であることがより好ましく、下記式(1−5−1)、(1−5−2)、(1−8−1)、(1−8−2)であることがさらに好ましく、下記式(1−8−1)、(1−8−2)であることが特に好ましい。
【0043】
なお、式(1−5−1)、(1−5−2)、(1−8−1)、(1−8−2)中、ベンゼン環は置換基を有していてもよい。この際、前記置換基としては、上述のベンゼン環の置換基と同様である。
【0044】
本発明の置換または非置換アリル基含有マレイミド化合物は、(1−1)〜(1−11)で表される構造を1つだけ有していてもよいし、2個以上有していてもかまわない。一実施形態において、置換または非置換アリル基含有マレイミド化合物は、構造中にベンゼン環を3〜5個有することが好ましく3〜4個有することがより好ましい。構造中のベンゼン環の数が3個以上であると、耐熱性に優れることから好ましい。一方、構造中のベンゼン環の数が5個以下であると、分子の構造がコンパクトとなるため融点が高くなりすぎずハンドリング性に優れることから好ましい。
【0045】
ベンゼン環を3個以上有する構造の好ましい構造は、下記式で表される構造で例示される。
【0047】
なお、前記ベンゼン環を3個以上有する構造は、本発明の効果を損ねない範囲において、置換基を有していてもかまわない。当該置換基としては、上述のベンゼン環の置換基が挙げられる。この際、前記ベンゼン環の置換基は単独で有していても、2以上が組み合されて有していてもよい。
【0048】
上述のうち、ベンゼン環を3個以上有する構造としてより好ましい構造は、下記式で表される構造で例示される。
【0050】
上述のうち、ベンゼン環を3個以上有する構造としてさらに好ましい構造は、下記式で表される構造で例示される。
【0052】
上述のうち、ベンゼン環を3個以上有する構造として特に好ましい構造は、下記式で表される構造で例示される。
【0054】
また、本発明の置換または非置換アリル基含有マレイミド化合物は、置換または非置換アリル基を有する基を1個以上有し、さらに、マレイミド基を1個以上有する。なお、本明細書において、「置換または非置換アリル基」とは、アリル基、アリル基の二重結合を構成する炭素原子に結合する水素原子の少なくとも1つがメチル基に置換された基を意味する。置換または非置換アリル基は、具体的には、以下の構造式で表される基を含む。
【0056】
なお、上記式において「*」は他の基と結合する箇所を示す。このうち、置換または非置換アリル基は、好ましくは構造式で表される基を含む。
【0058】
前記置換または非置換アリル基を有する基およびマレイミド基は、通常、ベンゼン環を3個以上有する構造のうち、ベンゼン環に直接結合する。
【0059】
一実施形態において、置換または非置換アリル基を含有する基とマレイミド基との結合場所に特に限定はないが、マレイミド基と置換または非置換アリル基を含有する基が同じベンゼン環上に存在すると、耐熱性が更に向上するため好ましい。
【0060】
また、一実施形態において、置換または非置換アリル基を含有する基およびマレイミド基の数は、置換または非置換アリル基を含有する基が2個かつマレイミド基が1個、置換または非置換アリル基を含有する基が1個かつマレイミド基が2個、置換または非置換アリル基を含有する基が2個かつマレイミド基が2個であることが好ましく、置換または非置換アリル基を含有する基が2個かつマレイミド基が1個、置換または非置換アリル基を含有する基が2個かつマレイミド基が2個であることがより好ましく、置換または非置換アリル基を含有する基が2個かつマレイミド基が2個であることがさらに好ましい。
【0061】
一実施形態において、置換または非置換アリル基含有マレイミド化合物は、好ましくは下記式(2)で表される。
【0063】
式(2)中、nおよびmは、それぞれ独立して、1〜5の整数であり、1〜4であることがより好ましく、1〜2であることがさらに好ましく、2であることが特に好ましい。
【0064】
mとnの比率としては、m:n=1:5〜5:1であり、好ましくは1:2〜2:1であり、より好ましくは1:1である。なお、m:nが上記範囲にあると、耐熱性と低融点が両立できるため、特に好ましい。
【0065】
Alyは下記式(3)で表される置換または非置換アリル基を含有する基である。
【0067】
式(3)中、Zは直接結合または置換基を有していてもよい炭素数1〜10の炭化水素基であり、R
1、R
2、およびR
3は、それぞれ独立して、水素原子またはメチル基を表す。
【0068】
前記炭素数1〜10の炭化水素基とは、例えばアルキレン基、アルケニレン基、アルキニレン基、シクロアルキレン基、アリーレン基、およびそれらを複数組み合わせた基があげられる。
【0069】
前記アルキレン基としては、メチレン基、メチン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基等が挙げられる。
【0070】
前記アルケニレン基としては、ビニレン基、1−メチルビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
【0071】
前記アルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、へキシニレン基等が挙げられる。
【0072】
シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。
【0073】
アリーレン基としては、フェニレン基、トリレン基、キシリレン基、ナフチレン基等が挙げられる。
【0074】
これらのうち、Zは、直接結合またはメチレンであることが好ましく、直接結合であることがより好ましい。
【0075】
Alyの具体的な構造としては、以下の構造式のものが挙げられる。
【0077】
このうち、Alyは以下の構造式で表されるものであることが好ましい。
【0079】
また、MIは下記式(4)で表されるマレイミド基である。
【0081】
式(4)中、R
4およびR
5は、それぞれ独立して、水素原子またはメチル基を表す。
【0082】
一実施形態において、置換または非置換アリル基を含有する基とマレイミド基の結合場所に特に限定はないが、マレイミド基と置換または非置換アリル基を含有する基が同じベンゼン環上に存在すると、耐熱性が更に向上するため好ましい。
【0083】
さらに、Aは、ベンゼン環を3個以上有する構造である。この際、ベンゼン環を3個以上有する構造は上述したものと同様である。
【0084】
本発明のアリル基含有マレイミド化合物として、好ましい構造は以下の式(5−1)〜(5−33)で例示される構造である。
【0088】
これらのうち、(5−1)〜(5−22)、(5−30)〜(5−33)で表される構造であることが好ましく、(5−1)〜(5−7)、(5−12)〜(5−18)、(5−30)〜(5−33)で表される構造であることがより好ましく、(5−1)、(5−3)〜(5−5)、(5−12)、(5−13)、(5−15)、(5−16)、(5−30)〜(5−33)で表される構造であることがさらに好ましく、(5−1)、(5−3)、(5−12)、(5−14)、(5−30)〜(5−33)で表される構造であることが特に好ましく、(5−1)、(5−3)、(5−12)、(5−14)である構造であることが最も好ましい。
【0089】
<置換または非置換アリル基含有マレイミド化合物の製造方法>
本発明の置換または非置換アリル基含有マレイミド化合物の製造方法は、特に限定は無いが、以下の工程を経ることで、効率的に製造を行うことが出来る。
【0090】
1−1)ベンゼン環を3個以上有する水酸基含有芳香族アミノ化合物のアミノ基を保護する工程
1−2)1−1)で得られた化合物の水酸基に置換または非置換アリル基を導入する工程
1−3)1−2)で得られた化合物の保護アミノ基から脱保護する工程
1−4)1−3)で得られた化合物のアミノ基をマレイミド化する工程
【0091】
上記工程を含む製造方法により、効率的に本発明に係る置換または非置換アリル基含有マレイミド化合物を製造することができる。
【0092】
ここで、工程(1−1)においてベンゼン環を3個以上有する水酸基含有芳香族アミノ化合物を用いることで、本発明のベンゼン環を3個以上有する構造を有し、置換または非置換アリル基を有する基を1個以上有し、さらにマレイミド基を1個以上有する化合物であることを特徴とする、置換または非置換アリル基含有マレイミド化合物を製造することが出来る。
【0093】
前記ベンゼン環を3個以上有する水酸基含有芳香族アミノ化合物としては、好ましくは式(1−1)および式(1−2)で表される構造と、水酸基およびアミノ基とを有する化合物が挙げられる。具体的には、9,9−ビス(3−アミノ−4−ヒドロキシフェニル)フルオレン、1,3−ビス(4−アミノ−3−ヒドロキシフェノキシ)ベンゼン、4,4’−ジアミノ−4”−ヒドロキシトリフェニルアミン等の従来公知の化合物が挙げられるが、これらに限定されることはない。
【0094】
なお、前記ベンゼン環を3個以上有する水酸基含有芳香族アミノ化合物を製造する方法としては、水酸基含有芳香族化合物をニトロ化した後に還元する方法や、水酸基含有芳香族化合物に対してニトロ基含有芳香族アルデヒドを反応させたのちに還元する方法、またはアミノ基含有芳香族化合物に対し、水酸基含有芳香族アルデヒドを反応させる方法等が挙げられる。また、アミノ基含有芳香族化合物に対しメトキシ基含有芳香族アルデヒドを反応させるか、アミノ基およびメトキシ基含有芳香族化合物に芳香族アルデヒドを反応させた後に、メトキシ基を脱保護し水酸基に変換する方法も挙げられる。
【0095】
工程1−1)におけるアミノ基の保護は、公知慣用の方法を用いればよく、例えばアセチル化することで保護することが可能である。この際、アセチル化には、公知慣用のアセチル化剤を用いればよく、例えば無水酢酸、塩化アセチル等が挙げられる。
【0096】
工程1−2)においては、例えばアミノ基が保護された水酸基含有芳香族アミノ化合物の水酸基に対し、置換または非置換アリル基含有化合物のハロゲン化物を塩基の存在化で反応させることで、置換または非置換アリル基を導入することが出来る。置換または非置換アリル基含有化合物のハロゲン化物としては、臭化アリル、臭化メタアリル(3−ブロモ−2−メチル−1−プロペン)、塩化アリル、塩化メタアリル(3−クロロ−2−メチル−1−プロペン)、cis−1−クロロ−2−ブテン、trans−1−クロロ−2−ブテン、1−クロロ−3−メチル−2−ブテン、1−ブロモ−3−メチル−2−ブテン等が挙げられる。また、塩基としては炭酸カリウム等が挙げられる。
【0097】
工程1−3)と工程1−4)では、保護されていたアミノ基を脱保護し、そのアミノ基をマレイミド化する。アミノ基のマレイミド化は、例えば以下式(6)で表される化合物を反応させることで、マレイミド化させることが出来る。
【0099】
式(6)中、R
4およびR
5はそれぞれ独立して水素原子またはメチル基を表す。
【0100】
式(6)で表される化合物としては、例えば無水マレイン酸、シトラコン酸無水物、2,3−ジメチルマレイン酸無水物等が挙げられる。
【0101】
上記工程を経ることで、本発明のベンゼン環を3個以上有する構造を有し、置換または非置換アリル基を有する基を1個以上有し、さらにマレイミド基を1個以上有する化合物であることを特徴とする、置換または非置換アリル基含有マレイミド化合物を製造することが出来る。
【0102】
本発明の置換または非置換アリル基含有マレイミド化合物を合成する場合、反応物中に未反応モノマーが残留したり、生成物として置換または非置換アリル基含有マレイミド化合物とは異なる他の化合物が生成することもある。他の化合物としては、例えば未閉環のアミック酸、イソイミド、モノマー類あるいは生成物のオリゴマーなどが挙げられる。これら置換または非置換アリル基含有マレイミド化合物以外の物質については、精製工程を経ることで取り除いてもかまわないし、用途によっては含有したまま使用してもかまわない。
【0103】
<組成物>
本発明の組成物は、本発明の置換または非置換アリル基含有マレイミド化合物を含有する。
【0104】
本発明に係る置換または非置換アリル基含有マレイミド化合物は、耐熱性に優れることから、これを含む組成物を硬化して得られる硬化物は、耐熱分解性に優れ、高ガラス転移温度、低線膨張であることから、耐熱部材や電子部材に好適に使用可能である。
【0105】
また、上述のように、一実施形態において、置換または非置換アリル基含有マレイミド化合物は、低融点であり、低溶融粘度を示す。このため、好ましい一実施形態において、置換または非置換アリル基含有マレイミド化合物と樹脂とを含む、組成物が提供される。当該組成物は、特に半導体封止材用途等に好適に適用することができる。
【0106】
さらに、上述のように、一実施形態において、置換または非置換アリル基含有マレイミド化合物は、溶剤溶解性にも優れる。このため、好ましい一実施形態において、置換または非置換アリル基含有マレイミド化合物と分散媒とを含む、組成物が提供される。当該組成物は、耐熱塗料用途等に好適に適用することができる。
【0107】
<反応性化合物>
本発明の組成物は、本発明の置換または非置換アリル基含有マレイミド化合物以外の配合物を反応性化合物を含んでいてもよい。当該反応性化合物を含むことで、反応性や耐熱性、ハンドリング性など様々な特徴を樹脂に付与することが可能である。
【0108】
ここで言う反応性化合物とは、反応性基を有する化合物であり、モノマーであってもオリゴマーであってもポリマーであってもかまわない。
【0109】
反応性基としては、本発明の置換または非置換アリル基含有マレイミド化合物と反応しない官能基でも、反応する官能基でもよいが、耐熱性をより向上させるためには、本発明の置換または非置換アリル基含有マレイミド化合物と反応する官能基であることが好ましい。
【0110】
本発明のアリル基含有マレイミド化合物と反応する官能基としては、例えばエポキシ基、シアナト基、マレイミド基、フェノール性水酸基、オキサジン環、アミノ基、炭素―炭素間二重結合を有する基が挙げられる。
【0111】
エポキシ基を有する化合物としては、例えばエポキシ樹脂、フェノキシ樹脂が挙げられる。
【0112】
シアナト基を有する化合物としては、シアネートエステル樹脂が挙げられる。
【0113】
マレイミド基を有する化合物としては、マレイミド樹脂、ビスマレイミド樹脂が挙げられる。
【0114】
フェノール性水酸基を有する化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂が挙げられる。
【0115】
オキサジン環を有する化合物としては、フェノール化合物、芳香族アミノ化合物をホルムアルデヒドとを反応させることで得られるベンゾオキサジンが挙げられる。これらのフェノール化合物、芳香族アミノ化合物は構造中に反応性官能基を有していてもよい。
【0116】
アミノ基を有する化合物としてはDDM(4,4’−ジアミノジフェニルメタン)やDDE(4,4’−ジアミノジフェニルエーテル)、3,4’−ジアミノジフェニルエーテル、2,2−{ビス4−(4−アミノフェノキシ)フェニル}プロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル等の芳香族アミノ化合物が挙げられる。
【0117】
炭素―炭素間二重結合を有する基を有する化合物としては、マレイミド化合物、ビニル系化合物、(メタ)アリル系化合物等があげられる。なお、本明細書において、特に断りがある場合を除き、単に「マレイミド化合物」と記載するときは、本発明に係る置換または非置換アリル基含有マレイミド化合物以外のマレイミド化合物であることを意味する。同様に、特に断りがある場合を除き、単に「(メタ)アリル系化合物」と記載するときは、本発明に係る置換または非置換アリル基含有マレイミド化合物以外の(メタ)アリル系化合物であることを意味する。
【0118】
上記の反応性化合物は、反応性基を一種類だけ有していても、複数種有していてもよく、官能基数も1つであっても複数であってもかまわない。また、複数種を同時に使用してもかまわない。
【0119】
好ましい反応性化合物としては、エポキシ樹脂、フェノキシ樹脂、シアネートエステル樹脂、マレイミド化合物、ビニル系化合物、芳香族アミノ化合物などが挙げられる。
【0120】
その中でも特に好ましくは、マレイミド化合物、シアネートエステル樹脂、エポキシ樹脂、芳香族アミノ化合物である。
【0121】
マレイミド化合物は本発明の置換または非置換アリル基含有マレイミド化合物と、マレイミド基同士の自己付加反応やアリル基とマレイミド基とのエン反応により、架橋密度が向上し、その結果、耐熱性、特にガラス転移温度が向上する。
【0122】
通常、マレイミド化合物を用い、均一な硬化物を得る為には、高温かつ長時間の硬化条件が必要となるため、多くの場合、反応促進のために過酸化物系触媒が併用される。しかし、本発明の置換または非置換アリル基含有マレイミド化合物は触媒を使用しない場合においても、硬化反応が進行し、均一な硬化物を得ることができる。過酸化物系触媒を使用することで、組成物の粘度上昇や、ポットライフの低下、また、硬化物中に微量の過酸化物が残存することによる物性低下等の課題があるが、本発明の置換または非置換アリル基含有マレイミド化合物は過酸化物系硬化剤を使用しなくてもよいことから、それら課題を解決することができる。
【0123】
シアネートエステル樹脂と本発明の置換または非置換アリル基含有マレイミド化合物との硬化物は優れた誘電特性を示す。
【0124】
エポキシ樹脂は本発明の置換または非置換アリル基含有マレイミド化合物と併用することで硬化物に靭性や金属密着性を付与できる。
【0125】
芳香族アミノ化合物はアミノ基とマレイミド基とのマイケル付加反応により架橋密度が向上し耐熱分解温度、ガラス転移温度が向上する。
【0126】
エポキシ樹脂としては、エポキシ基を有していれば特に限定は無く、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールスルフィド型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、アントラセン型エポキシ樹脂等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
【0127】
フェノキシ樹脂は、ジフェノールと、エピクロロヒドリン等のエピハロヒドリンに基づく高分子量熱可塑性ポリエーテル樹脂のことであり、重量平均分子量が、20,000〜100,000であることが好ましい。フェノキシ樹脂の構造としては、例えばビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、トリメチルシクロヘキサン骨格から選択される1種以上の骨格を有するものが挙げられる。
【0128】
シアネートエステル樹脂としては、例えば、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン−フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール−フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール−クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
【0129】
これらのシアネートエステル樹脂の中でも、特に耐熱性に優れる硬化物が得られる点においては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ノボラック型シアネートエステル樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン−フェノール付加反応型シアネートエステル樹脂が好ましい。
【0130】
マレイミド化合物としては、例えば、下記構造式(i)〜(iii)の何れかで表される各種の化合物等が挙げられる。
【0132】
式(i)中Rはs価の有機基であり、αおよびβはそれぞれ水素原子、ハロゲン原子、アルキル基、アリール基の何れかであり、sは1以上の整数である。
【0134】
式(ii)中Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1〜3の整数、tは繰り返し単位の平均で0〜10である。
【0136】
式(iii)中、Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1〜3の整数、tは繰り返し単位の平均で0〜10である。
【0137】
これらのマレイミド化合物はそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
【0138】
オキサジン化合物としては、特に制限はないが、例えば、ビスフェノールFとホルマリンとアニリンの反応生成物(F−a型ベンゾオキサジン樹脂)や4,4’−ジアミノジフェニルメタンとホルマリンとフェノールの反応生成物(P−d型ベンゾオキサジン樹脂)、ビスフェノールAとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルエーテルとホルマリンとアニリンの反応生成物、ジアミノジフェニルエーテルとホルマリンとフェノールの反応生成物、ジシクロペンタジエン−フェノール付加型樹脂とホルマリンとアニリンの反応生成物、フェノールフタレインとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルスルフィドとホルマリンとアニリンの反応生成物などが挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
【0139】
ビニル系化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1〜22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2−フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2−メトキシエチル(メタ)アクリレート、4−メトキシブチル(メタ)アクリレート等のω−アルコキシアルキル(メタ)アクリレート類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ−n−ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα−オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n−ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N−ジメチル(メタ)アクリルアミド、N−(メタ)アクリロイルモルホリン、N−(メタ)アクリロイルピロリジン、N−ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。
【0140】
(メタ)アリル系化合物としては、酢酸アリル、塩化アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリル等のアリルエステル類;アリルオキシメタノール、アリルオキシエタノール等のアリルオキシアルコール;、ジアリルフタレート、ジアリルイソフタレート、ジアリルシアヌレート、ジアリルイソシアヌレート、ペンタエリスリトールジアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンジアリルエーテル、ビスフェノールAジアリルエーテル、ビスフェノールFジアリルエーテル、エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、トリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ジプロピレングリコールジアリルエーテル、トリプロピレングリコールジアリルエーテルなどのアリル基を2つ含有する化合物;トリアリルイソシアヌレート、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、トリメチロールプロパントリアリルエーテルなどのアリル基を3つ以上含有する化合物;等、またはこれら化合物のメタアリル体が挙げられる。
【0141】
本発明の組成物中には、マレイミド基と置換または非置換アリル基の両方が存在する。マレイミド基と置換または非置換アリル基の比率は特に限定は無いが、マレイミド基モル数:置換または非置換アリル基モル数=1:10〜10:1が好ましく、1:5〜5:1であると耐熱性に優れるため好ましい。特に、1:2〜2:1の場合、耐熱性と配合物粘度のバランスに優れるため好ましい。なお、組成物中に本発明に係る置換または非置換アリル基含有マレイミド化合物とともに、マレイミド基を有するマレイミド化合物や、(メタ)アリル基を有する(メタ)アリル系化合物等が含まれる場合、「マレイミド基モル数」および「置換または非置換アリル基モル数」は置換または非置換アリル基含有マレイミド化合物以外のものも含めて算出される。
【0142】
<フィラー>
本発明の組成物は、置換または非置換アリル基含有マレイミド化合物の他に、更にフィラーを含有してもよい。フィラーとしては、無機フィラーと有機フィラーが挙げられる。無機フィラーとしては、例えば無機微粒子が挙げられる。
【0143】
無機微粒子としては、例えば、耐熱性に優れるものとしては、アルミナ、マグネシア、チタニア、ジルコニア、シリカ(石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等)等;熱伝導に優れるものとしては、窒化ホウ素、窒化アルミ、酸化アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化ケイ素、ダイヤモンド等;導電性に優れるものとしては、金属単体又は合金(例えば、鉄、銅、マグネシウム、アルミニウム、金、銀、白金、亜鉛、マンガン、ステンレスなど)を用いた金属フィラーおよび/又は金属被覆フィラー、;バリア性に優れるものとしては、マイカ、クレイ、カオリン、タルク、ゼオライト、ウォラストナイト、スメクタイト等の鉱物等やチタン酸カリウム、硫酸マグネシウム、セピオライト、ゾノライト、ホウ酸アルミニウム、炭酸カルシウム、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化マグネシウム;屈折率が高いものとしては、チタン酸バリウム、酸化ジルコニア、酸化チタン等;光触媒性を示すものとしては、チタン、セリウム、亜鉛、銅、アルミニウム、錫、インジウム、リン、炭素、イオウ、テリウム、ニッケル、鉄、コバルト、銀、モリブデン、ストロンチウム、クロム、バリウム、鉛等の光触媒金属、前記金属の複合物、それらの酸化物等;耐摩耗性に優れるものとしては、シリカ、アルミナ、ジルコニア、酸化マグネシウム等の金属、およびそれらの複合物および酸化物等;導電性に優れるものとしては、銀、銅などの金属、酸化錫、酸化インジウム等;絶縁性に優れるものとしては、シリカ等;紫外線遮蔽に優れるものとしては、酸化チタン、酸化亜鉛等である。
【0144】
これらの無機微粒子は、用途によって適時選択すればよく、単独で使用しても、複数種組み合わせて使用してもかまわない。また、上記無機微粒子は、例に挙げた特性以外にも様々な特性を有することから、適時用途に合わせて選択すればよい。
【0145】
例えば無機微粒子としてシリカを用いる場合、特に限定はなく粉末状のシリカやコロイダルシリカなど公知のシリカ微粒子を使用することができる。市販の粉末状のシリカ微粒子としては、例えば、日本アエロジル(株)製アエロジル50、200、旭硝子(株)製シルデックスH31、H32、H51、H52、H121、H122、日本シリカ工業(株)製E220A、E220、富士シリシア(株)製SYLYSIA470、日本板硝子(株)製SGフレ−ク等を挙げることができる。
【0146】
また、市販のコロイダルシリカとしては、例えば、日産化学工業(株)製メタノ−ルシリカゾル、IPA−ST、MEK−ST、NBA−ST、XBA−ST、DMAC−ST、ST−UP、ST−OUP、ST−20、ST−40、ST−C、ST−N、ST−O、ST−50、ST−OL等を挙げることができる。
【0147】
表面修飾をしたシリカ微粒子を用いてもよく、例えば、前記シリカ微粒子を、疎水性基を有する反応性シランカップリング剤で表面処理したものや、(メタ)アクリロイル基を有する化合物で修飾したものがあげられる。(メタ)アクリロイル基を有する化合物で修飾した市販の粉末状のシリカとしては、日本アエロジル(株)製アエロジルRM50、R711等、(メタ)アクリロイル基を有する化合物で修飾した市販のコロイダルシリカとしては、日産化学工業(株)製MIBK−SD等が挙げられる。
【0148】
前記シリカ微粒子の形状は特に限定はなく、球状、中空状、多孔質状、棒状、板状、繊維状、または不定形状のものを用いることができる。また一次粒子径は、5〜200nmの範囲が好ましい。5nm以上であると、分散体中に無機微粒子が好適に分散され、200nm以下であると、硬化物の強度の低下が防止できうる。
【0149】
酸化チタン微粒子としては、体質顔料のみならず紫外光応答型光触媒が使用でき、例えばアナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタンなどが使用できる。更に、酸化チタンの結晶構造中に異種元素をドーピングさせて可視光に応答させるように設計された粒子についても用いることができる。酸化チタンにドーピングさせる元素としては、窒素、硫黄、炭素、フッ素、リン等のアニオン元素や、クロム、鉄、コバルト、マンガン等のカチオン元素が好適に用いられる。また、形態としては、粉末、有機溶媒中もしくは水中に分散させたゾルもしくはスラリーを用いることができる。市販の粉末状の酸化チタン微粒子としては、例えば、日本アエロジル(株)製アエロジルP−25、テイカ(株)製ATM−100等を挙げることができる。また、市販のスラリー状の酸化チタン微粒子としては、例えば、テイカ(株)TKD−701等が挙げられる。
【0150】
<繊維質基質>
本発明の組成物は、置換または非置換アリル基含有マレイミド化合物の他に、更に繊維質基質を含有してもよい。本発明の繊維質基質は、特に限定はないが、繊維強化樹脂に用いられるものが好ましく、無機繊維や有機繊維が挙げられる。
【0151】
無機繊維としては、カーボン繊維、ガラス繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等の無機繊維のほか、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然繊維、玄武岩などの鉱物繊維、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、および金属繊維等を挙げることができる。上記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。
【0152】
有機繊維としては、ポリベンザゾール、アラミド、PBO(ポリパラフェニレンベンズオキサゾール)、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる合成繊維や、セルロース、パルプ、綿、羊毛、絹といった天然繊維、タンパク質、ポリペプチド、アルギン酸等の再生繊維等を挙げる事ができる。
【0153】
中でも、カーボン繊維とガラス繊維は、産業上利用範囲が広いため、好ましい。これらのうち、一種類のみ用いてもよく、複数種を同時に用いてもよい。
【0154】
本発明の繊維質基質は、繊維の集合体であってもよく、繊維が連続していても、不連続状でもかまわず、織布状であっても、不織布状であってもかまわない。また、繊維を一方方向に整列した繊維束でもよく、繊維束を並べたシート状であってもよい。また、繊維の集合体に厚みを持たせた立体形状であってもかまわない。
【0155】
<分散媒>
本発明の組成物は、組成物の固形分量や粘度を調整する目的として、分散媒を使用してもよい。分散媒としては、本発明の効果を損ねることのない液状媒体であればよく、各種有機溶剤、液状有機ポリマー等が挙げられる。
【0156】
前記有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられ、これらを単独又は併用して使用可能であるが、中でもメチルエチルケトンが塗工時の揮発性や溶媒回収の面から好ましい。
【0157】
前記液状有機ポリマーとは、硬化反応に直接寄与しない液状有機ポリマーであり、例えば、カルボキシル基含有ポリマー変性物(フローレンG−900、NC−500:共栄社)、アクリルポリマー(フローレンWK−20:共栄社)、特殊変性燐酸エステルのアミン塩(HIPLAAD ED−251:楠本化成)、変性アクリル系ブロック共重合物(DISPERBYK2000;ビックケミー)などが挙げられる。
【0158】
<樹脂>
また、本発明の組成物は、本発明の置換または非置換アリル基含有マレイミド化合物以外の樹脂を有していてもよい。樹脂としては、本発明の効果を損なわない範囲であれば公知慣用の樹脂を配合すればよく、例えば熱硬化性樹脂や熱可塑性樹脂を用いることができる。
【0159】
熱硬化性樹脂とは、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。その具体例としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルテレフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂、ベンゾオキサジン樹脂、活性エステル樹脂、アニリン樹脂、シアネートエステル樹脂、スチレン・無水マレイン酸(SMA)樹脂、本発明により得られるアリル基含有マレイミド化合物以外のマレイミド樹脂などが挙げられる。これらの熱硬化性樹脂は1種または2種以上を併用して用いることができる。
【0160】
熱可塑性樹脂とは、加熱により溶融成形可能な樹脂を言う。その具体例としてはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ゴム変性ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、アクリロニトリル−スチレン(AS)樹脂、ポリメチルメタクリレート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、エチレンビニルアルコール樹脂、酢酸セルロース樹脂、アイオノマー樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリケトン樹脂、液晶ポリエステル樹脂、フッ素樹脂、シンジオタクチックポリスチレン樹脂、環状ポリオレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。
【0161】
<硬化剤>
本発明の組成物は、配合物に応じて硬化剤を用いてもよい。例えば、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、活性エステル系硬化剤、カルボキシル基含有硬化剤、チオール系硬化剤などの各種の硬化剤が挙げられる。
【0162】
アミン系硬化剤としてはジアミノジフェニルメタン、ジアミノジフェニルエタン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、オルトフェニレンジアミン、メタフェニレンジアミン、パラフェニレンジアミン、メタキシレンジアミン、パラキシレンジアミン、ジエチルトルエンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、イミダゾ−ル、BF3−アミン錯体、グアニジン誘導体、グアナミン誘導体等が挙げられる。
【0163】
アミド系硬化剤としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。
【0164】
酸無水物系硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
【0165】
フェノール系硬化剤としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシン、カテコール、ハイドロキノン、フルオレンビスフェノール、4,4’−ビフェノール、4,4’,4”−トリヒドロキシトリフェニルメタン、ナフタレンジオール、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、カリックスアレーン、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核およびアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
【0166】
これらの硬化剤は、単独でも2種類以上の併用でも構わない。
【0167】
また、本発明の組成物は、硬化促進剤を単独で、あるいは前記の硬化剤と併用することもできる。硬化促進剤として硬化性樹脂の硬化反応を促す種々の化合物が使用でき、例えば、リン系化合物、第3級アミン化合物、イミダゾール化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。この中でも、イミダゾール化合物、リン系化合物、第3級アミン化合物の使用が好ましく、特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、テトラフェニルホスホニウムテトラ−p−トリルボレート、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
【0168】
<その他の配合物>
本発明の組成物は、その他の配合物を有していてもかまわない。例えば、触媒、重合開始剤、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、カップリング剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、難燃剤、可塑剤等が挙げられる。
【0169】
<硬化物>
本発明の組成物を硬化して得られる硬化物は、低線膨張で、高ガラス転移温度、耐熱分解性に優れることから、耐熱部材や電子部材に好適に使用可能である。硬化物の成形方法は特に限定は無く、組成物単独で成形してもよいし、基材と積層することで積層体としてもかまわない。
【0170】
本発明の組成物を硬化させる場合には、熱硬化をおこなえばよい。熱硬化する際、公知慣用の硬化触媒を用いてもよいが、本発明の組成物は、マレイミド基とアリル基との反応により硬化触媒を用いなくても硬化することが可能である。
【0171】
熱硬化を行う場合、1回の加熱で硬化させてもよいし、多段階の加熱工程を経て硬化させてもかまわない。
【0172】
硬化触媒を用いる場合には、例えば、塩酸、硫酸、燐酸等の無機酸類;p−トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム又は水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)、1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ−n−ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1−メチルイミダゾール等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫又はステアリン酸錫など錫カルボン酸塩、;過酸化ベンゾイル、クメンハイドロパーオキサイド、ジクミルパーオキサイド、過酸化ラウロイル、ジ−t−ブチルパーオキサイド、t−ブチルハイドロパーオキサイド、メチルエチルケトン過酸化物、t−ブチルパーベンゾエート、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3などの有機過酸化物等を使用することができる。触媒は単独で使用してもよいし、2種以上併用してもよい。
【0173】
また、本発明のアリル基含有マレイミド化合物は、炭素―炭素間二重結合を有することから、活性エネルギー線硬化を併用することもできる。活性エネルギー線硬化を行う場合、光重合開始剤を組成物に配合すればよい。光重合開始剤としては公知のものを使用すればよく、例えば、アセトフェノン類、ベンジルケタール類、ベンゾフェノン類からなる群から選ばれる一種以上を好ましく用いることができる。前記アセトフェノン類としては、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン等が挙げられる。前記ベンジルケタール類としては、例えば、1−ヒドロキシシクロヘキシル−フェニルケトン、ベンジルジメチルケタール等が挙げられる。前記ベンゾフェノン類としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル等が挙げられる。前記ベンゾイン類等としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。光重合開始剤は単独で使用してもよいし、2種以上を併用してもよい。
【0174】
熱硬化と活性エネルギー線硬化を併用して硬化させる場合、加熱と活性エネルギー線照射を同時に行ってもよいし、別々に行ってもよい。例えば、活性エネルギー線照射を行った後で熱硬化を行ってもよいし、熱硬化の後に活性エネルギー線硬化を行ってもよい。また、それぞれの硬化方法を2回以上組み合わせて行ってもよく、用途に合わせて適宜硬化方法を選択すればよい。
【0175】
<積層体>
本発明の硬化物は基材と積層することで積層体とすることができる。
【0176】
積層体の基材としては、金属やガラス等の無機材料や、プラスチックや木材といった有機材料等、用途によって適時使用すればよく、積層体の形状としても、平板、シート状、あるいは三次元構造を有していても立体状であってもかまわない。全面にまたは一部に曲率を有するもの等目的に応じた任意の形状であってよい。また、基材の硬度、厚み等にも制限はない。また、本発明の硬化物を基材とし、更に本発明の硬化物を積層してもかまわない。
【0177】
回路基板や半導体パッケージ基板といった用途の場合、金属箔を積層することが好ましく、金属箔としては銅箔、アルミ箔、金箔、銀箔などが挙げられ、加工性が良好なことから銅箔を用いることが好ましい。
【0178】
本発明の積層体において、硬化物層は、基材に対し直接塗工や成形により形成してもよく、すでに成形したものを積層させてもかまわない。直接塗工する場合、塗工方法としては特に限定は無く、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。
【0179】
成形された組成物を積層する場合、未硬化または半硬化された組成物層を積層してから硬化させてもよいし、組成物を完全硬化した硬化物層を基材に対し積層してもよい。
【0180】
また、本発明の硬化物に対して、基材となりうる前駆体を塗工して硬化させることで積層させてもよく、基材となりうる前駆体または本発明の組成物が未硬化あるいは半硬化の状態で接着させた後に硬化させてもよい。基材となりうる前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。
【0181】
<繊維強化樹脂>
本発明の組成物が繊維質基質を有し、該繊維質基質が強化繊維の場合、繊維質基質を含有する組成物は繊維強化樹脂として用いることができる。
【0182】
組成物に対し繊維質基質を含有させる方法は、本発明の効果を損なわない範囲であればとくに限定はなく、繊維質基質と組成物とを、混練、塗布、含浸、注入、圧着、等の方法で複合化する方法が挙げられ、繊維の形態および繊維強化樹脂の用途によって適時選択することができる。
【0183】
本発明の繊維強化樹脂を成形する方法については、特に限定されない。板状の製品を製造するのであれば、押し出し成形法が一般的であるが、平面プレスによっても可能である。この他、押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いることが可能である。またフィルム状の製品を製造するのであれば、溶融押出法の他、溶液キャスト法を用いることができ、溶融成形方法を用いる場合、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形等が挙げられる。また、活性エネルギー線で硬化する樹脂の場合、活性エネルギー線を用いた各種硬化方法を用いて硬化物を製造する事ができる。特に、熱硬化性樹脂をマトリクス樹脂の主成分とする場合には、成形材料をプリプレグ化してプレスやオートクレーブにより加圧加熱する成形法が挙げられ、この他にもRTM(Resin Transfer Molding)成形、VaRTM(Vaccum assist Resin Transfer Molding)成形、積層成形、ハンドレイアップ成形等が挙げられる。
【0184】
<プリプレグ>
本発明の繊維強化樹脂は、未硬化あるいは半硬化のプリプレグと呼ばれる状態を形成することができる。プリプレグの状態で製品を流通させた後、最終硬化をおこなって硬化物を形成してもよい。積層体を形成する場合は、プリプレグを形成した後、その他の層を積層してから最終硬化を行うことで、各層が密着した積層体を形成できるため、好ましい。
【0185】
この時用いる組成物と繊維質基質の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調整することが好ましい。
【0186】
<耐熱材料および電子材料>
本発明の置換または非置換アリル基含有マレイミド化合物は、その硬化物が低線膨張であって耐熱分解性に優れることから、耐熱部材や電子部材に好適に使用可能である。特に、半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板等や、接着剤やレジスト材料に好適に使用可能である。また、繊維強化樹脂のマトリクス樹脂にも好適に使用可能であり、高耐熱性のプリプレグとして特に適している。また、各種溶剤への溶解性を示すことから塗料化が可能であり、従来型の300℃以上の高温焼き付けを要する耐熱塗料と比較し、低温での硬化が可能であることから、耐熱塗料用樹脂としても好適に使用可能である。こうして得られる耐熱部材や電子部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
【0187】
以下、代表的な製品について例を挙げて説明する。
【0188】
1.半導体封止材料
本発明の組成物から半導体封止材料を得る方法としては、前記組成物、および硬化促進剤、および無機充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30〜95質量%の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
【0189】
2.半導体装置
本発明の硬化性樹脂組成物から半導体装置を得る半導体パッケージ成形としては、上記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜250℃で2〜10時間の間、加熱する方法が挙げられる。
【0190】
3.プリント回路基板
本発明の組成物からプリント回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜300℃で10分〜3時間、加熱圧着させる方法が挙げられる。
【0191】
4.ビルドアップ基板
本発明の組成物からビルドアップ基板を得る方法は、例えば以下の工程が挙げられる。まず、ゴム、フィラーなどを適宜配合した上記組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる工程(工程1)。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって凹凸を形成させ、銅などの金属をめっき処理する工程(工程2)。このような操作を所望に応じて順次繰り返し、樹脂絶縁層および所定の回路パターンの導体層を交互にビルドアップして形成する工程(工程3)。なお、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
【0192】
5.ビルドアップフィルム
本発明の組成物からビルドアップフィルムを得る方法としては、基材である支持フィルム(Y)の表面に、上記組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて組成物の層(X)を形成させることにより製造することができる。
【0193】
ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30〜60質量%となる割合で使用することが好ましい。
【0194】
形成される層(X)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。なお、本発明における上記組成物の層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
【0195】
前記した支持フィルムおよび保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルムおよび保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
【0196】
上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。ビルドアップフィルムを構成する硬化性樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
【0197】
上記のようにして得られたビルドアップフィルムを用いて多層プリント回路基板を製造することができる。例えば、層(X)が保護フィルムで保護されている場合はこれらを剥離した後、層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前にビルドアップフィルムおよび回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70〜140℃とすることが好ましく、圧着圧力を1〜11kgf/cm
2(9.8×10
4〜107.9×10
4N/m
2)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
【0198】
6.導電ペースト
本発明の組成物から導電ペーストを得る方法としては、例えば、導電性粒子を該組成物中に分散させる方法が挙げられる。上記導電ペーストは、用いる導電性粒子の種類によって、回路接続用ペースト樹脂組成物や異方性導電接着剤とすることができる。
【実施例】
【0199】
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」および「%」は特に断わりのない限り質量基準である。
【0200】
なお、高速液体クロマトグラフ(HPLC)、
1Hおよび
13C−NMR、MSスペクトル、示差走査熱量測定(DSC)は以下の条件にて測定した。
【0201】
HPLC
装置:アジレントテクノロジー製「LC1260」
展開溶媒:下記表1に示す
検出器:フォトダイオードアレイ検出器
流量:1.0mL/分
使用カラム:Poroshell 120 EC−C18
【0202】
【表1】
【0203】
1H−NMR
装置:JEOL RESONANCE製「JNM−ECA600」
磁場強度:600MHz
積算回数:32回
溶媒:DMSO−d
6
試料濃度:30質量%
【0204】
13C−NMR
装置:JEOL RESONANCE製「JNM−ECA600」
磁場強度:150MHz
積算回数:320回
溶媒:DMSO−d
6
試料濃度:30質量%
【0205】
FD−MS
装置:日本電子株式会社製「JMS−T100GC AccuTOF」
測定範囲:m/z=50.00〜2000.00
変化率:25.6mA/min
最終電流値:40mA
カソード電圧:−10kV
【0206】
DSC
装置:日立ハイテクサイエンス社製「X−DSC7000」
雰囲気:窒素
昇温プログラム:30℃5分保持→昇温速度10℃/分→350℃2分保持
【0207】
<実施例1>アリル基含有マレイミド化合物Aの合成
(1−1)アミノ基の保護
温度計、冷却管、攪拌機を取り付けた1Lフラスコに9,9−ビス(3−アミノ−4−ヒドロキシフェニル)フルオレン(BAHF、JFEケミカル株式会社製)50.10g(0.132mol)、N,N−ジメチルホルムアミド(DMF)580mL、イオン交換水170mL、無水酢酸33.72g(0.330mol)を仕込み、60℃で2時間反応させた後、室温まで空冷した。析出物をろ過し、イオン交換水で洗浄後、得られた粉末を80℃で8時間真空乾燥させることで反応物(a−1)を42.30g(収率68.9%)得た。
【0208】
(1−2)置換または非置換アリル基の導入
温度計、冷却管、攪拌機を取り付けた1Lフラスコに(a−1)41.91g(0.090mmol)、DMF500mLを仕込み攪拌した。次に炭酸カリウム27.97g(0.202mol)を加え、反応液を60℃まで加熱した後、臭化アリル24.66g(0.204mol)をゆっくりと滴下した。滴下終了後、60℃で8.5時間反応させた後、室温まで空冷した。ろ過後、反応液をイオン交換水で再沈殿を行った。ウェットケーキをろ別し、イオン交換水で洗浄後、80℃で12時間真空乾燥を行い粉末として(a−2)を46.12g(収率94.0%)得た。
【0209】
(1−3)脱保護
温度計、冷却管、攪拌機を取り付けた500mLフラスコに(a−2)44.83g(0.082mol)、エタノール120mLを仕込み攪拌した。濃塩酸52.91gを加え60℃に加熱した。60℃で9時間反応後、室温まで空冷した。反応液を20%水酸化ナトリウム水溶液で中和後、酢酸エチルで抽出した。イオン交換水で洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮した。さらに80℃で12時間真空乾燥を行い固体として(a−3)を28.51g(収率75.2%)得た。
【0210】
(1−4)マレイミド化
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた1Lフラスコに無水マレイン酸13.51g(0.138mol)、トルエン400mLを仕込み室温で攪拌した。次に(a−3)28.51(0.062mmol)gとDMF40mLの混合溶液を30分かけて滴下した。滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物2.18gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を12時間行った。室温まで空冷後、析出物をろ別し、80℃で12時間真空乾燥を行いアリル基含有マレイミド化合物Aを16.95g(収率44.1%)得た。
【0211】
得られたアリル基含有マレイミド化合物Aの
1H−NMR、
13C−NMR、MSスペクトルを測定し、また、HPLCを測定して純度を求めたところ、以下の結果となった。
【0212】
1H−NMR:δ7.93ppm(2H)、7.46−7.32ppm(6H)、7.15−7.00ppm(10H)、5.91−5.82ppm(2H)、5.24−5.13ppm(4H)、4.51ppm(4H);
13C−NMR:δ169.73ppm、152.86ppm、150.26ppm、139.34ppm、137.52ppm、134.89ppm、133.01ppm、129.30ppm、128.08ppm、127.87ppm、125.83ppm、120.67ppm、119.90ppm、116.78ppm、113.22ppm、68.32ppm、63.23ppm;
MSスペクトル:M
+=620;
純度:95.8%(HPLC面積%、検出波長275nm)
【0213】
【化21】
【0214】
<実施例2>アリル基含有マレイミド化合物Bの合成
温度計、冷却管、攪拌機を取り付けた500mLフラスコに2,6−ジメチルアニリン193.04g(1.59mol)、6mol/L塩酸58.82gを仕込み攪拌した。反応液を加熱し還流状態とした後、4−ヒドロキシベンズアルデヒド48.61g(0.40mol)とDMF50mLの混合溶液をゆっくりと滴下した。滴下終了後、20時間還流下で反応させた後、60℃まで空冷した。20%水酸化ナトリウム水溶液で中和し、デカンテーションにより上澄み液を取り除いた。メタノールを加え均一溶液とした後、イオン交換水で再沈殿を行った。析出物をろ別し、イオン交換水で洗浄後、80℃で12時間真空乾燥を行い粉末として、下記式(b)で表されるヒドロキシ基含有ジアミンを116.81g(収率84.7%)得た。
【0215】
【化22】
【0216】
BAHFに代えて、上記式(b)で表されるヒドロキシ基含有ジアミンを用い、モル比を適宜調整したことを除いては、実施例1と同様の方法で、アリル基含有マレイミド化合物Bを得た。なお、得られたアリル基含有マレイミド化合物Bの
1H−NMR、
13C−NMR、MSスペクトル、DSCを測定し、また、HPLCを測定して純度を求めたところ、以下の結果となった。
【0217】
1H−NMR:δ7.24ppm(4H)、7.10ppm(2H)、6.99ppm(4H)、6.92ppm(2H)、6.07−6.00ppm(1H)、5.50ppm(1H)、5.40ppm(1H)、5.24ppm(1H)、4.54ppm(2H)、1.98ppm(12H);
13C−NMR:δ169.86ppm、156.71ppm、144.70ppm、136.73ppm、135.00ppm、134.90ppm、133.77ppm、129.99ppm、128.71ppm、127.75ppm、117.47ppm、114.62ppm、68.15ppm、54.40ppm、17.60ppm;
MSスペクトル:M
+=546;
融点(DSCピークトップ):246℃;
純度:99.9%(HPLC面積%、検出波長275nm)
【0218】
【化23】
【0219】
<実施例3>アリル基含有マレイミド化合物Cの合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた500mLフラスコにp−ニトロベンズアルデヒド45.12g(0.299mol)、2,6−ジメチルフェノール76.46g(0.626mol)、トルエン140mLを仕込み室温で攪拌した。p−トルエンスルホン酸一水和物5.78gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を2.5時間行った。80℃まで空冷後、反応液を10%水酸化ナトリウム水溶液で中和し、トルエンで抽出した。イオン交換水で洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し深赤色液体を得た。80℃で12時間真空乾燥を行い橙色固体として下記式(c−0)で表されるジヒドロキシ基含有ニトロ化合物を105.41g(収率93.3%)得た。
【0220】
【化24】
【0221】
温度計、冷却管、攪拌機を取り付けた2Lフラスコに上記式(c−0)で表されるジヒドロキシ基含有ニトロ化合物を105.00g(0.278mol)、10%パラジウム担持炭素(Pd/C)14.80g、エタノール800mLを仕込み室温で撹拌した。反応液を加熱し、水素雰囲気下、70℃で12時間水素還元反応を行った。反応液をろ過後、ろ液を減圧濃縮したうえ、80℃で12時間真空乾燥を行い粉末状の下記式(c)で表されるジヒドロキシ基含有アミノ化合物を86.99g(収率89.9%)得た。
【0222】
【化25】
【0223】
BAHFに代えて、上記式(c)で表されるジヒドロキシ基含有アミノ化合物を用い、モル比を適宜調整したことを除いては、実施例1と同様の方法で、アリル基含有マレイミド化合物Cの粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=25/75、体積比)で分離精製することでアリル基含有マレイミド化合物Cを得た。なお、得られたアリル基含有マレイミド化合物Aの
1H−NMR、
13C−NMR、MSスペクトル、DSCを測定し、また、HPLCを測定して純度を求めたところ、以下の結果となった。
【0224】
1H−NMR:δ7.26−7.20ppm(4H)、7.17ppm(2H)、6.81ppm(4H)、6.08−6.04ppm(2H)、5.43−5.40ppm(3H)、5.22ppm(2H)、4.27ppm(4H)、2.16ppm(12H);
13C−NMR:δ169.97ppm、153.91ppm、143.81ppm、138.73ppm、134.65ppm、134.55ppm、130.22ppm、129.43ppm、129.32ppm、129.13ppm、126.57ppm、116.78ppm、72.46ppm、54.48ppm、16.20ppm;
MSスペクトル:M
+=507;
融点(DSCピークトップ):147℃;
純度:92.4%(HPLC面積%、検出波長254nm)
【0225】
【化26】
【0226】
<実施例4>アリル基含有マレイミド化合物Dの合成
温度計、冷却管、攪拌機を取り付けた200mLフラスコに2−メトキシアニリン55.33g(0.449mol)を仕込み攪拌しながら100℃まで加熱した。ベンズアルデヒド23.86g(0.225mol)と濃塩酸11.89gの混合溶液をゆっくりと滴下した。滴下終了後、100℃で5時間反応させた後、70℃まで空冷した。反応液を20%水酸化ナトリウム水溶液で中和後、酢酸エチルで抽出した。イオン交換水で洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し下記式(d−0)で表されるジメトキシ基含有ジアミノ化合物を66.97g(収率88.9%)得た。
【0227】
【化27】
【0228】
温度計、冷却管、攪拌機を取り付けた2Lフラスコに式(d−0)で表されるジメトキシ基含有ジアミノ化合物66.00g(0.197mol)、酢酸680mL、臭化水素酸(47%)680mLを仕込み攪拌しながら加熱し還流状態とした。還流下で8時間反応させた後、室温まで空冷した。反応液を20%水酸化ナトリウム水溶液で中和後、酢酸エチルで抽出した。イオン交換水で洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し下記式(d)で表されるジヒドロキシ基含有ジアミノ化合物を55.28g(収率91.4%)得た。
【0229】
【化28】
【0230】
BAHFに代えて、上記式(d)で表されるジヒドロキシ基含有ジアミノ化合物を用い、モル比を適宜調整したことを除いては、実施例1と同様の方法で、アリル基含有マレイミド化合物Cの粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/1、体積比)で分離精製することでアリル基含有マレイミド化合物Dを得た。なお、得られたアリル基含有マレイミド化合物Aの
1H−NMR、
13C−NMR、MSスペクトル、DSCを測定し、また、HPLCを測定して純度を求めたところ、以下の結果となった。
【0231】
1H−NMR:δ7.38−7.14ppm(11H)、6.96ppm(2H)、6.83−6.80ppm(2H)、5.86−5.76ppm(2H)、5.71ppm(1H)、5.18−5.11ppm(4H)、4.47−4.45ppm(4H);
13C−NMR:δ169.92ppm、153.85ppm、145.86ppm、142.86ppm、134.99ppm、132.87ppm、130.24ppm、128.99ppm、128.50ppm、126.59ppm、121.29ppm、118.45ppm、117.06ppm、114.33ppm、68.33ppm、55.70ppm;
MSスペクトル:M
+=546;
融点(DSCピークトップ):60℃;
純度:95.8%(HPLC面積%、検出波長275nm)
【0232】
【化29】
【0233】
<実施例5>アリル基含有マレイミド化合物Eの合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた1Lフラスコに4,4’−ジアミノジフェニルメタン198.27g(1.00mol)、4−ヒドロキシベンジルアルコール248.28g(2.00mol)を仕込み、140℃まで加熱し、溶融状態で脱水しながら撹拌した。同温度で7時間反応後、室温まで空冷し、下記式(e)で表されるジヒドロキシ基含有ジアミノ化合物を主成分として含む固体を385.89g得た。なお、得られた式(e)で表されるジヒドロキシ基含有ジアミノ化合物のMSスペクトルおよびDSCを測定したところ、以下の結果となった。
【0234】
MSスペクトル:M
+=410
純度:26.0%(HPLC面積%、検出波長254nm)
【0235】
【化30】
【0236】
BAHFに代えて、上記式(e)で表されるジヒドロキシ基含有ジアミノ化合物を用い、モル比を適宜調整したことを除いては、実施例1と同様の方法で、アリル基含有マレイミド化合物Eを得た。
【0237】
【化31】
【0238】
<比較例1>ビスマレイミドAの合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに無水マレイン酸50.85g(0.519mol)、トルエン930mLを仕込み室温で攪拌した。次に4,4’−ジアミノ−2,2’−ジメチルビフェニル(m−TB、和歌山精化工業株式会社製)50.09g(0.236mol)とDMF110mLの混合溶液を1時間かけて滴下した。滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物7.08gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を22時間行った。室温まで空冷後、減圧濃縮し黄色のウェットケーキ151.40gを得た。DMFに溶解させ、イオン交換水で再沈殿を行った。析出物をろ別しイオン交換水で洗浄後、80℃で12時間真空乾燥を行い黄色粉末としてビスマレイミドAを84.07g(収率95.8%)得た。なお、得られたビスマレイミドAの
1H−NMR、
13C−NMR、MSスペクトル、DSCを測定し、また、HPLCを測定して純度を求めたところ、以下の結果となった。
【0239】
1H−NMR:δ7.31ppm(2H)、7.24−7.21ppm(8H)、2.07ppm(6H);
13C−NMR:δ170.01ppm、139.67ppm、136.10ppm、134.72ppm、130.74ppm、129.57ppm、127.97ppm、124.15ppm、19.58ppm;
MSスペクトル:M
+=372;
融点(DSCピークトップ):194℃;
純度:91.6%(HPLC面積%、検出波長254nm)
【0240】
【化32】
【0241】
<比較例2>ビスマレイミドBの合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた500mLフラスコに無水マレイン酸11.09g(0.113mol)、トルエン190mLを仕込み室温で攪拌した。次に1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R、和歌山精化工業株式会社製)15.02g(0.051mol)とDMF30mLの混合溶液を1時間かけて滴下した。滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物1.07gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を9時間行った。室温まで空冷後、減圧濃縮し得られた反応液を、イオン交換水で再沈殿を行った。析出物をろ別し、イオン交換水で洗浄後、80℃で12時間真空乾燥を行い黄色粉末としてビスマレイミドBを21.90g(収率94.2%)得た。なお、得られたビスマレイミドAの
1H−NMR、
13C−NMR、MSスペクトル、DSCを測定し、また、HPLCを測定して純度を求めたところ、以下の結果となった。
【0242】
1H−NMR:δ7.45−7.33ppm(5H)、7.17−7.14ppm(8H)、6.84−6.75ppm(3H);
13C−NMR:δ169.94ppm、157.78ppm、155.45ppm、134.65ppm、131.33ppm、128.60ppm、127.03ppm、119.03ppm、113.79ppm、109.47ppm;
MSスペクトル:M
+=452;
融点(DSCピークトップ):160℃;
純度:96.3%(HPLC面積%、検出波長254nm)
【0243】
【化33】
【0244】
<比較例3>
比較例3として、下記式で表されるBMI−1000(4,4’−ジフェニルメタンビスマレイミド、大和化成工業株式会社製)を用いた。
【0245】
【化34】
【0246】
[評価]
実施例3〜5のアリル基含有マレイミド化合物、並びに比較例1〜3のマレイミド化合物を用いて各種評価を行った。なお、以下の評価では、実施例3〜5のアリル基含有マレイミド化合物および比較例1〜3のマレイミド化合物を総称して単に「マレイミド化合物」と称する。
【0247】
<組成物およびその硬化物>
マレイミド化合物を含む組成物を製造し、前記組成物を硬化して硬化物を製造した。
【0248】
(組成物および硬化物の製造)
下記表2に従って配合し、組成物1〜8を製造した。また、得られる組成物1〜8について、以下の条件により硬化して硬化物1〜8を製造した。
【0249】
ただし、組成物4〜6、8については、硬化物を製造する際に組成物が一部またはすべて溶融しなかった。これにより硬化物4〜6、8を製造することができなかったため、ガラス転移温度、線膨張係数、耐熱分解性の評価はできなかった。
【0250】
硬化条件:170℃で2時間、200℃で2時間、250℃で2時間加熱
硬化物板厚:2.4mm
【0251】
【表2】
【0252】
(ガラス転移温度)
製造した硬化物1〜8(厚さ:2.4mm)を、幅5mm、長さ54mmのサイズに切り出し、これを試験片とした。この試験片を粘弾性測定装置(DMA:日立ハイテクサイエンス社製固体粘弾性測定装置「DMS7100」、変形モード:両持ち曲げ、測定モード:正弦波振動、周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。得られた結果を下記表3に示す。
【0253】
(線膨張係数)
製造した硬化物1〜8(厚さ:2.4mm)を、幅5mm、長さ5mmのサイズに切り出し、これを試験片とした。この試験片を熱機械分析装置(日立ハイテクサイエンス社製「TMA/SS7100」、昇温速度:3℃/分)を用いて40〜60℃の範囲の膨張率を測定した。得られた結果を下記表3に示す。
【0254】
(耐熱分解性)
製造した硬化物1〜8(厚さ:2.4mm)を細かく裁断し、熱重量分析装置(SIIナノテクノロジー社製「TG/DTA6200」)を用いて、昇温速度を5℃/分として窒素雰囲気下で測定を行い、5%重量減少する温度(Td5)を求めた。得られた結果を下記表3に示す。
【0255】
【表3】
【0256】
<繊維質基質含有組成物およびその硬化物>
マレイミド化合物および繊維質基質であるガラス繊維を含む組成物を製造し、前記組成物を硬化して硬化物を製造した。
【0257】
得られた硬化物について、曲げ弾性率、曲げ強度、曲げ歪を評価した。
【0258】
(組成物および硬化物の製造)
下記表4に従って配合し、組成物9〜16を製造した。この際、ガラス繊維としてT−725H(成形材向けガラス繊維、日本電気硝子株式会社製)を用いた。
【0259】
また、得られる組成物9〜16について、以下の条件により硬化して硬化物9〜16を製造した。
【0260】
ただし、組成物12〜14、16については、硬化物を製造する際に組成物が一部またはすべて溶融せず、硬化物12〜14、16を製造することができなかったため、曲げ弾性率、曲げ歪、曲げ強度の評価はできなかった。
【0261】
硬化条件:170℃で2時間、200℃で2時間、250℃で2時間加熱
硬化物板厚:2.4mm
【0262】
【表4】
【0263】
(曲げ弾性率、曲げ歪、曲げ強度)
硬化物9〜16について、JIS−K6911:2006に準拠して曲げ試験を行い、曲げ弾性率、曲げ歪、曲げ強度を測定した。得られた結果を下記表5に示す。
【0264】
【表5】
【0265】
<フィラー含有組成物>
マレイミド化合物およびフィラーである球状シリカを含む組成物を製造した。
【0266】
得られた硬化物について、流動性を評価した。
【0267】
(組成物の製造)
下記表6に従って配合し、2本ロールを用いて150℃の温度で5分間溶融混練して組成物17〜24を製造した。この際、球状シリカとしてFB−560(電気化学株式会社製)、シランカップリング剤としてKBM−403(γ−グリシドキシトリエトキシシラン、信越化学工業株式会社製)、カルナバワックスとしてPEARL WAX No.1−P(株式会社セラリカ野田製)を用いた。
【0268】
【表6】
【0269】
(流動性)
組成物を試験用金型に注入し、175℃、70kg/cm
2、120秒の条件でスパイラルフロー値を測定した。この際、組成物20〜22、24は、175℃では組成物が溶融せず、スパイラルフロー値の測定ができなかった。得られた結果を下記表7に示す。
【0270】
【表7】
【0271】
<分散媒含有組成物およびその硬化物を含む積層体>
マレイミド化合物および有機溶媒であるメチルエチルケトンを含む組成物を製造した。
【0272】
得られた積層体について、誘電率、誘電正接、耐湿耐半田性を評価した。
【0273】
(組成物および硬化物を含む積層体の製造)
下記表8に従って配合し、組成物25〜32を製造した。この際、得られる組成物の不揮発分(N.V.)は58質量%である。
【0274】
また、得られる組成物25〜32について、以下の条件により硬化して基材と硬化物を含む層を有する積層体25〜32を製造した。
【0275】
ただし、組成物28〜32については、メチルエチルケトンに対する溶解性が悪く、硬化物を製造することができなかったため、誘電率、誘電正接、耐湿耐半田性の評価はできなかった。
【0276】
基材:プリント配線基板用ガラスクロス「2116」(厚さ:100μm、日東紡績株式会社製)
プライ数:6
銅箔:TCR箔(厚さ:18μm、日鉱金属株式会社製)
プリプレグ化条件:160℃/2分
硬化条件:200℃、2.9MPa、2時間
成形後板厚:0.8mm、樹脂量40%
【0277】
【表8】
【0278】
(誘電率および誘電正接)
JIS C 6481:1999に準拠し、インピーダンス・マテリアル・アナライザ「HP4291B」(アジレント・テクノロジー株式会社製)により、絶乾後23℃、湿度50%の室内に24時間保管した後の積層体の1GHzでの誘電率および誘電正接を測定した。得られた結果を下記表9に示す。
【0279】
(耐湿耐半田性)
積層体を85℃、85%RHの雰囲気下で168時間放置し、吸湿処理を行った。次いで、吸湿処理を行った積層体を、260℃のハンダ浴に10秒間浸漬させ、クラックの発生の有無を目視で確認した。なお、評価は以下の基準に従い行った。得られた結果を下記表9に示す。
【0280】
○:クラックの発生なし
×:クラック発生
【0281】
【表9】
【0282】
<光重合開始剤含有組成物およびその硬化物>
マレイミド化合物および光重合開始剤を含む組成物を製造した。
【0283】
得られた組成物について、硬化性を評価した。
【0284】
(組成物の製造)
下記表10に従って配合し、組成物33〜40を製造した。この際、光重合開始剤としてイルガキュア907(2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−1−プロパノン、BASF社製)を用いた。
【0285】
ただし、組成物36〜40は光重合開始剤であるM−309(トリメチロールプロハントリアクリレート(TMPTA)、東亜合成株式会社製)に対する相溶性が悪く、組成物を製造することはできなかったため、硬化性を評価することはできなかった。
【0286】
【表10】
【0287】
(硬化性)
組成物をガラス基板上に厚さ50μmとなるように塗布した。次いで、50mJ/cm
2から10mJ/cm
2刻みで紫外線を照射し、塗膜表面がタックフリーになるまでの積算光量を測定した。得られた結果を表11に示す。
【0288】
【表11】
【0289】
<分散媒含有組成物>
マレイミド化合物および有機溶媒であるメチルエチルケトンを含む組成物を製造した。
【0290】
得られた組成物について、造膜性を評価した。
【0291】
(組成物の製造)
下記表12に従って配合し、組成物41〜48を製造した。この際、得られる組成物の不揮発分(N.V.)は40質量%である。
【0292】
ただし、組成物44〜48については、メチルエチルケトンに対する溶解性が悪く、組成物を製造することができなかったため、造膜性を評価することはできなかった。
【0293】
【表12】
【0294】
(造膜性)
組成物を硬化後の厚さ20μmになるように基材に塗布し、250℃で2時間硬化させ、外観を目視で観察し、以下の基準に従って評価した。得られた結果を下記表13に示す。なお、基材は標準的なステンレス板(SUS−304)を用いた。
【0295】
○…基材表面に塗膜が形成される
×…造膜しない
【0296】
【表13】