(58)【調査した分野】(Int.Cl.,DB名)
前記修正されたターゲットの前記大きさを測定することは、前記第2の放射ビームが前記修正されたターゲットの少なくとも一部をプラズマに変換する前の前記修正されたターゲットの前記大きさを測定することを備える、請求項1に記載の方法。
前記修正されたターゲットはディスク形状を有し、前記修正されたターゲットの前記ディスク形状の角度配向は、前記ターゲット材料に衝突する際の前記第1の放射ビームの位置に依存する、請求項1に記載の方法。
前記制御システムは、前記測定された位置を前記別の測定システムから受信するように、前記受信し測定された位置を分析するように、及び、一又は複数の信号を前記光学源に送信して、前記第1の放射ビームから前記ターゲット材料へと送出される前記放射露光の量を前記測定された大きさの分析及び前記測定された位置の分析に基づいて制御するように構成される、請求項5に記載の装置。
第1の放射ビームを受信するように構成された初期ターゲットロケーションと第2の放射ビームを受信するように構成されたターゲットロケーションとを定義するチャンバと、
プラズマに変換されたときに極端紫外線(EUV)光を放出する材料を含むターゲット材料を前記初期ターゲットロケーションに提供するように構成されたターゲット材料デリバリシステムと、
前記第1の放射ビームを前記初期ターゲットロケーション内の前記ターゲット材料と相互作用させてエネルギを前記ターゲット材料へと送出し、前記ターゲット材料の幾何分布を修正して修正されたターゲットを形成するように、及び、
前記第2の放射ビームを前記ターゲットロケーション内の前記修正されたターゲットと相互作用させて、前記修正されたターゲットの少なくとも一部をEUV光を放出するプラズマに変換するように構成された光学配置と、
前記修正されたターゲットの空間的な観点を各々が測定するように構成された2つの測定システムと、
前記ターゲット材料デリバリシステムと、前記光学配置と、前記測定システムとに接続され、測定データを前記2つの測定システムから受信するように、及び、一又は複数の信号を前記光学配置に送信して、放射ビームを前記受信した測定データに基づいて制御するように構成された制御システムと、
を備える装置。
【発明の概要】
【0005】
いくつかの一般的な態様において、ある方法は、プラズマに変換されたときに極端紫外線(EUV)光を放出する成分を含むターゲット材料を提供すること、第1の放射ビームをターゲット材料の方に誘導してエネルギをターゲット材料へと送出し、ターゲット材料の幾何分布を修正して修正されたターゲットを形成すること、修正されたターゲットの少なくとも一部をEUV光を放出するプラズマに変換する第2の放射ビームを修正されたターゲットの方に誘導すること、ターゲット材料と第1の放射ビームに関して修正されたターゲットとのうち一又は複数に関連する一又は複数の特性を測定すること、及び、一又は複数の測定された第1の放射ビームからターゲット材料へと送出される放射露光の量を特性に基づいて所定のエネルギの範囲内に制御すること、を含む。
【0006】
実装形態は以下の特徴のうち一又は複数を含み得る。例えば、ターゲット材料と修正されたターゲットとのうち一又は複数に関連する一又は複数の特性は、第1の放射ビームのエネルギを測定することによって測定可能である。第1の放射ビームのエネルギは、ターゲット材料の光反射面から反射された第1の放射ビームのエネルギを測定することによって測定可能である。第1の放射ビームのエネルギは、ターゲット材料の方に誘導される第1の放射ビームのエネルギを測定することによって測定可能である。第1の放射ビームのエネルギは、第1の放射ビームの伝搬の方向に垂直な方向を横切って空間的に積分されたエネルギを測定することによって測定可能である。
【0007】
第1の放射ビームは、ターゲット材料を第1の放射ビームの共焦点パラメータを包含するエリアと重ね合わせることによって、ターゲット材料の方に誘導可能である。共焦点パラメータは1.5mmよりも大きくてもよい。
【0008】
ターゲット材料と修正されたターゲットとのうち一又は複数に関連する一又は複数の特性は、ターゲット位置に対するターゲット材料の位置を測定することによって測定可能である。ターゲット位置は第1の放射ビームのビームウエストと一致していてもよい。第1の放射ビームは第1のビーム軸に沿って誘導されてもよく、ターゲット材料の位置は第1のビーム軸に平行な方向に沿って測定可能である。ターゲット位置は、放出されたEUV光を収集するコレクタデバイスの主焦点に対して測定可能である。ターゲット材料の位置は、2つ以上の非平行の方向に沿ってターゲット材料の位置を測定することによって測定されてもよい。
【0009】
ターゲット材料と修正されたターゲットとのうち一又は複数に関連する一又は複数の特性は、第2の放射ビームが修正されたターゲットの少なくとも一部をプラズマに変換する前に、修正されたターゲットの大きさを検出することによって測定可能である。ターゲット材料と修正されたターゲットとのうち一又は複数に関連する一又は複数の特性は、修正されたターゲットの膨張率を推定することによって測定可能である。
【0010】
第1の放射ビームからターゲット材料へと送出される放射露光の量は、修正されたターゲットの膨張率を制御することによって制御可能である。
【0011】
第1の放射ビームからターゲット材料へと送出される放射露光の量は、第1の放射ビームの特徴が一又は複数の測定された特性に基づいて調整されるべきかどうかを決定することによって制御可能である。第1の放射ビームの特徴が調整されるべきであるという決定は、一又は複数の特性が測定される間に行われ得る。
【0012】
第1の放射ビームの特徴が調整されるべきであると決定される場合には、第1の放射ビームのパルスのエネルギ含量とターゲット材料と相互作用する第1の放射ビームのエリアとのうち一又は複数が調整され得る。第1の放射ビームのパルスのエネルギ含量は、第1の放射ビームのパルス幅と、第1の放射ビームのパルスの持続時間と、第1の放射ビームのパルス内の平均パワーとのうち一又は複数を調整することによって調整可能である。
【0013】
第1の放射ビームは、第1の放射のパルスをターゲット材料の方に誘導することによってターゲット材料の方に誘導され得る。一又は複数の特性は、第1の放射の各パルスについて一又は複数の特性を測定することによって測定可能である。第1の放射ビームの特徴が調整されるべきかどうかは、第1の放射の各パルスについて特徴が調整されるべきかどうかを決定することによって決定され得る。
【0014】
第1の放射ビームからターゲット材料へと送出される放射露光は、放出されるEUV光の少なくとも一部がウェーハを露光している間に第1の放射ビームからターゲット材料へと送出される放射露光を制御することによって制御可能である。
【0015】
ターゲット材料は、ターゲット材料の液滴を提供することによって提供され得る。ターゲット材料の幾何分布は、ターゲット材料の液滴を溶融金属のディスク状の塊に変態させることによって修正されてもよい。ターゲット材料の液滴は膨張率に従ってディスク状の塊へと変態され得る。
【0016】
この方法は、放出されるEUV光の少なくとも一部を収集すること、及び、収集されたEUV光をウェーハの方に誘導してウェーハをEUV光に露光させることも含み得る。
【0017】
一又は複数の特性は、ターゲット材料の方に誘導される第1の放射ビームの各パルスについて少なくとも1つの特性を測定することによって測定可能である。
【0018】
第1の放射ビームは、ターゲット材料の一部がEUV光を放出するプラズマに変換されるように、及び、ターゲット材料から変換されたプラズマからは修正されたターゲットから変換されたプラズマから放出されるよりも少ないEUV光が放出されるように、ターゲット材料の方に誘導されてもよく、ターゲット材料に対する主な作用は、ターゲット材料の幾何分布を修正して修正されたターゲットを形成することである。
【0019】
ターゲット材料の幾何分布は、ターゲット材料の形状を修正されたターゲットへと変態させることによって修正可能であり、これは修正されたターゲットを少なくとも1つの軸に沿って膨張率に従い膨張させることを含む。ターゲット材料へと送出される放射露光の量は、修正されたターゲットへのターゲット材料の膨張率を制御することによって制御可能である。
【0020】
修正されたターゲットは、第2の放射ビームの光軸と平行でない少なくとも1つの軸に沿って膨張され得る。
【0021】
ターゲット材料と修正されたターゲットとのうち一又は複数に関連する一又は複数の特性は、修正されたターゲットから反射された光子の数を測定することによって測定可能である。修正されたターゲットから反射された光子の数は、修正されたターゲットから反射される光子の数をいくつの光子がターゲット材料に衝突するのかの関数として測定することによって測定可能である。
【0022】
第1の放射ビームは、第1の放射のパルスをターゲット材料の方に誘導することによってターゲット材料の方に誘導され得る。第2の放射ビームは、第2の放射のパルスを修正されたターゲットの方に誘導することによって修正されたターゲットの方に誘導され得る。
【0023】
第1の放射ビームは、第1組の一又は複数の光アンプを通じて第1の放射ビームを誘導することによって誘導され得る。第2の放射ビームは、第2組の一又は複数の光アンプを通じて第2の放射ビームを誘導することによって誘導され得る。ここで、第1組の光アンプのうち少なくとも1つは第2組にある。
【0024】
ターゲット材料と修正されたターゲットとのうち一又は複数に関連する一又は複数の特性は、ターゲット材料の方に誘導される第1の放射ビームのエネルギを測定することによって測定可能である。ターゲット材料へと送出される放射露光の量は、測定されたエネルギに基づいて第1の放射ビームからターゲット材料へと誘導されるエネルギの量を調整することによって制御可能である。第1の放射ビームは、ターゲット材料を第1の放射ビームのうち共焦点パラメータを包含するエリアと重ね合わせることによって、ターゲット材料の方に誘導可能である。共焦点パラメータは2mm以下であってもよい。
【0025】
第1の放射ビームからターゲット材料へと送出されるエネルギの量は、第1の放射ビームのプロパティを調整することによって調整可能である。
【0026】
第1の放射ビームからターゲット材料へと送出される放射露光の量は、第1の放射ビームがエネルギをターゲット材料へと送出する直前の第1の放射ビームのエネルギと、ターゲット材料の位置と、第1の放射ビームと相互作用するターゲット材料の領域とのうち一又は複数を調整することによって制御可能である。
【0027】
第1の放射ビームは、一又は複数の第1の光アンプを含む第1組の光学コンポーネントを通じて第1の放射ビームを誘導することによって誘導され得る。第2の放射ビームは、一又は複数の第2の光アンプを含む第2組の光学コンポーネントを通じて第2の放射ビームを誘導することによって誘導され得る。ここで、第1組の光学コンポーネントは第2組の光学コンポーネントとは異なり及び分離している。
【0028】
他の一般的な態様において、ある装置は、第1の放射ビームを受信する初期ターゲットロケーションと第2の放射ビームを受信するターゲットロケーションとを定義するチャンバと、プラズマに変換されたときに極端紫外線(EUV)光を放出する材料を含むターゲット材料を初期ターゲットロケーションに提供するように構成されたターゲット材料デリバリシステムと、第1の放射ビーム及び第2の放射ビームを生成するように構成された光学源と、光操向システムと、を含む。光操向システムは、第1の放射ビームを初期ターゲットロケーションの方に誘導してエネルギをターゲット材料へと送出し、ターゲット材料の幾何分布を修正して修正されたターゲットを形成するように、及び、第2の放射ビームをターゲットロケーションの方に誘導して修正されたターゲットの少なくとも一部をEUV光を放出するプラズマに変換するように構成されている。装置は、ターゲット材料と第1の放射ビームに関して修正されたターゲットとのうち一又は複数に関連する一又は複数の特性を測定する測定システムと、ターゲット材料デリバリシステム、光学源、光操向システム、及び測定システムに接続された制御システムと、を含む。制御システムは、一又は複数の測定された特性を測定システムから受信するように、及び、一又は複数の信号を光学源に送信して、第1の放射ビームからターゲット材料へと送出される放射露光の量を一又は複数の測定された特性に基づいて制御するように構成されている。
【0029】
実装形態は以下の特徴のうち一又は複数を含み得る。例えば、光操向システムは、第1の放射ビームを初期ターゲットロケーション又はその付近に合焦させるように、及び、第2の放射ビームをターゲットロケーション又はその付近に合焦させるように構成された合焦装置を含み得る。
【0030】
装置はビーム調整システムを含み得る。ここで、ビーム調整システムは光学源及び制御システムに接続されており、制御システムは、一又は複数の信号を光学源に送信して、一又は複数の信号をビーム調整システムに送信することによりターゲット材料へと送出されるエネルギの量を制御するように構成されており、ビーム調整システムは、光学源の一又は複数の特徴を調整し、それによってターゲット材料へと送出されるエネルギの量を維持するように構成されている。ビーム調整システムは、第1の放射ビームに結合されたパルス幅調整システムを含んでいてもよく、パルス幅調整システムは第1の放射ビームのパルス幅を調整するように構成されている。パルス幅調整システムは電気光学変調器を含んでいてもよい。
【0031】
ビーム調整システムは、第1の放射ビームに結合されたパルスパワー調整システムを含んでいてもよく、パルスパワー調整システムは第1の放射ビームのパルス内の平均パワーを調整するように構成されている。パルスパワー調整システムは音響光学変調器を含んでいてもよい。
【0032】
ビーム調整システムは、一又は複数の信号を光学源に送信して、一又は複数の信号をビーム調整システムに送信することによりターゲット材料へと誘導されるエネルギの量を制御するように構成されており、ビーム調整システムは、光学源の一又は複数の特徴を調整し、それによってターゲット材料へと誘導されるエネルギの量を制御するように構成されている。
【0033】
光学源は、第1の放射ビームが通過する第1組の一又は複数の光アンプと、第2の放射ビームが通過する第2組の一又は複数の光アンプとを含んでいてもよく、第1組の光アンプのうち少なくとも1つは第2組にある。測定システムは、第1の放射ビームが初期ターゲットロケーションの方に誘導される際に第1の放射ビームのエネルギを測定可能である。制御システムは、測定されたエネルギを測定システムから受信するように、及び、一又は複数の信号を光学源に送信して、第1の放射ビームからターゲット材料へと誘導されるエネルギの量を測定されたエネルギに基づいて制御するように構成されていてもよい。
【0034】
いくつかの一般的な態様において、ある方法は、プラズマに変換されたときに極端紫外線(EUV)光を放出する成分を含むターゲット材料を提供すること、第1の放射ビームをターゲット材料の方に誘導してエネルギをターゲット材料へと送出し、ターゲット材料の幾何分布を修正して修正されたターゲットを形成すること、修正されたターゲットの少なくとも一部をEUV光を放出するプラズマに変換する第2の放射ビームを修正されたターゲットの方に誘導すること、第1の放射ビームからターゲット材料へと送出される放射露光を所定の放射露光の範囲内に制御すること、及び、第1の放射ビームからターゲット材料へと送出される放射露光を所定の放射露光の範囲内に制御することによってプラズマから放出されるEUV光のパワーを安定化すること、を含む。
【0035】
実装形態は以下の特徴のうち一又は複数を含み得る。例えば、第1の放射ビームは、一又は複数の第1の光アンプを含む第1組の光学コンポーネントを通じて第1の放射ビームを誘導することによって誘導され得る。第2の放射ビームは、一又は複数の第2の光アンプを含む第2組の光学コンポーネントを通じて第2の放射ビームを誘導することによって誘導され得る。第1組の光学コンポーネントは第2組の光学コンポーネントとは異なり及び分離していてもよい。
【0036】
第1の放射ビームは、第1組の一又は複数の光アンプを通じて第1の放射ビームを誘導することによって誘導され得る。第2の放射ビームは、第2組の一又は複数の光アンプを通じて第2の放射ビームを誘導することによって誘導され得る。ここで、第1組の光アンプのうち少なくとも1つは第2組にある。
【0037】
ターゲット材料は、ターゲット材料の液滴を提供することによって提供され得る。ターゲット材料の幾何分布は、ターゲット材料の液滴を略平面を有する溶融金属のディスク状の塊に変態させることによって修正可能である。
【0038】
ターゲット材料は、ターゲット材料の液滴を提供することによって提供され得る。ターゲット材料の幾何分布は、ターゲット材料の液滴を溶融金属粒子の霧状の塊に変態させることによって修正可能である。
【0039】
ターゲット材料は膨張率に従って修正されたターゲットへと変態されてもよい。
【0040】
第1の放射ビームからターゲット材料へと送出される放射露光は、ターゲット材料と第1の放射ビームに関して修正されたターゲットとのうち一又は複数に関連する一又は複数の特性を測定すること、及び、第1の放射ビームからターゲット材料へと送出される放射露光の量を一又は複数の測定された特性に基づいて所定の放射露光の範囲内に維持することによって制御可能である。
【0041】
第1の放射ビームからターゲット材料へと送出される放射露光は、修正されたターゲットの膨張率を推定することによって制御されてもよい。第1の放射ビームからターゲット材料へと送出される放射露光は、修正されたターゲットの膨張率を維持することによって制御されてもよい。
【0042】
第1の放射ビームからターゲット材料へと送出される放射露光は、第1の放射ビームの特徴が調整されるべきかどうかを決定することによって制御されてもよい。第1の放射ビームからターゲット材料へと送出される放射露光は、第1の放射ビームの各パルスのエネルギ含量とターゲット材料と相互作用する第1の放射ビームのエリアとのうち一又は複数を調整することで第1の放射ビームの特徴を調整することによって制御可能である。第1の放射ビームの各パルスのエネルギ含量は、第1の放射ビームの各パルスの幅と、第1の放射ビームの各パルスの持続時間と、第1の放射ビームの各パルスのパワーとのうち一又は複数を調整することによって調整可能である。
【0043】
プラズマから放出されるEUV光のパワーは、プラズマから放出されるEUV光の少なくとも一部がウェーハを露光している間にEUV光のパワーを安定させることによって安定化することができる。
【0044】
この方法は、放出されるEUV光の少なくとも一部を収集すること、及び、収集されたEUV光をウェーハの方に誘導してウェーハをEUV光に露光させることも含み得る。
【0045】
ターゲット材料の幾何分布は、ターゲット材料の形状を修正されたターゲットへと変態させることによって修正可能であり、これは修正されたターゲットを少なくとも1つの軸に沿って膨張率に従い膨張させることを含む。
【0046】
第1の放射ビームからターゲット材料へと送出される放射露光は、第1の放射ビームのプロパティを調整することによって制御可能である。第1の放射ビームのプロパティは、第1の放射ビームのエネルギを調整することによって調整可能である。
【0047】
他の一般的な態様において、ある装置は、第1の放射ビームを受信する初期ターゲットロケーションと第2の放射ビームを受信するターゲットロケーションとを定義するチャンバと、プラズマに変換されたときに極端紫外線(EUV)光を放出する材料を含むターゲット材料を初期ターゲットロケーションに提供するように構成されたターゲット材料デリバリシステムと、第1の放射ビーム及び第2の放射ビームを生成するように構成された光学源と、光操向システムと、を含む。光操向システムは、第1の放射ビームを初期ターゲットロケーションの方に誘導してエネルギをターゲット材料へと送出し、ターゲット材料の幾何分布を修正して修正されたターゲットを形成するように、及び、第2の放射ビームをターゲットロケーションの方に誘導して修正されたターゲットの少なくとも一部をEUV光を放出するプラズマに変換するように構成されている。装置は、ターゲット材料デリバリシステムと、光学源と、光操向システムとに接続され、及び、一又は複数の信号を光学源に送信して第1の放射ビームからターゲット材料へと送出される放射露光の量を所定の放射露光の範囲内に制御することによってプラズマから放出されるEUV光のパワーを安定化するように構成された、制御システムを含む。
【0048】
実装形態は以下の特徴のうち一又は複数を含み得る。例えば、装置は、ターゲット材料と第1の放射ビームに関して修正されたターゲットとのうち一又は複数に関連する一又は複数の特性を測定する測定システムも含んでいてもよく、制御システムは測定システムに接続されている。
【0049】
装置はビーム調整システムも含み得る。ここで、ビーム調整システムは光学源及び制御システムに接続されており、制御システムは、一又は複数の信号を光学源に送信して、一又は複数の信号をビーム調整システムに送信することによりターゲット材料へと送出される放射露光の量を制御するように構成されており、ビーム調整システムは、光学源の一又は複数の特徴を調整し、それによってターゲット材料へと送出される放射露光の量を制御するように構成されている。
【発明を実施するための形態】
【0051】
極端紫外線(EUV)光生成の変換効率を高めるための技術が開示される。
図1を参照すると、以下で詳述するように、ターゲット材料120と第1の放射ビーム110との相互作用がターゲット材料を変形させるとともに幾何学的に膨張させ、それによって修正されたターゲット121が形成される。修正されたターゲット121の幾何学的な膨張率は、修正されたターゲット121と第2の放射ビーム115との相互作用によって生じるプラズマから変換された使用可能なEUV光130の量を増大させるように制御される。使用可能なEUV光130の量とは、光学装置145での使用のために利用することのできるEUV光130の量である。したがって、使用可能なEUV光130の量は、EUV光130を利用するために使用される光学コンポーネントの帯域幅又は中心波長など、様々な観点(aspect)によって決まり得る。
【0052】
修正されたターゲット121の幾何学的な膨張率の制御は、修正されたターゲット121が第2の放射ビーム115と相互作用するときの修正されたターゲット121の大きさ又は幾何学的な観点の制御を可能にする。例えば、修正されたターゲット121の幾何学的な膨張率を調整すると、第2の放射ビーム115と相互作用するときの修正されたターゲット121の密度が調整される。なぜなら、修正されたターゲット121が第2の放射ビーム115と相互作用するときの修正されたターゲット121の密度は、修正されたターゲット121によって吸収される放射の総量及びそのような放射が吸収される範囲に影響するからである。修正されたターゲット121の密度が高まるにつれ、EUV光130はいつしか修正されたターゲット121から逃れられなくなり、したがって使用可能なEUV光130の量は低下し得る。別の一例としては、修正されたターゲット121の幾何学的な膨張率を調整すると、修正されたターゲット121が第2の放射ビーム115と相互作用するときの修正されたターゲット121の表面積が調整される。
【0053】
このようにして、生成される使用可能なEUV光130の全体量は、修正されたターゲット121の膨張率を制御することによって増大又は制御され得る。特に、修正されたターゲット121の大きさ及び膨張率は、第1の放射ビーム110からターゲット材料120に適用される放射露光に依存する。この放射露光とは、第1の放射ビーム110によってターゲット材料120のうちあるエリアに送出されるエネルギの量である。したがって、修正されたターゲット121の膨張率は、単位面積当たりターゲット材料120に送出されるエネルギの量を維持又は制御することによって維持又は制御可能である。ターゲット材料120に送出されるエネルギの量は、ターゲット材料の表面に衝突する直前の第1の放射ビーム110のエネルギに依存する。
【0054】
第1の放射ビーム110のパルスのエネルギは、高速フォトディテクタによって測定されたレーザパルス信号を積分することによって決定され得る。ディテクタは、長波長赤外(LWIR)放射に適した光電磁(PEM)ディテクタ、近赤外(IR)放射を測定するためのInGaAsダイオード、又は可視赤外放射もしくは近赤外放射用のシリコンダイオードであってもよい。
【0055】
修正されたターゲット121の膨張率は、少なくとも部分的には、ターゲット材料120によってインターセプトされる第1の放射ビーム110のパルスのエネルギの量に依存する。仮定的な基本設計では、ターゲット材料120は常に同じ大きさであり及び合焦された第1の放射ビーム110のウエストに配置されるものとされる。しかし、実用では、ターゲット材料120は、第1の放射ビーム110のビームウエストに対して小さいが大体一定の軸方向の位置オフセットを有し得る。これらの要因のすべてが一定のままである場合、修正されたターゲット121の膨張率を制御する1つの要因は、数ns乃至100nsの持続時間を有する第1の放射ビームのパルスについての第1の放射ビーム110のパルスエネルギである。第1の放射ビーム110のパルスが100ns以下の持続時間を有する場合に修正されたターゲット121の膨張率を制御することのできる別の1つの要因は、第1の放射ビーム110の瞬時ピークパワーである。後述するように、第1の放射ビーム110のパルスがより短い、例えばピコ秒(ps)程度の持続時間を有する場合には、他の要因が修正されたターゲット121の膨張率を制御し得る。
【0056】
図1に示すように、レーザ生成プラズマ(LPP)極端紫外線(EUV)光源100を駆動するために、光学源105(駆動源又はドライブレーザとも称される)が用いられる。光学源105は、第1のターゲットロケーション111に提供される第1の放射ビーム110及び第2のターゲットロケーション116に提供される第2の放射ビーム115を生成する。第1及び第2の放射ビーム110,115はパルス状の増幅光ビームであってもよい。
【0057】
第1のターゲットロケーション111はターゲット材料供給システム125からスズなどのターゲット材料120を受け取る。第1の放射ビーム110とターゲット材料120との相互作用がエネルギをターゲット材料120へと送出してその形状を修正又は変更(例えば変形)するので、ターゲット材料120の幾何分布は変形されて修正されたターゲット121となる。ターゲット材料120は一般的に、ターゲット材料供給システム125から−X方向に沿って、又はターゲット材料120を第1のターゲットロケーション111内に配置する方向に沿って、誘導される。第1の放射ビーム110がエネルギをターゲット材料120に送出して修正されたターゲット121へと変形させた後、修正されたターゲット121は、Z方向に平行な方向など別の方向に沿って移動することに加え、−X方向に沿って移動し続けてもよい。修正されたターゲット121が第1のターゲットロケーション111から遠ざかるように移動するにつれ、幾何分布は、修正されたターゲット121が第2のターゲットロケーション116に到達するまで、変形し続ける。(第2のターゲットロケーション116における)第2の放射ビーム115と修正されたターゲット121との相互作用は、修正されたターゲット121の少なくとも一部を、EUV光又は放射130を放出するプラズマ129に変換する。光コレクタシステム(又は光コレクタ)135は、EUV光130を収集し、収集されたEUV光140としてリソグラフィツールなどの光学装置145の方に誘導する。第1及び第2のターゲットロケーション111,116ならびに光コレクタ135は、EUV光140の生成に適した制御環境を提供するチャンバ165内に収容されていてもよい。
【0058】
ターゲット材料120のうちいくらかは第1の放射ビーム110と相互作用するときにプラズマに変換されることが可能であり、したがってそのようなプラズマがEUV放射を放出し得る。しかしながら、第1の放射ビーム110のプロパティは、第1の放射ビーム110によるターゲット材料120への主たる作用が、ターゲット材料120の幾何分布を変形又は修正して修正されたターゲット121を形成することであるように、選択及び制御される。
【0059】
第1の放射ビーム110及び第2の放射ビーム115の各々は、ビームデリバリシステム150によって各ターゲットロケーション111,116の方へと誘導される。ビームデリバリシステム150は、光学操向コンポーネント152と、第1又は第2の放射ビーム110,115をそれぞれ第1及び第2の焦点領域に合焦させる焦点アセンブリ156とを含み得る。第1及び第2の焦点領域は、それぞれ第1のターゲットロケーション111及び第2のターゲットロケーション116と重なり合っていてもよい。光学コンポーネント152は、レンズ及び/又はミラーなど、屈折及び/又は反射によって放射ビーム110,115を誘導する光学素子を含み得る。ビームデリバリシステム150は、光学コンポーネント152を制御及び/又は移動する要素も含み得る。例えば、ビームデリバリシステム150は、光学コンポーネント152内の光学素子を移動させるように制御可能なアクチュエータを含んでいてもよい。
【0060】
図2も参照すると、焦点アセンブリ156は、第1の放射ビーム110の直径D1が第1の焦点領域210において最小になるように、第1の放射ビーム110を合焦させる。換言すれば、焦点アセンブリ156は、第1の放射ビーム110を、第1の放射ビーム110の伝搬の一般方向である第1の軸方向212で第1の焦点領域210に向かって伝搬するにつれて収束させる。第1の軸方向212はX−Z軸によって定義される平面に沿って延びている。第1の軸方向212は、この例においてはZ方向に平行又は略平行であるが、Zに対してある角度に沿っていてもよい。ターゲット材料120がない場合には、第1の放射ビーム110は、第1の焦点領域210から第1の軸方向212で遠ざかるように伝搬するにつれて分散する。
【0061】
また、焦点アセンブリ156は、第2の放射ビーム115の直径D2が第2の焦点領域215において最小になるように、第2の放射ビーム115を合焦させる。したがって、焦点アセンブリは、第2の放射ビーム115を、第2の放射ビーム115の伝搬の一般方向である第2の軸方向217で第2の焦点領域215に向かって伝搬するにつれて収束させる。第2の軸方向217もまたX−Z軸によって定義される平面に沿って延びており、この例では、第2の軸方向217はZ方向に平行又は略平行である。修正されたターゲット121がない場合には、第2の放射ビーム115は、第2の焦点領域215から第2の軸方向217に沿って遠ざかるように伝搬するにつれて分散する。
【0062】
後述するように、EUV光源100は、一又は複数の測定システム155、制御システム160、及びビーム調整システム180も含む。制御システム160は、例えば測定システム155、ビームデリバリシステム150、ターゲット材料供給システム125、ビーム調整システム180、及び光学源105など、光源100内の他のコンポーネントに接続されている。測定システム155は、光源100内の一又は複数の特性を測定することができる。この一又は複数の特性は、例えば、ターゲット材料120又は第1の放射ビーム110に関して修正されたターゲット121に関連する特性であり得る。別の一例としては、一又は複数の特性は、ターゲット材料120の方に誘導される第1の放射ビーム110のパルスエネルギであり得る。これらの例については以降で詳細に述べる。制御システム160はこの一又は複数の測定された特性を測定システムから受信するように構成されているので、第1の放射ビーム110がターゲット材料120とどのように相互作用するのかを制御することができる。例えば、制御システム160は、第1の放射ビーム110からターゲット材料120に送出されるエネルギの量を所定のエネルギの範囲内に維持するように構成され得る。別の一例としては、制御システム160は、第1の放射ビーム110からターゲット材料120に誘導されるエネルギの量を制御するように構成され得る。ビーム調整システム180は、光学源105内のコンポーネント又は光学源105内のコンポーネントを調整するコンポーネントを含むシステムであり、それによって第1の放射ビーム110のプロパティ(パルス幅、パルスエネルギ、パルス内の瞬時パワー、又はパルス内の平均パワーなど)を制御する。
【0063】
図3Aを参照すると、実装形態によっては、光学源105は、一連の一又は複数の光アンプを含み第1の放射ビーム110がそれらを通過する第1の光アンプシステム300と、一連の一又は複数の光アンプを含み第2の放射ビーム115がそれらを通過する第2の光アンプシステム305とを含む。第1のシステム300の一又は複数のアンプが第2のシステム305にあってもよい。又は、第2のシステム305の一又は複数のアンプが第1のシステム300にあってもよい。代替的には、第1の光アンプシステム300は第2の光アンプシステム305と完全に分離していてもよい。
【0064】
また、必須ではないが、光学源105は、第1のパルス光ビーム311を生成する第1の光発生装置310と、第2のパルス光ビーム316を生成する第2の光発生装置315とを含み得る。光発生装置310,315は、それぞれが例えばレーザ、主発振器などのシードレーザ、又はランプであってもよい。光発生装置310,315として用いられ得る例示的な光発生装置は、例えば、100kHzの反復率で動作可能なQスイッチ発振器、無線周波数(RF)励起発振器(radio frequency (RF) pumped)、軸流発振器、二酸化炭素(CO
2)発振器である。
【0065】
光アンプシステム300,305内の光アンプはそれぞれが各ビームパス上に利得媒質を含んでおり、各光発生装置310,315からの光ビーム311,316はそのビームパスに沿って伝搬する。光アンプの利得媒質が励起されると、利得媒質は光ビームに光子を提供し、光ビーム311,316を増幅して、第1の放射ビーム110又は第2の放射ビーム115を形成する増幅光ビームを生成する。
【0066】
光ビーム311,316又は放射ビーム110,115の波長は、放射ビーム110,115が光学源105内の任意の点で結合される場合に互いに分離することができるように、互いに異なっていてもよい。放射ビーム110,115がCO
2アンプによって生成される場合には、第1の放射ビーム110は10.26マイクロメートル(μm)又は10.207μmの波長を有し得るとともに、第2の放射ビーム115は10.59μmの波長を有し得る。波長は、分散光学系又はダイクロイックミラー又はビームスプリッタ被覆を用いた2つの放射ビーム110,115の分離をより容易に可能にするように選択される。両放射ビーム110,115が同じアンプチェーンで一緒に伝搬する状況(例えば、光アンプシステム300のアンプのうちいくつかが光アンプシステム305にある状況)では、2つの放射ビーム110,115が同じアンプを通り抜けていても、それらの相対利得を、異なる波長を用いて調整することができる。
【0067】
例えば、放射ビーム110,115は、いったん分離されると、チャンバ165内の2つの別々のロケーション(それぞれ第1及び第2のターゲットロケーション111,116など)に操向又は合焦され得る。特に、放射ビーム110,115の分離は、修正されたターゲット121が、第1の放射ビーム110との相互作用の後で第1のターゲットロケーション111から第2のターゲットロケーション116へと進みつつ膨張することも可能にする。
【0068】
光学源105は、第1の放射ビーム110と第2の放射ビーム115とを重ね合わせて放射ビーム110,115を光学源105とビームデリバリシステム150との間の距離のうち少なくともいくらかについて同一の光路に配置するビームパスコンバイナ325を含み得る。例示的なビームパスコンバイナ325が
図3Bに示されている。ビームパスコンバイナ325は一対のダイクロイックビームスプリッタ340,342と一対のミラー344,346とを含む。ダイクロイックビームスプリッタ340は、第1の放射ビーム110を、ダイクロイックビームスプリッタ342に至る第1のパスに沿って通過させる。ダイクロイックビームスプリッタ340は、第2の放射ビーム115を第2のパスに沿って反射する。この第2のパスにおいて、第2の放射ビーム115はミラー344,346から反射され、これによって第2の放射ビーム115はダイクロイックビームスプリッタ342の方へと誘導し直される。第1の放射ビーム110はダイクロイックビームスプリッタ342を自由に通過して出力パスに至り、その一方で第2の放射ビーム115はダイクロイックビームスプリッタ342から反射されて出力パスに至るので、第1及び第2の放射ビーム110,115の両方が出力パス上で重なり合う。
【0069】
また、光学源105は、2つの放射ビーム110,115が別個に操向されチャンバ165内で合焦され得るように、第1の放射ビーム110を第2の放射ビーム115から分離するビームパスセパレータ326を含んでいてもよい。例示的なビームパスセパレータ326が
図3Cに示されている。ビームパスセパレータ326は一対のダイクロイックビームスプリッタ350,352と一対のミラー354,356とを含む。ダイクロイックビームスプリッタ350は、重ね合わされた放射ビーム対110,115を受信し、第2の放射ビーム115を第2のパスに沿って反射し、第1の放射ビーム110を第1のパスに沿ってダイクロイックビームスプリッタ352の方へと透過する。第1の放射ビーム110は第1のパスに沿って自由にダイクロイックビームスプリッタ352を通過する。第2の放射ビーム115は、ミラー354,356から反射し、ダイクロイックビームスプリッタ352へと戻って、第1のパスとは異なる第2のパスへと反射される。
【0070】
さらに、第1の放射ビーム110は、第2の放射ビーム115のパルスエネルギよりも少ないパルスエネルギを有するように構成され得る。これは、第1の放射ビーム110はターゲット材料120のジオメトリを修正するために用いられるが、第2の放射ビーム115は修正されたターゲット121を変換してプラズマ129にするために用いられるからである。例えば、第1の放射ビーム110のパルスエネルギは、第2の放射ビーム115のパルスエネルギの5分の1乃至100分の1であってもよい。
【0071】
いくつかの実装形態においては、
図4A及び4Bに示されるように、光アンプシステム300又は305はそれぞれ3つの光アンプ401,402,403の組と406,407,408の組とを含むが、1つだけのアンプ又は3つよりも多くのアンプが用いられてもよい。いくつかの実装形態においては、光アンプ406,407,408の各々がCO
2を含む利得媒質を備え、約9.1乃至約11.0μm、とりわけ約10.6μmの波長の光を1000よりも大きい利得で増幅し得る。光アンプ401,402,403は、同様の又は異なる波長で動作されることが可能である。光アンプシステム300,305での使用に適したアンプ及びレーザは、例えばDC励起又はRF励起によって約9.3μm又は約10.6μmの放射を生成し、例えば10kW以上の比較的高パワー及び例えば50kHZ以上の高パルス反復率で動作する、パルスガス放電CO
2アンプのようなパルスレーザデバイスを含み得る。例示的な光アンプ401,402,403又は406,407,408は、コネチカット州ファーミントンのTRUMPF Inc.によって製造されるTruFlow CO
2のような、摩滅のないガス循環及び容量性のRF励起を有する軸流高パワーCO2レーザである。
【0072】
また、必須ではないが、光アンプシステム300及び305のうち一又は複数は、それぞれプリアンプ411,421として作用する第1のアンプを備えていてもよい。プリアンプ411,421は、存在する場合には、コネチカット州ファーミントンのTRUMPF Inc.によって製造されるTruCoax CO
2レーザシステムのような、拡散冷却CO
2レーザシステムであり得る。
【0073】
光アンプシステム300,305は、各光ビーム311,316を誘導及び整形するために、
図4A及び4Bには示されていない光学素子を含んでいてもよい。例えば、光アンプシステム300,305は、ミラーのような反射光学系、ビームスプリッタ又は部分透過性ミラーのような部分透過性光学系、及びダイクロイックビームスプリッタを含み得る。
【0074】
光学源105は光学系320も含み、この光学系は、光学源105を通じて光ビーム311,316を誘導するための、一又は複数の光学系(例えばミラーのような反射光学系、ビームスプリッタのような部分反射性及び部分透過性の光学系、プリズム又はレンズのような屈折光学系、受動光学系、能動光学系など)を含んでいてもよい。
【0075】
光アンプ401,402,403と406,407,408とは別個のブロックとして示されているが、アンプ401,402,403のうち少なくとも1つが光アンプシステム305にあり、アンプ406,407,408のうち少なくとも1つが光アンプシステム300にあることが可能である。例えば、
図5に示されるように、アンプ402,403はアンプ407,408にそれぞれ対応しており、光アンプシステム300,305は、アンプ401,406から出力された2つの光ビームを結合してアンプ402/407及びアンプ403/408を通過する単一のパスにするための(ビームパスコンバイナ325のような)追加的な光学素子500を含む。アンプ及び光学系のうち少なくともいくつかが光アンプシステム300,305の間で重なり合うそのようなシステムにおいては、第1の放射ビーム110と第2の放射ビーム115とは、第1の放射ビーム110の一又は複数の特性の変化が第2の放射ビーム115の一又は複数の特性を変化させ得るように、及びその逆もまた同様であるように、結合され得る。したがって、システム内で第1の放射ビーム110のエネルギ又はターゲット材料120に送出されるエネルギなどのエネルギを制御することがさらに重要になる。また、光アンプシステム300,305は、2つの光ビーム110,115が各ターゲットロケーション111,116に誘導されることを可能にするようにアンプ403/408から出力された2つの光ビーム110,15を分離するための(ビームパスセパレータ326のような)光学素子505も含む。
【0076】
ターゲット材料120は、プラズマに変換されたときにEUV光を放出するターゲット材料を含む任意の材料であり得る。ターゲット材料120は、ターゲット物質と非ターゲット粒子などの不純物とを含むターゲット混合物であってもよい。ターゲット物質とは、EUV領域に輝線を有するプラズマ状態に変換され得る物質である。ターゲット物質は、例えば、液体又は溶融金属の小滴、液体流の一部、固体の粒子はクラスタ、液体小滴に含有される固体の粒子、ターゲット材料の発泡体、又は液体流の一部に含有される固体の粒子であり得る。ターゲット物質は、例えば、水、スズ、リチウム、キセノン、又は、プラズマ状態に変換されたときにEUV領域に輝線を有する任意の材料であり得る。例えば、ターゲット物質は、純スズ(Sn)として、例えばSnBr4、SnBr2、SnH4などのスズ化合物として、例えばスズ−ガリウム合金、スズ−インジウム合金、スズ−インジウム−ガリウム合金といったスズ合金として、又はこれらの合金の任意の組み合わせとして用いられ得る元素スズであってもよい。また、不純物がない状況では、ターゲット材料はターゲット物質のみを含む。以下の議論は、ターゲット材料120がスズなどの溶融金属からなる液滴である一例を提示する。しかしながら、ターゲット材料120は他の形態をとってもよい。
【0077】
ターゲット材料120は、溶融ターゲット材料にターゲット材料供給装置125のノズルを通過させること及びターゲット材料120を第1のターゲットロケーション111へと漂流させることによって、第1のターゲットロケーション111へと提供され得る。いくつかの実装形態においては、ターゲット材料120は、力によって第1のターゲットロケーション111へと誘導されてもよい。
【0078】
ターゲット材料120の形状は、第2のターゲットロケーション116に到達する前に、第1の放射ビーム110からの放射のパルスでターゲット材料120を照射することによって、変更又は修正(例えば変形)される。
【0079】
第1の放射ビーム110とターゲット材料120との相互作用は、ターゲット材料120(及び修正されたターゲット121)の表面から材料を除去し、この除去が、ターゲット材料120を、ターゲット材料120の形状とは異なる形状を有する修正されたターゲット121へと変形させる力を提供する。例えば、ターゲット材料120は液滴に類似の形状を有し得るが、修正されたターゲット121の形状は、第2のターゲットロケーション116に到達するときにディスクの形状(パンケーキ形状など)により近い形状となるように変形する。修正されたターゲット121は、イオン化されていない材料(プラズマでない材料)、又は最小限イオン化された材料であり得る。修正されたターゲット121は、例えば、液体又は溶融金属のディスク、ボイド又は大きなギャップを有さないターゲット材料の連続するセグメント、マイクロ粒子もしくはナノ粒子の霧、又は原子蒸気の雲であってもよい。例えば、
図2に示されるように、修正されたターゲット121は膨張して、大体時間T2−T1(数マイクロ秒(μs)程度であり得る)後に、第2のターゲットロケーション116内で溶融金属のディスク形状片121となる。
【0080】
また、ターゲット材料120(及び修正されたターゲット121)の表面から材料を除去する第1の放射ビーム110とターゲット材料120との相互作用は、修正されたターゲット121にZ方向に沿ったいくらかの推進力又は速度を得させることのできる力を提供し得る。修正されたターゲット121のX方向の膨張及び得られるZ方向の速度は、第1の放射ビーム110のエネルギと、特に、ターゲット材料120に送出される(つまりターゲット材料120によってインターセプトされる)エネルギとに依存する。
【0081】
例えば、ターゲット材料120の大きさが一定であり、及び第1の放射ビーム110のパルスが長い(長いパルスとは数ナノ秒(ns)乃至100nsの持続時間を有するパルスである)場合には、膨張率は第1の放射ビーム110の単位面積当たりのエネルギ(ジュール/cm
2)に線形比例する。単位面積当たりのエネルギは、放射露光又はフルエンスとも称される。放射露光とは、ターゲット材料120の表面が単位面積当たり受信する放射エネルギであり、又は、ターゲット材料120が照射される時間にわたって積算されたターゲット材料120の表面の照射でもある。
【0082】
別の一例として、ターゲット材料120の大きさが一定であり、及びパルスが短い(数百ピコ秒(ps)未満の持続時間を有するもの)場合には、膨張率と第1の放射ビーム110のエネルギとの関係は異なり得る。このレジームでは、短いパルス長はターゲット材料120と相互作用する第1の放射ビーム110の強度の増加と相関し、第1の放射ビーム110は衝撃波のように作用する。このレジームでは、膨張率は、第1の放射ビーム110の強度Iに主に依存し、この強度は、第1の放射ビームのエネルギEを、ターゲット材料120と相互作用する第1の放射ビーム110のスポットの大きさ(断面積A)とパルス長(τ)とで割ったものに等しい。すなわち、I=E/(A・τ)である。このpsパルス長レジームでは、修正されたターゲット121は、霧を形成するように膨張する。
【0083】
また、修正されたターゲット121のディスク形状の角度配向(Z方向又はX方向に対する角度)は、ターゲット材料120に衝突する際の第1の放射ビーム110の位置に依存する。したがって、第1の放射ビーム110がターゲット材料を包含し及び第1の放射ビーム110のビームウエストがターゲット材料120を中心とするように第1の放射ビーム110がターゲット材料120に衝突する場合には、修正されたターゲット121のディスク形状は、X方向に平行な長軸230及びZ方向に平行な短軸235に合わせて整列される可能性が高くなる。
【0084】
第1の放射ビーム110は放射のパルスからなり、各パルスは持続時間を有し得る。同様に、第2の放射ビーム115は放射のパルスからなり、各パルスは持続時間を有し得る。パルス長は、最大値に対するパーセント値(例えば半値)の全幅、すなわち、パルスが少なくともパルスの最大強度のパーセント値である強度を有する時間の量によって表すことができる。もっとも、パルス長を決定するためには他のメトリクスが用いられてもよい。第1の放射ビーム110内のパルスのパルス長は、例えば30ナノ秒(ns)、60ns、130ns、50乃至250ns、10乃至200ピコ秒(ps)、又は1ns未満であり得る。第1の放射ビーム110のエネルギは、例えば1乃至100ミリジュール(mJ)であり得る。第1の放射ビーム110の波長は、例えば1.06μm、1乃至10.6μm、10.59μm、又は10.26μmであり得る。
【0085】
上述のように、修正されたターゲット121の膨張率は、ターゲット材料120をインターセプトする第1の放射ビーム110の放射露光(単位面積当たりのエネルギ)に依存する。したがって、約60nsの持続時間及び約50mJのエネルギを有する第1の放射ビーム110のパルスについては、実際の放射露光は、第1の放射ビーム110が第1の焦点領域210にどれほど密に合焦されるかによって決まる。いくつかの例においては、放射露光はターゲット材料120において約400乃至700ジュール/cm
2であり得る。しかしながら、放射露光は、第1の放射ビーム110に対するターゲット材料120のロケーションに非常に敏感である。
【0086】
第2の放射ビーム115は主ビームとも称され得るもので、ある反復率で解放されたパルスからなる。第2の放射ビーム115は、修正されたターゲット121内のターゲット物質をEUV光130を放出するプラズマに変換するのに十分なエネルギを有する。第1の放射ビーム110のパルスと第2の放射ビーム115のパルスとは、例えば1乃至3マイクロ秒(μs)、1.3μs、1乃至2.7μs、3乃至4μs、又は修正されたターゲット121が
図2に示される所望の大きさのディスク形状へと膨張することを可能にする任意の量の時間などの遅延時間だけ時間的に分離される。したがって、修正されたターゲット121は、修正されたターゲット121がX−Y平面で膨張及び伸長するにつれて二次元的な膨張を行う。
【0087】
第2の放射ビーム115は、修正されたターゲット121に衝突する際にわずかにデフォーカスするように構成され得る。そのようなデフォーカスの体系が
図2に示されている。この場合、第2の焦点領域215は、修正されたターゲット121の長軸230とはZ方向に沿って異なるロケーションにある。さらに、第2の焦点領域215は第2のターゲットロケーション116の外にある。この体系では、第2の焦点領域215は、Z方向に沿って、修正されたターゲット121の前に配置されている。すなわち、第2の放射ビーム115は、第2の放射ビーム115が修正されたターゲット121に衝突する前に焦点(又はビームウエスト)に来る。他のデフォーカス体系が可能である。例えば、
図6に示されるように、第2の焦点領域215は、Z方向に沿って、修正されたターゲット121の後に配置される。こうすると、第2の放射ビーム115は、第2の放射ビーム115が修正されたターゲット121に衝突した後で焦点(又はビームウエスト)に来る。
【0088】
再び
図2を参照すると、修正されたターゲット121が第1のターゲットロケーション111から第2のターゲットロケーション116へと移動(例えば漂流)する際に膨張する割合は、膨張率(ER)と称され得る。第1のターゲットロケーション111では、ターゲット材料120が時刻T1で第1の放射ビーム110によって衝突された直後、修正されたターゲット121は長軸230に沿って範囲(又は長さ)S1を有する。修正されたターゲット121が時刻T2で第2のターゲットロケーション116に到達する際には、修正されたターゲット121は長軸230に沿って範囲(又は長さ)S2を有する。膨張率とは、修正されたターゲット121の長軸230に沿った範囲の差(S2−S1)を時間の差(T2−T1)で割ったものであるから、
【数1】
となる。修正されたターゲット121は長軸230に沿って膨張するが、修正されたターゲット121を短軸235に沿って圧縮し又は薄くすることも可能である。
【0089】
第1の放射ビーム110をターゲット材料120と相互作用させることによって修正されたターゲット121が形成され、その後修正されたターゲット121を第2の放射ビーム115と相互作用させることによって修正されたターゲット121がプラズマに変換される、上述の二段階アプローチは、約3乃至4%の変換効率をもたらす。一般に、光学源105からの光のEUV放射130への変換は増大させるのが望ましい。なぜなら、変換効率が低すぎると、光学源105が送出することを要するパワーの量の増大が必要となり得るためであり、これは光学源105を動作させるためのコストを増大させるとともに、光源100内のすべてのコンポーネントに対する熱負荷を増大させ、第1及び第2のターゲットロケーション111,116を収容するチャンバ内でのデブリ生成の増大に繋がり得る。変換効率を高めることは、大量生産ツールの要件を満たすと同時に光学源パワー要件を許容可能な限度内に保つのに役立ち得る。例えば第1及び第2の放射ビーム110,115の波長、ターゲット材料120、及びパルスの形状、エネルギ、パワー、及び放射ビーム110,115の強度など、様々なパラメータが変換効率に影響を及ぼす。変換効率は、EUV光130によって2πステラジアン及び光コレクタシステム135と光学装置145内の照明及び投影光学系とのうち一方又は両方において用いられる(多層)ミラーの反射率曲線の中心波長を中心として2%の帯域幅に生成されたEUVエネルギを、第2の放射ビーム115の照射パルスのエネルギで割ったものとして定義され得る。一例においては、反射率曲線の中心波長は13.5ナノメートル(nm)である。
【0090】
変換効率を高め、維持し、又は最適化する1つの手法は、EUV光130のエネルギを制御又は安定化することであり、これをするためには、パラメータの中でも、修正されたターゲット121の膨張率を許容可能な値の範囲内に維持することが重要になる。修正されたターゲット121の膨張率は、ターゲット材料120に対する第1の放射ビーム110からの放射露光を維持することによって、許容可能な値の範囲内に維持される。また、放射露光は、ターゲット材料120又は第1の放射ビーム110に関して修正されたターゲット121に関連する一又は複数の測定された特性に基づいて維持され得る。放射露光とは、ターゲット材料120の表面が単位面積当たり受信する放射エネルギである。したがって、放射露光は、ターゲット材料120の面積がパルス毎に一定のままである場合には、ターゲット材料120の表面に向かって誘導されるエネルギの量として推定又は近似され得る。
【0091】
修正されたターゲット121の膨張率を許容可能な値の範囲内に維持するためには様々な方法又は技術がある。そして、用いられる方法又は技術は、第1の放射ビーム110に関連する一定の特性によって決まり得る。変換効率は、ターゲット材料120の大きさもしくは厚さ、第1の焦点領域210に対するターゲット材料120の位置、x−y平面に対するターゲット材料120の角度など、他のパラメータによっても影響される。
【0092】
放射露光がどのように維持されるかに影響を及ぼし得る1つのプロパティは、第1の放射ビーム110の共焦点パラメータである。放射ビームの共焦点パラメータは放射ビームのレーリ長の2倍であり、ローリー長とはウエストから断面積が2倍になるところまでの伝搬方向に沿った距離である。
図2を参照すると、放射ビーム110に関しては、レーリ長は、この第1のビームのウエスト(D1/2)から断面が2倍になるところまでの、第1の放射ビーム110の伝搬方向212に沿った距離である。
【0093】
例えば、
図7Aに示されるように、第1の放射ビーム110の共焦点パラメータは、ビームウエスト(D1/2)がターゲット材料120を容易に包含するほど長く、第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積(X方向にわたって測定される)は、たとえターゲット材料120の位置がビームウエストD1/2のロケーションから外れても、比較的一定のままである。例えば、ロケーションL1で第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積は、ロケーションL2で第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積の20%以内である。第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積が(後述する第2のシナリオと比べて)平均値から外れ難いこの第1のシナリオにおいては、放射露光及びひいては膨張率は、第1の放射ビーム110からターゲット材料120へと誘導されるエネルギの量を維持することによって(第1の放射ビーム110によって露光されるターゲット材料120の表面積を要因として含めることを要さずに)維持又は制御可能である。
【0094】
別の一例としては、
図7Bに示されるように、第1の放射ビーム110の共焦点パラメータは、ビームウエスト(D1/2)がターゲット材料120を包含しないほど短く、第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積は、ターゲット材料120の位置がビームウエストD1/2のロケーションL1から外れれば、平均値から外れる。例えば、ロケーションL1で第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積は、ロケーションL2で第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積とは大きく異なる。第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積が(第1のシナリオにおけるよりも)平均値から外れ易いこの第2のシナリオにおいては、放射露光及びひいては膨張率は、第1の放射ビーム110からターゲット材料120へと送出されるエネルギの量を制御することによって維持又は制御可能である。放射露光を制御するためには、ターゲット材料120の表面が単位面積当たり受信する第1の放射ビーム110の放射エネルギが制御される。したがって、第1の放射ビーム110のパルスのエネルギと、第1の放射ビーム110のうちターゲット材料120が第1の放射ビーム110をインターセプトする面積とを制御することが重要である。第1の放射ビーム110のうちターゲット材料120が第1の放射ビーム110をインターセプトする面積は、第1の放射ビーム110によってインターセプトされるターゲット材料120の表面と相関する。第1の放射ビーム110のうちターゲット材料120が第1の放射ビーム110をインターセプトする面積に影響を及ぼし得る別の要因は、第1の放射ビーム110のビームウエストD1/2のロケーション及び大きさの安定性である。例えば、第1の放射ビーム110のウエストの大きさ及び位置が一定であれば、ターゲット材料120のロケーションをビームウエストD1/2に対して制御することができる。第1の放射ビーム110のウエストの大きさ及び位置は、例えば光学源105における熱影響に起因して変化し得る。概して、第1の放射ビーム110においてパルスの一定のエネルギを維持すること、及び、光学源105の他の観点を制御して、ターゲット材料120がビームウエストD1/2に対して既知の軸方向(Z方向)の位置に、その位置について変動し過ぎることなく到着するようにすることが重要となる。
【0095】
修正されたターゲット121の膨張率を許容可能な値の範囲内に維持又は制御するための説明した方法はすべて、測定システム155の使用を採用する。これを次に説明する。
【0096】
再び
図1を参照すると、測定システム155は、ターゲット材料120、修正されたターゲット121、及び第1の放射ビーム110のうち任意の一又は複数と関連した少なくとも1つの特性を測定する。例えば、測定システム155は、第1の放射ビーム110のエネルギを測定し得る。
図8Aに示されるように、例示的な測定システム855Aは、ターゲット材料120へと誘導される第1の放射ビーム110のエネルギを測定する。
【0097】
図8Bに示されるように、例示的な測定システム855Bは、第1の放射ビーム110がターゲット材料120と相互作用した後でターゲット材料120から反射された放射860のエネルギを測定する。ターゲット材料120からの放射860の反射は、第1の放射ビーム110の実際の位置に対するターゲット材料120のロケーションを決定するために用いられ得る。
【0098】
いくつかの実装形態においては、
図8Cに示されるように、例示的な測定システム855Bは光学源105の光アンプシステム300内に配置されてもよい。この例では、測定システム855Bは、光アンプシステム300内の光学素子のうち1つ(薄膜ポラライザなど)に衝突するか又はそこから反射する、反射された放射860におけるエネルギの量を測定するために配置され得る。ターゲット材料120から反射される放射860の量は、ターゲット材料120に送出されるエネルギの量に比例する。したがって、反射された放射860を測定することによって、ターゲット材料120に送出されたエネルギの量を制御又は維持することができる。また、第1の放射ビーム110又は反射された放射860のいずれかにおいて測定されるエネルギの量は、ビーム中の光子の数と相関する。したがって、測定システム855A又は855Bは各ビーム中の光子の数を測定すると言える。さらに、測定システム855Bは、(第1の放射ビーム110によって衝突されるとすぐに修正されたターゲット121になる)ターゲット材料120から反射された光子の数を、いくつの光子がターゲット材料120に衝突するかの関数として、測定するものと考えられ得る。
【0099】
測定システム855A又は855Bは、光電池のアレイ(例えば2×2のアレイ又は3×3のアレイ)などの光電センサであってもよい。光電池は、測定される光の波長に対する感度を有するとともに、測定される光パルスの持続時間に適した十分な速度又は帯域幅を有する。
【0100】
一般に、測定システム855A又は855Bは、第1の放射ビーム110の伝搬の方向に垂直な方向を横切って空間的に積分されたエネルギを測定することによって、放射ビーム110のエネルギを測定することができる。ビームのエネルギの測定は迅速に実施され得るので、第1の放射ビーム110において放出された各パルスについて測定を行うことが可能であり、したがって、この測定及び制御はパルス毎に行われ得る。
【0101】
測定システム855A、855Bは、長波長赤外(LWIR)放射に適した光電磁(PEM)ディテクタのような高速フォトディテクタであってもよい。PEMディテクタは、近赤外放射もしくは可視放射を測定するためのシリコンダイオード又は近赤外放射を測定するためのInGaAsダイオードであり得る。第1の放射ビーム110のパルスのエネルギは、測定システム855A、855Bによって測定されたレーザパルス信号を積分することによって決定され得る。
【0102】
図9Aを参照すると、測定システム155は、ターゲット位置に対するターゲット材料120の位置Tposを測定する例示的な測定システム955Aであり得る。ターゲット位置は第1の放射ビーム110のビームウエストにあってもよい。ターゲット材料120の位置は、第1の放射ビーム110のビーム軸に平行な方向(第1の軸方向212など)に沿って測定可能である。
【0103】
図9Bを参照すると、測定システム155は、光コレクタ135の主焦点990に対するターゲット材料120の位置Tposを測定する例示的な測定システム955Bであり得る。そのような測定システム955Bは、チャンバ165内の座標系に対するターゲット材料120の位置及びターゲット材料120の到着時間を測定するためにターゲット材料120が接近する際にターゲット材料120で反射するレーザ及び/又はカメラを含んでいてもよい。
【0104】
図9Cを参照すると、測定システム155は、修正されたターゲット121が第2の放射ビーム115と相互作用する前の位置における修正されたターゲット121の大きさを測定する例示的な測定システム955Cであり得る。例えば、測定システム955Cは、修正されたターゲット121が第2のターゲットロケーション116内にあるが修正されたターゲット121が第2の放射ビーム115によって衝突される前に、修正されたターゲット121の大きさSmtを測定するように構成されていてもよい。測定システム955Cは、修正されたターゲット121の配向も決定し得る。測定システム955Cは、パルスバックライト照明装置及びカメラ(電荷結合素子カメラなど)のシャドウグラフ技術を用いてもよい。
【0105】
測定システム155は一組の測定サブシステムを含んでいてもよく、各サブシステムは、特定の特性を異なる速度又はサンプリング間隔で測定するように設計されている。そのような一組のサブシステムは、協働して、第1の放射ビーム110がどのようにターゲット材料120と相互作用して修正されたターゲット121を形成するのかの鮮明な画像を提供し得る。
【0106】
測定システム155は、チャンバ165内に、修正されたターゲット121が第2の放射ビーム115と相互作用した後でこの修正されたターゲットによって生成されるプラズマから放出されたEUVエネルギを検出するための複数のEUVセンサを含んでいてもよい。放出されたEUVエネルギを検出することによって、修正されたターゲット121の角度又は第2の放射ビーム115に対する第2のビームの横方向のオフセットについての情報を得ることができる。
【0107】
ビーム調整システム180は、制御システム160の制御下で、ターゲット材料120に送出されるエネルギの量(放射露光)の制御を可能にするために使用される。放射露光は、第1の放射ビーム110がターゲット材料120と相互作用する位置における第1の放射ビームの面積が一定であると想定され得る場合には、第1の放射ビーム110内のエネルギの量を制御することによって制御可能である。ビーム調整システム180は制御システム160から一又は複数の信号を受信する。ビーム調整システム180は、光学源105の一又は複数の特徴を調整して、ターゲット材料120へと送出されるエネルギの量(すなわち放射露光)を維持するように、又は、ターゲット材料120へと誘導されるエネルギの量を制御するように構成されている。したがって、ビーム調整システム180は、光学源105の特徴を制御する一又は複数のアクチュエータを含んでいてもよく、これらのアクチュエータは、機械力装置、電気力装置、光学力装置、電磁力装置、又は光学源105の特徴を修正する任意の適当な力装置であり得る。
【0108】
いくつかの実装形態においては、ビーム調整システム180は、第1の放射ビーム110に結合されたパルス幅調整システムを含む。パルス幅調整システムは、第1の放射ビーム110のパルス幅を調整するように構成されている。この実装形態においては、パルス幅調整システムは、例えばポッケルスセルのような電気光学変調器を含み得る。例えば、ポッケルスセルは光発生装置310内に配置され、このポッケルスセルをより短い又は長い期間にわたって開くことにより、ポッケルスセルによって伝達されるパルス(及びひいては光発生装置310から放出されるパルス)は、より短く又は長くなるように調整され得る。
【0109】
他の実装形態においては、ビーム調整システム180は、第1の放射ビーム110に結合されたパルスパワー調整システムを含む。パルスパワー調整システムは、第1の放射ビーム110の各パルスのパワーを、例えば各パルス内の平均パワーを調整することによって、調整するように構成されている。この実装形態においては、パルスパワー調整システムは音響光学変調器を含み得る。音響光学変調器は、変調器の端部において圧電トランスデューサに印加されるRF信号の変化が変更され、それによって、音響光学変調器から回折されたパルスのパワーが変化し得るように配置されてもよい。
【0110】
いくつかの実装形態においては、ビーム調整システム180は、第1の放射ビーム110に結合されたエネルギ調整システムを含む。エネルギ調整システムは、第1の放射ビーム110のエネルギを調整するように構成されている。例えば、エネルギ調整システムは、電気的に可変のアテニュエータ(0Vと半波電圧との間で変化するポッケルスセル又は外部の音響光学変調器)であってもよい。
【0111】
いくつかの実装形態においては、ビームウエストD1/2に対するターゲット材料120の位置又は角度は大きく変化するので、ビーム調整システム180は、第1のターゲットロケーション111に対する又はチャンバ165の座標系におけるチャンバ165内の別のロケーションに対するビームウエストD1/2のロケーション又は角度を制御する装置を含む。この装置は焦点アセンブリ156の一部であってもよく、ビームウエストをZ方向に沿って、又はZ方向を横切る方向に沿って(例えばX方向及びY方向によって定義される平面に沿って)移動させるために用いられ得る。
【0112】
上述したように、制御システム160は、測定システム155から受信した情報を分析し、第1の放射ビーム110の一又は複数のプロパティをどのように調整するかを決定し、それによって修正されたターゲット121の膨張率を制御又は維持する。
図10を参照すると、制御システム160は、光学源105とインターフェイスする(光学源105から情報を受信するとともにこれに情報を送信する)ように特に構成されたサブコントローラ1000、測定システム155とインターフェイスするように特に構成されたサブコントローラ1005、ビームデリバリシステム150とインターフェイスするように構成されたサブコントローラ1010、及びターゲット材料供給システム125とインターフェイスするように構成されたサブコントローラ1015のような、光源100の他の部分とインターフェイスする一又は複数のサブコントローラ1000,1005,1010,1015を含み得る。光源100は、
図1及び10には示されていないが制御システム160とインターフェイスし得る他のコンポーネントを含んでいてもよい。例えば、光源100は、液滴位置検出フィードバックシステム及び一又は複数のターゲット又は液滴イメージャのような診断システムを含み得る。ターゲットイメージャは、例えば特定の位置(光コレクタ135の主焦点990など)に対する液滴の位置を示す出力を提供するとともに、この出力を液滴位置検出フィードバックシステムに提供し、このシステムが例えば液滴の位置及び軌道を算出して、そこから液滴毎に又は平均で液滴の位置の誤差が算出され得る。こうして、液滴位置検出フィードバックシステムは、液滴の位置の誤差を入力として制御システム160のサブコントローラに提供する。制御システム160は、レーザ位置、方向、及びタイミング補正信号を、例えば、一例としてレーザタイミング回路を制御するために用いられ得る光学源105内のレーザ制御システムに、及び/又は、ビーム伝送システムの増幅光ビームの位置及び整形を制御するためのビーム制御システムに提供して、第1の放射ビーム110又は第2の放射ビーム115の焦点面のロケーション及び/又は集光力を変化させる。
【0113】
ターゲット材料デリバリシステム125はターゲット材料送出制御システムを含んでおり、これは、制御システム160からの信号に応答して、例えば、内部送出機構によって解放されるターゲット材料120の液滴の解放点を、所望のターゲットロケーション111に到着する液滴の誤差を補正するように修正するべく動作可能である。
【0114】
制御システム160は概して、デジタル電子回路、コンピュータハードウェア、ファームウェア、及びソフトウェアのうち一又は複数を含む。制御システム160は、適切な入力及び出力デバイス1020、一又は複数のプログラム可能プロセッサ1025、及びプログラム可能プロセッサによる実行のために機械可読記憶デバイスにおいて有形に具現化された一又は複数のコンピュータプログラム製品1030も含み得る。また、サブコントローラ1000,1005,1010,1015のようなサブコントローラの各々は、固有の適切な入力及び出力デバイス、一又は複数のプログラム可能プロセッサ、及びプログラム可能プロセッサによる実行のために機械可読記憶デバイスにおいて有形に具現化された一又は複数のコンピュータプログラム製品を含み得る。
【0115】
一又は複数のプログラム可能プロセッサは、各々が、入力データに対して動作し適切な出力を生成することによって所望の機能を実施するように、命令のプログラムを実行し得る。一般に、プロセッサは、読み出し専用メモリ及び/又はランダムアクセスメモリから命令及びデータを受信する。コンピュータプログラム命令及びデータを有形に具現化するのに適した記憶デバイスはあらゆる形態の不揮発性メモリを含み、これは例えば、EPROM、EEPROM、及びフラッシュメモリデバイスのような半導体メモリデバイスや、内部ハードディスク及びリムーバブルディスクのような磁気ディスクや、光磁気ディスクや、CD−ROMディスクを含む。前述のものはいずれも、特別に設計されたASIC(特定用途向け集積回路)によって補われてもよいし、又はそこに組み込まれてもよい。
【0116】
そのため、制御システム160は、一又は複数の測定システム155から測定データを受信する分析プログラム1040を含んでいる。一般に、分析プログラム1040は、第1の放射ビーム110からターゲット材料120へと送出されるエネルギをどのように修正もしくは制御するかを決定するため、又は、第1の放射ビーム110のエネルギを修正もしくは制御するために必要な分析のすべてを実施するものであって、そうした分析は、測定データがパルス毎に得られるのであれば、パルス毎に行われ得る。
【0117】
図11を参照すると、(制御システム160の制御下にある)光源100は、修正されたターゲット121の膨張率(ER)を維持又は制御し、それによって光源100の変換効率を高めるために、手順1100を実施する。光源100は、ターゲット材料120を提供する(1105)。例えば、(制御システム160の制御下にある)ターゲット材料供給システム125がターゲット材料120を第1のターゲットロケーション111へと送出してもよい。ターゲット材料供給システム125は、(制御システム160に接続された)固有の作動システムと、ターゲット材料を送り出すノズルとを含んでいてもよく、作動システムは、ノズルを通じて誘導されるターゲット材料の量を制御して、第1のターゲットロケーション111の方に誘導される液滴流を生成する。
【0118】
次に、光源100は、第1の放射ビーム110をターゲット材料120の方に誘導してエネルギをターゲット材料120へと送出し、ターゲット材料120の幾何分布を修正して、修正されたターゲット121を形成する(1110)。特に、第1の放射ビーム110は、一又は複数の光アンプの第1の組300を通じてターゲット材料120の方に誘導される。例えば、光学源105は制御システム160によって作動されて(パルスの形態の)第1の放射ビーム110を生成してもよく、これが
図2に示されるようにターゲットロケーション111内のターゲット材料120の方に誘導され得る。第1の放射ビーム110の焦点面(ビームウエストD1/2にある)は、ターゲットロケーション111と交差するように構成されてもよい。また、いくつかの実装形態においては、焦点面はターゲット材料120又は第1の放射ビーム110に対向するターゲット材料120の端部と重なり合っていてもよい。第1の放射ビーム110は、例えばビームデリバリシステム150を通じて第1の放射ビーム110を誘導することによって、ターゲット材料120へと誘導され得る(1110)。ビームデリバリシステムでは、放射110がターゲット材料120と相互作用するように放射110の方向又は形状又は発散度を修正するために様々な光学系が用いられ得る。
【0119】
第1の放射ビーム110は、ターゲット材料120を第1の放射ビーム110のうち共焦点パラメータを包含するエリアと重ね合わせることによって、ターゲット材料120の方に誘導可能である(1110)。いくつかの実装形態においては、第1の放射ビーム110の共焦点パラメータは、ビームウエスト(D1/2)がターゲット材料120を容易に包含するほど長く、第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積(X方向にわたって測定される)は、たとえターゲット材料120の位置が(
図7Aに示されるように)ビームウエストD1/2のロケーションから外れても、比較的一定のままである。例えば、第1の放射ビーム110の共焦点パラメータは、1.5mmよりも大きくてもよい。他の実装形態においては、第1の放射ビーム110の共焦点パラメータは、ビームウエスト(D1/2)がターゲット材料120を包含しないほど短く、第1の放射ビーム110によってインターセプトされるターゲット材料120の表面の面積は、ターゲット材料120の位置が(
図7Bに示されるように)ビームウエストD1/2のロケーションL1から外れれば、かなり外れる。例えば、共焦点パラメータは一例として2mm以下であってもよい。
【0120】
修正されたターゲット121は、第1の放射ビーム110による衝突の直後のターゲット材料120の形状から膨張形状へと形状を変化させ、この膨張形状は、第1のターゲットロケーション111から遠ざかるように第2のターゲットロケーション116の方へと漂流するにつれて変形し続ける。修正されたターゲット121は、ターゲット材料の形状から(
図1及び2に示されるもののような)略平坦面を有する溶融金属のディスク状の塊へと変形する幾何分布を有し得る。修正されたターゲット121は膨張率に従ってディスク状の塊へと変態される。修正されたターゲット121は、修正されたターゲット121を少なくとも1つの軸に沿って膨張率に従い膨張することによって変態される。例えば、
図2に示されるように、修正されたターゲット121は少なくともX方向に概ね平行な長軸230に沿って膨張される。修正されたターゲット121は、第2の放射ビーム115の光軸(これは第2の軸方向217である)と平行でない少なくとも1つの軸に沿って膨張される。
【0121】
第1の放射ビーム110は主としてターゲット材料120の形状を変化させることによってターゲット材料120と相互作用するが、第1の放射ビーム110は、他の手法でターゲット材料120と相互作用することが可能である。例えば、第1の放射ビーム110は、ターゲット材料120の一部を、EUV光を放出するプラズマに変換し得る。もっとも、ターゲット材料120から作り出されるプラズマからは、(修正されたターゲット121と第2の放射ビーム115との後続の相互作用によって)修正されたターゲット121から作り出されるプラズマからよりも少ないEUV光が放出され、第1の放射ビームは110からのターゲット材料120に対する主な作用は、ターゲット材料120の幾何分布を修正して修正されたターゲット121を形成することである。
【0122】
光源100は、第2の放射ビーム115が修正されたターゲット121の少なくとも一部をEUV光を放出するプラズマ129に変換するように、第2の放射ビームを修正されたターゲット121の方に誘導する(1115)。特に、光源100は、第2の放射ビーム115を、一又は複数の光アンプの第2の組305を通じて、修正されたターゲット121の方に誘導する。例えば、光学源105は制御システム160によって作動されて(パルスの形態の)第2の放射ビーム115を生成してもよく、これが
図2に示されるように第2のターゲットロケーション116内の修正されたターゲット121の方に誘導され得る。
図5に示される例のように、第1の組300の少なくとも1つの光アンプが第2の組305にあってもよい。
【0123】
光源100は、ターゲット材料120と第1の放射ビーム110に関して修正されたターゲット121とのうち一又は複数に関連する一又は複数の特性(例えばエネルギ)を測定する(1120)。例えば、測定システム155が制御システム160の制御下で特性を測定し、制御システム160が測定システム155から測定データを受信する。光源100は、ターゲット材料120における第1の放射ビーム110からの放射露光を、一又は複数の測定された特性に基づいて制御する(1125)。上述のように、放射露光とは、第1の放射ビーム110からターゲット材料120に送出される、単位面積当たりの放射エネルギの量である。換言すれば、放射露光とは、ターゲット材料120の表面が単位面積当たり受信する放射エネルギである。
【0124】
いくつかの実装形態においては、測定可能な特性(1120)は、第1の放射ビーム110のエネルギである。他の一般的な実装形態においては、測定可能な特性(1120)は、第1の放射ビーム110の位置に対する(例えば第1の放射ビーム110のビームウエストに対する)ターゲット材料120の位置であり、そのような位置は、長手(Z)方向又はその長手方向を横切る(例えばX−Y平面の)方向で決定され得る。
【0125】
第1の放射ビーム110のエネルギは、(
図8B及び8Cに示されるように)ターゲット材料120の光反射面から反射された放射860のエネルギを測定することによって測定可能である。ターゲット材料120の光反射面から反射された放射860のエネルギは、4つの個々の光電池にわたる放射860の全強度を測定することによって測定可能である。
【0126】
後方反射された放射860の全エネルギ含量は、第1の放射ビーム110についての他の情報と組み合わせて、Z方向又はZ方向を横切る(X−Y平面などの)方向のいずれかに沿ったターゲット材料120と第1の放射ビーム110のビームウエストとの相対的な位置を決定するために用いられ得る。あるいは、後方反射された放射860の全エネルギ含量は、(他の情報とともに)Z方向に沿ったターゲット材料120と第1の放射ビームのビームウエストとの相対的な位置を決定するために用いられ得る。
【0127】
第1の放射ビーム110のエネルギは、(
図8Aに示されるように)ターゲット材料120の方に誘導される第1の放射ビーム110のエネルギを測定することによって測定可能である。第1の放射ビーム110のエネルギは、第1の放射ビーム110の伝搬の方向(第1の軸方向212)に垂直な方向を横切って空間的に積分されたエネルギを測定することによって測定可能である。
【0128】
いくつかの実装形態においては、測定可能な特性(1120)は、(
図8Aに示されるように)第1の放射ビーム110がターゲット材料120の方へと進む際のポインティング又は方向である。このポインティングについての情報は、ターゲット材料120の位置と第1の放射ビーム110の軸との重ね合わせ誤差を決定するために用いられ得る。
【0129】
いくつかの実装形態においては、測定可能な特性(1120)は、ターゲット位置に対するターゲット材料120の位置である。ターゲット位置はZ方向に沿った第1の放射ビーム110のビームウエスト(D1/2)にあってもよい。ターゲット材料120の位置は、第1の軸方向212に平行な方向に沿って測定可能である。ターゲット位置は、光コレクタ135の主焦点990に対して測定可能である。ターゲット材料120の位置は、2つ以上の非平行の方向に沿って測定されてもよい。
【0130】
いくつかの実装形態においては、測定可能な特性(1120)は、第2の放射ビームが修正されたターゲットの少なくとも一部をプラズマに変換する前の修正されたターゲットの大きさである。
【0131】
いくつかの実装形態においては、測定可能な特性(1120)は、修正されたターゲットの膨張率の推定に対応する。
【0132】
いくつかの実装形態においては、測定可能な特性(1120)は、(
図8B及び8Cに示されるように)ターゲット材料120の光反射面から反射された放射860の空間的特性に対応する。そのような情報は、(例えばZ方向に沿った)ターゲット材料120と第1の放射ビーム110のビームウエストとの相対的な位置を決定するために用いられ得る。この空間的特性は、反射された放射860のパス内に配置された非点収差撮像システムを用いることによって決定又は測定可能である。
【0133】
いくつかの実装形態においては、測定可能な特性(1120)は、第1の放射ビーム110の角度に対して放射860が向けられる角度に対応する。この測定された角度は、Z方向を横切る方向に沿ったターゲット材料120と第1の放射ビーム110のビーム軸との間の距離を決定するために用いられ得る。
【0134】
他の実装形態においては、測定可能な特性(1120)は、第1の放射ビーム110がターゲット材料120と相互作用した後で形成される修正されたターゲット121の空間的な観点に対応する。例えば、修正されたターゲット121の角度は、ある方向、例えばZ方向を横切るX−Y平面内の方向に対して測定されてもよい。修正されたターゲット121の角度についてのそのような情報は、Z方向を横切る方向に沿ったターゲット材料120と第1の放射ビーム110の軸との間の距離を決定するために用いられ得る。別の一例としては、修正されたターゲット121の大きさ又は膨張率は、ターゲット材料120と第1の放射ビーム110との相互作用によって修正されたターゲットが最初に形成されてから所定の又は設定された時間の後で測定されてもよい。修正されたターゲット121の大きさ又は膨張率についてのそのような情報は、第1の放射ビーム110のエネルギが一定であることが分かっているのであれば、長手方向(Z方向)に沿ったターゲット材料120と第1の放射ビーム110のビームウエストとの間の距離を決定するために用いられ得る。
【0135】
特性は、第1の放射ビーム110の各パルスについてと同じように速く測定可能である(1120)。例えば、測定システム155がPEM又はクワッドセル(4つのPEMを配置したもの)を含む場合、測定速度はパルス毎と同じように速くなり得る。
【0136】
その一方で、ターゲット材料120又は修正されたターゲット121の大きさ又は膨張率などの特性を測定している測定システム155については、その測定システム155にはカメラを用いることが可能であるが、カメラは一般にずっと遅く、例えばカメラは約1Hz乃至約200Hzの速度で測定し得る。
【0137】
いくつかの実装形態においては、第1の放射ビーム110からターゲット材料120に送出される放射露光の量は、修正されたターゲットの膨張率をそれによって制御又は維持するように制御可能である(1125)。他の実装形態においては、第1の放射ビーム110からターゲット材料120に送出される放射露光の量は、第1の放射ビーム110の特徴が一又は複数の測定された特性に基づいて調整されるべきかどうかを決定することによって、制御可能である(1125)。したがって、第1の放射ビーム110の特徴が調整されるべきであると決定される場合には、例えば、第1の放射ビーム110のパルスのエネルギ含量が調整されてもよく、又は、ターゲット材料120の位置における第1の放射ビーム110の面積が調整されてもよい。第1の放射ビーム110のパルスのエネルギ含量は、第1の放射ビーム110のパルス幅と、第1の放射ビーム110のパルス長と、第1の放射ビーム110のパルスの平均パワー又は瞬時パワーとのうち一又は複数を調整することによって調整可能である。ターゲット材料120と相互作用する第1の放射ビーム110の面積は、ターゲット材料120と第1の放射ビーム110のビームウエストとの(Z方向に沿った)相対的な軸方向の位置を調整することによって調整可能である。
【0138】
いくつかの実装形態においては、一又は複数の特性は、第1の放射ビーム110の各パルスについて測定可能である(1120)。このようにして、第1の放射ビーム110の特徴が第1の放射ビーム110の各パルスについて調整されるべきかどうかが決定され得る。
【0139】
いくつかの実装形態においては、第1の放射ビーム110からターゲット材料120に送出される放射露光は、放出され収集されるEUV光140の少なくとも一部がリソグラフィツールのウェーハを露光している間に放射露光を制御することによって、(例えば許容可能な放射露光の範囲内に)制御可能である。
【0140】
手順1100は、プラズマから放出されたEUV光130の少なくとも一部を(光コレクタ135を用いて)収集すること、及び、収集されたEUV光140をウェーハの方に誘導してウェーハをEUV光140に露光させることも含み得る。
【0141】
いくつかの実装形態においては、一又は複数の測定される特性(1120)は、修正されたターゲット121から反射された光子の数を含む。修正されたターゲット121から反射された光子の数は、いくつの光子がターゲット材料120に衝突するのかの関数として測定可能である。
【0142】
上述のように、手順1100は、ターゲット材料120における第1の放射ビーム110からの放射露光を一又は複数の特性に基づいて制御すること(1125)を含む。例えば、放射露光は、所定の放射露光の範囲内に維持されるように制御され得る1125。放射露光とは、第1の放射ビーム110からターゲット材料120に送出される、単位面積当たりの放射エネルギの量である。換言すれば、放射露光とは、ターゲット材料120の表面が単位面積当たり受信する放射エネルギである。第1の放射ビーム110に露光されるか又はこれによってインターセプトされるターゲット材料120の表面の単位面積が制御される(又は許容可能な範囲内に維持される)場合には、この放射露光という要因は比較的一定のままであり、第1の放射ビーム110のエネルギを許容可能なエネルギの範囲内に維持することによって、ターゲット材料120における放射露光を制御すること又は放射露光を維持すること(1125)が可能である。第1の放射ビーム110に露光されるターゲット材料120の表面の単位面積を許容可能な面積の範囲に維持するためには様々な手法がある。次にこれらについて述べる。
【0143】
ターゲット材料120における第1の放射ビーム110からの放射露光(1125)は、第1の放射ビーム110のパルスのエネルギが、エネルギを変動させ得る擾乱にもかかわらず、(測定された特性1120を用いたフィードバック制御によって)一定のレベル又は許容可能な値の範囲内に維持されるように制御され得る。
【0144】
他の態様では、ターゲット材料120における第1の放射ビーム110からの放射露光(1125)は、第1の放射ビーム110のパルスのエネルギが、測定された特性1120を用いたフィードバック制御によって、第1の放射ビーム110のビームウエストに対するターゲット材料120の位置の長手方向(Z方向)の配置の誤差を補償するべく調整(例えば増大又は減少)されるように制御され得る。
【0145】
第1の放射ビーム110は、光のパルスがターゲット材料120の方に誘導されるように、パルス状の放射ビームであってもよい(1110)。同様に、第2の放射ビーム115は、光のパルスが修正されたターゲット121の方に誘導されるように、パルス状の放射ビームであってもよい(1115)。
【0146】
ターゲット材料120は、ターゲット材料供給システム125から生成されたターゲット材料120の液滴であってもよい。こうしてターゲット材料120の幾何分布が修正されて修正されたターゲット121となってもよく、これが略平坦面を有する溶融金属のディスク状の塊へと変態される。ターゲット材料の液滴は膨張率に従ってディスク状の塊へと変態される。
【0147】
図12を参照すると、光源100によって(制御システム160の制御下で)、修正されたターゲット121と第2の放射ビーム115との相互作用により形成されたプラズマ129によって生成されるEUV光エネルギを安定化するための手順1200が実施される。上述の手順1100と同様に、光源100はターゲット材料120を提供し(1205)、光源100は第1の放射ビーム110をターゲット材料120の方に誘導してエネルギをターゲット材料120へと送出し、ターゲット材料120の幾何分布を修正して修正されたターゲット121を形成し(1210)、光源100は、第2の放射ビームが修正されたターゲット121の少なくとも一部をEUV光を放出するプラズマ129に変換するように、第2の放射ビーム115を修正されたターゲット121の方に誘導する(1215)。光源100は、第1の放射ビーム110からターゲット材料120に適用される放射露光を、手順1110を用いて制御する(1220)。
【0148】
EUV光130のパワー又はエネルギは、放射露光を制御することによって安定化される(1225)。プラズマ129によって生成されるEUVエネルギ(又はパワー)は少なくとも2つの関数に依存し、その第1は変換効率CEであり、第2は第2の放射ビーム115のエネルギである。変換効率とは、第2の放射ビーム115によってプラズマ129に変換される、修正されたターゲット121のパーセント値である。変換効率は、第2の放射ビーム115のピークパワー、第2の放射ビーム115と相互作用するときの修正されたターゲット121の大きさ、所望の位置に対する修正されたターゲット121の位置、修正されたターゲット121と相互作用する時点での第2の放射ビーム115の横断面積又は大きさを含むいくつかの変数に依存する。修正されたターゲット121の位置及び修正されたターゲット121の大きさはターゲット材料120が第1の放射ビーム110とどのように相互作用するのかによって決まるので、第1の放射ビーム110からターゲット材料120に適用される放射露光を制御することによって、修正されたターゲット121の膨張率を制御することが可能であり、ひいてはこれらの2つの要因を制御することができる。このようにして、放射露光を制御することによって変換効率が安定化又は制御されることが可能となり(1220)、したがってプラズマ129によって生成されるEUVエネルギが安定する(1225)。
【0149】
図13も参照すると、いくつかの実装形態においては、第1の放射ビーム110は光学源105内の専用のサブシステム1305Aによって生成されてもよく、第2の放射ビーム115は光学源105内の専用及び別個のサブシステム1305Bによって生成されてもよいので、放射ビーム110,115は、第1及び第2のターゲットロケーション111,116のそれぞれへと向かう途上で、2つの別個のパスを辿る。こうすると、放射ビーム110,115の各々は、ビームデリバリシステム150の各サブシステムを通って進み、したがってそれぞれ別個の光学操向コンポーネント1352A,1352Bと焦点アセンブリ1356A,1356Bとを通って進む。
【0150】
例えば、サブシステム1305Aは固体利得媒質に基づくシステムであってもよく、その一方でサブシステム1305BはCO
2アンプによって生成されるもののような気体利得媒質に基づくシステムであってもよい。サブシステム1305Aとして用いられ得る例示的な固体利得媒質は、エルビウム添加ファイバレーザ及びネオジム添加イットリウムアルミニウムガーネット(Nd:YAG)レーザを含む。この例においては、第1の放射ビーム110の波長は第2の放射ビーム115の波長とは異なり得る。例えば、固体利得媒質を用いる第1の放射ビーム110の波長は約1μm(例えば約1.06μm)であってもよく、気体媒質を用いる第2の放射ビーム115の波長は約10.6μmであってもよい。
【0151】
他の実装形態は特許請求の範囲に記載の範囲内にある。