【課題を解決するための手段】
【0014】
本発明者らは、上記課題を解決するために鋭意検討した結果、特定の樹脂が汎用溶剤への溶解性、架橋温度、架橋に要する時間、耐溶剤性(耐クラック性)、溶剤に対する濡れ性、漏洩電流、絶縁破壊強度、膜にした場合の平坦性、ミクロゲルの何れにも優れていることを見出し本発明を完成するに至った。
【0015】
即ち、本発明は式(1)、式(2)及び式(3)で表される反復単位を含む樹脂、該樹脂を用いた絶縁膜、及び該絶縁膜を用いてなる有機電界効果トランジスタデバイスに関するものである。
【0016】
【化1】
【0017】
(式(1)中、R
1は水素またはC1〜C6のアルキル基を、A
1はC6〜C19のアリール基を、Yはハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1〜C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を表す。また、kは0〜(r−2)の整数を表す。ここで、rはA
1を構成する炭素の総数を表す。)
【0018】
【化2】
【0019】
(式(2)中、R
2は水素またはC1〜C6のアルキル基を、R
3〜R
9はそれぞれ独立して水素、ハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1〜C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を、A
2はC6〜C19のアリール基を、Yは式(1)で定義した置換基を、jは0〜(s−3)の整数を表す。ここで、sはA
2を構成する炭素の総数を表す。)
【0020】
【化3】
【0021】
(式(3)中、R
10は水素またはC1〜C6のアルキル基を、A
3はC6〜C19のアリール基を、Yは式(1)で定義した置換基を、R
11〜R
13はそれぞれ独立して水素、C1〜C6のアルキル基、C6〜C18のアリール基、またはカルボキシアルキル基を、R
14〜R
18はそれぞれ独立して水素、ハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1〜C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を、nは0〜(t−4)の整数を表す。ここで、tはA
3を構成する炭素の総数を表す。また、a及びbは芳香族基A
3上で互いにオルト位の位置にある(隣接する炭素と結合している)単結合を表す。)
以下に本発明を詳細に説明する。
【0022】
本発明の樹脂は、上式(1)、上式(2)及び上式(3)の反復単位を含む。
【0023】
式(1)中、R
1は水素またはC1〜C6のアルキル基を示す。
【0024】
式(1)中のR
1におけるC1〜C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられる。
【0025】
式(1)中、A
1はC6〜C19のアリール基を示す。
【0026】
式(1)中のA
1におけるC6〜C19のアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントラニル基、ビフェニル基等が挙げられる。
【0027】
式(1)中、Yはハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1〜C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を表す。
【0028】
式(1)中のYにおけるハロゲンとしては特に制限がなく、例えば、塩素、フッ素等が挙げられる。
【0029】
式(1)中のYにおけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。
【0030】
式(1)中のYにおけるアルキルエーテル基としては特に制限がなく、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、ブトキシ基等が挙げられる。
【0031】
式(1)中のYにおけるC1〜C18のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられる。
【0032】
式(1)中のYにおけるフルオロアルキル基としては特に制限がなく、例えば、1,1,1−トリフルオロエチル基、1,1,1,2,2−ペンタフルオロプロピル基、1,1,1,2,2,3,3−ヘプタフルオロブチル基等が挙げられる。
【0033】
式(1)中のYにおけるシクロアルキル基としては特に制限がなく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる
式(1)中、kは0〜(r−2)の整数を表す。ここで、rはA
1を構成する炭素数を表す。
【0034】
式(2)中、R
2は水素またはC1〜C6のアルキル基を示す。
【0035】
式(2)中のR
2におけるC1〜C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられる。
【0036】
式(2)中のR
3〜R
9はそれぞれ独立して水素、ハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1〜C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を示す。
【0037】
式(2)中のR
3〜R
9におけるハロゲンとしては特に制限がなく、例えば、塩素、フッ素等が挙げられる。
【0038】
式(2)中のR
3〜R
9におけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。
【0039】
式(2)中のR
3〜R
9におけるアルキルエーテル基としては特に制限がなく、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、ブトキシ基等が挙げられる。
【0040】
式(2)中のR
3〜R
9におけるC1〜C18のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられる。
【0041】
式(2)中のR
3〜R
9におけるフルオロアルキル基としては特に制限がなく、例えば、1,1,1−トリフルオロエチル基、1,1,1,2,2−ペンタフルオロプロピル基、1,1,1,2,2,3,3−ヘプタフルオロブチル基等が挙げられる。
【0042】
式(2)中のR
3〜R
9におけるシクロアルキル基としては特に制限がなく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
【0043】
式(2)中、A
2はC6〜C19のアリール基を示す。
【0044】
式(2)中のA
2におけるC6〜C19のアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントラニル基、ビフェニル基等が挙げられる。
【0045】
式(2)中、Yは式(1)で定義した置換基と同様の置換基を表す。
【0046】
式(2)中、jは0〜(s−3)の整数を表す。ここで、sはA
2を構成する炭素の総数を表す。
【0047】
式(3)中、R
10は水素またはC1〜C6のアルキル基を示す。
【0048】
式(3)中のR
10におけるC1〜C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられる。
【0049】
式(3)中、Yは式(1)で定義した置換基と同様の置換基を表す。
【0050】
式(3)中、R
11〜R
13はそれぞれ独立して水素、C1〜C6のアルキル基、C6〜C18のアリール基、またはカルボキシアルキル基を示す。
【0051】
式(3)中のR
11〜R
13におけるC6〜C18のアリール基としては特に制限がなく、例えば、フェニル基、ナフチル基、アントラニル基、ビフェニル基等が挙げられる。
【0052】
式(3)中のR
11〜R
13におけるC1〜C6のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられる。
【0053】
式(3)中のR
11〜R
13におけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。
【0054】
式(3)中のR
14〜R
18はそれぞれ独立して水素、ハロゲン、シアノ基、カルボキシアルキル基、アルキルエーテル基、アリールエーテル基、C1〜C18のアルキル基、フルオロアルキル基、またはシクロアルキル基を示す。
【0055】
式(3)中のR
14〜R
18におけるハロゲンとしては特に制限がなく、例えば、塩素、フッ素等が挙げられる。
【0056】
式(3)中のR
14〜R
18におけるカルボキシアルキル基としては特に制限がなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。
【0057】
式(3)中のR
14〜R
18におけるアルキルエーテル基としては特に制限がなく、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、ブトキシ基等が挙げられる。
【0058】
式(3)中のR
14〜R
18におけるC1〜C18のアルキル基としては特に制限がなく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられる。
【0059】
式(3)中のR
14〜R
18におけるフルオロアルキル基としては特に制限がなく、例えば、1,1,1−トリフルオロエチル基、1,1,1,2,2−ペンタフルオロプロピル基、1,1,1,2,2,3,3−ヘプタフルオロブチル基等が挙げられる。
【0060】
式(3)中のR
14〜R
18におけるシクロアルキル基としては特に制限がなく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
【0061】
式(3)中、jは0〜(s−3)の整数を表す。ここで、sはA
2を構成する炭素の総数を表す。
【0062】
式(3)中、nは0〜(t−4)の整数を表す。ここで、tはA
3を構成する炭素の総数を表す。また、a及びbは芳香族基A
3上で互いにオルト位の位置にある(隣接する炭素と結合している)単結合を表す。
【0063】
本発明で用いられる具体的な式(1)、式(2)及び式(3)の反復単位を含む重合体は芳香族基を含有し、かつ、酸クロライドと反応する水酸基、アミノ基、チオール基等を含有していなければ何ら制限なく用いることが出来る。
【0064】
本発明において、上式(1)、上式(2)及び上式(3)の反復単位を有する樹脂の分子量に対しては何らの制限もなく、例えば、200〜10,000,000(g/モル)のものを用いることが出来る。得られる樹脂の溶液粘度、及び力学強度の観点から、好ましくは10,000〜1,000,000(g/モル)である。
【0065】
本発明で用いる上式(1)、上式(2)及び上式(3)の反復単位を有する樹脂は光環化性化合物をフリーデルクラフツ・アシル化反応により芳香族基含有重合体に導入することで得られる。ここで、本発明において、該光環化性化合物が一定量以上導入されることで膜とした場合の平坦性が優れ、短時間で光架橋可能となるものであり、芳香族基含有共重合体のみでは平坦性に劣り、光架橋することは出来ない。なお、本発明では、該光環化性化合物の導入の際の温度を15℃以下とすることで、式(2)の反復単位の一部が式(3)の反復単位となるものである(後述するように、式(2)の反復単位の一部が式(3)の反復単位となることでミクロゲルの発生を抑制することができるものである。)。
【0066】
本発明において、光環化性化合物としては、製造が容易な下記式(4)で表される桂皮酸クロリドを用いるのが好ましい。
【0067】
【化4】
【0068】
(式(4)中、R
3〜R
9は式(2)と同様である。)
式(1)の反復単位を含む樹脂に対する前述の酸クロリドの仕込み量は、得られる樹脂の有機溶剤に対する溶解性、及び保存安定性を高めるため、該樹脂が含有する芳香族基1モルに対し0.2〜1.5モルであることが好ましく、さらに好ましくは0.2〜1.2モルである。反応で芳香族基に導入される光反応性基の量は、有機溶剤に対する溶解性、保存安定性、光架橋のし易さ、及び光架橋後の樹脂層の耐溶剤性(耐クラック性)の観点から、0.2〜1.0モルであることが好ましく、更に好ましくは0.2〜0.7モルである。
【0069】
フリーデルクラフツ・アシル化反応により光反応性基が導入される芳香族基含有重合体としては、後述の反応触媒に対し不活性である限り何らの制限もなく、例えば、石油樹脂;ポリ−α−メチルスチレン、ポリ−p−メトキシスチレン、シンジオポリスチレン等のポリスチレン;ポリビニルナフタレン、ポリビニルビフェニル、ポリビニルアントラセン、ポリビニルカルバゾール、ポリビニルフェニルケトン等のポリビニルアリールケトン;スチレンブタジエン共重合体;エチレン・スチレン共重合体;スチレン・アクリロニトリル共重合体;スチレン・アルキルアクリレート共重合体;スチレン・アルキルメタアクリレート共重合体;スチレン・α−フェニルアルキルアクリレート共重合体;スチレン・無水マレイン酸共重合体;スチレン・アクリル酸共重合体;スチレン・4−ビニルピリジン共重合体;スチレン・トランス−1,3−ペンタジエン共重合体;スチレン・2,4,6−トリメチルスチレン共重合体;スチレン・p−アセトキシスチレン共重合体;スチレン・ビニル−トリス(トリメトキシシロキシ)シラン共重合体;スチレン・ビニルベンゾエート共重合体;スチレン・ビニルブチルエーテル共重合体;ポリ(スチレン・エチレン・ブチレン)共重合体;ポリ(スチレン・エチレン・プロピレン)共重合体;ポリ(スチレン・エチレン・プロピレン・ブチレン)共重合体;ポリ(エチレン・スチレン)共重合体;ポリ(プロピレン・スチレン)共重合体;ポリフェニルビニルケトン等のポリアリールビニルケトン類;ポリスチレン−b−ポリ(エチレン・プロピレン)−b−ポリスチレン共重合体;ポリスチレン−b−ポリ(エチレン・ブチレン)−b−ポリスチレン共重合体;ポリスチレン−b−ポリ(エチレン・プロピレン・ブチレン)−b−ポリスチレン共重合体;ポリスチレンとポリイソプレンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリスチレンとポリブタジエンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリスチレン−b−ポリイソブチレン−b−ポリスチレン共重合体、ポリスチレンとポリイソブチレンからなるマルチブロック共重合体、スターポリマー、デンドリマー;ポリビニルナフタレンとポリブタジエン又はポリイソプレンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリビニルナフタレンとポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリビニルアントラセンとポリブタジエン又はポリイソプレンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリビニルアントラセンとポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリビニルビフェニルとポリブタジエン又はポリイソプレンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体の水素添加物;ポリビニルビフェニルとポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリ(スチレン−co−ビニルナフタレン)とポリイソプレン又はポリブタジエンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体、及びその水素添加物;ポリ(スチレン−co−ビニルナフタレン)とポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリ(スチレン−co−ビニルアントラセン)とポリイソプレン又はポリブタジエンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体、及びその水素添加物;ポリ(スチレン-co-ビニルアントラセン)とポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体;ポリ(スチレン−co−ビニルビフェニル)とポリイソプレン又はポリブタジエンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体、及びその水素添加物;ポリ(スチレン−co−ビニルビフェニル)とポリイソブテンからなるジブロック共重合体、マルチブロック共重合体、スターポリマー、デンドリマー、グラフト共重合体等が例示されるが、誘電率を低くして漏洩電流を低減させるため、芳香族炭化水素及び脂肪族炭化水素のみから構成されている重合体を用いるのが好ましい。また、これらの共重合体は2種以上を組み合わせて使用することも出来る。
【0070】
なお、これらのポリマーはラジカル重合、カチオン重合、または、アニオン重合で得られたポリマーを水素添加する二段階の反応により公知の方法で製造出来る。ポリマー中のポリイソプレン連鎖又はポリブタジエン連鎖に含まれる不飽和結合を水素添加する場合、本発明の重合体の性能を損なわない範囲であれば、該不飽和結合が残存していても良く、該不飽和結合量は5モル%以下が好ましい。
【0071】
該フリーデルクラフツ・アシル化反応は、反応触媒を用いて実施することができる。
【0072】
本発明では公知の超強酸を反応触媒として使用することができ、超強酸であれば何ら制限は無く、トリフルオロメタンスルホン酸、フルオロスルフォン酸、フルオロアンチモン酸、カルボラン酸等が例示される。該触媒の添加量は、該反応後の中和操作が煩雑になるのを回避し、かつ、反応率の低下を防ぐため上述の酸クロリドに対し0.1〜1.5倍モルであることが好ましい。
【0073】
該フリーデルクラフツ・アシル化反応は発熱反応であり、本反応は反応温度制御が容易な溶液反応により実施するのが好ましい。本発明において用いられる反応溶剤はフリーデルクラフツ反応に対して安定であれば何ら制限なく使用でき、反応に対し不活性である十分に脱水された塩素系炭化水素溶剤、脂肪族炭化水素溶剤、含硫黄溶剤、ニトリル系溶剤等が好適に用いられる。塩素系炭化水素溶剤としては、塩化メチレン、四塩化炭素、1,1,2−トリクロロエタン、クロロホルム等が、脂肪族炭化水素溶剤としてはシクロヘキサン等が、含硫黄溶剤としては、二硫化炭素、スルホンジメチルスルホキシド、ジメチルスルフェート、ジメチルスルホン等が、ニトリル系溶剤としてはアセトニトリルが例示される。
【0074】
また、本反応系においてはミクロゲルの生成を抑制するため、反応温度は15℃以下が用いられ、反応速度及び経済性の観点から、0〜15℃が好ましい。
【0075】
該フリーデルクラフツ・アシル化反応において、反応時間は特に制限されず、例えば、5時間から100時間が挙げられる。反応率及び経済性の観点から、好ましくは10時間から50時間である。
【0076】
また、式(1)、式(2)及び式(3)の反復単位を有する樹脂は溶解性が損なわれない限り、重合体分子が光反応性基の環化に基づくシクロブテン構造を含有していても良い。
【0077】
該光反応性基の環化に基づくシクロブテン構造としては、下記式(5)及び式(6)で表される構造が挙げられる。
【0078】
【化5】
【0079】
【化6】
【0080】
(式(5)、式(6)中、R
3〜R
9は式(2)と同様である。)
上式(1)、上式(2)及び上式(3)の反復単位を有する樹脂を溶剤に溶解させた溶液を用いて種々の基材上に塗工又は印刷することが出来る。
【0081】
該溶剤としては、該樹脂を溶解する溶剤であれば何ら制限なく用いることができ、例えば、シクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン、N−ヘキシルベンゼン、テトラリン、デカリン、イソプロピルベンゼン、クロロベンゼンなどの芳香族炭化水素;塩化メチレン、1,1,2−トリクロロエチレン等の塩素化脂肪族炭化水素化合物;テトラヒドロフラン、ジオキサン等の脂肪族環状エーテル化合物;メチルエチルケトン、シクロヘキサノン等のケトン化合物;エチルアセテート、ジメチルフタレート、サリチル酸メチル、アミルアセテート等のエステル化合物;n−ブタノール、エタノール、iso−ブタノール等のアルコール類;1−ニトロプロパン、2硫化炭素、リモネン等が例示され、これらの溶剤は必要に応じて混合して使用することが出来る。
【0082】
本発明に係る樹脂は、例えば、スピンコーティング、ドロップキャスト、ディップコーティング、ドクターブレードコーティング、パッド印刷、スキージコート、ロールコーティング、ロッドバーコーティング、エアナイフコーティング、ワイヤーバーコーティング、フローコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等を用いて印刷することが出来る。なお、本発明の絶縁膜はこれらの方法を用いて形成されるものであるため、本発明の絶縁膜は汎用溶剤に対する溶解性に優れることが必要となる。
【0083】
本発明に係る樹脂を絶縁膜として用いる場合、該膜を形成した状態で用いることができ、また、必要に応じて光架橋(光環化)した架橋物として用いることができる。本発明では、該樹脂を光架橋して用いるとき、得られる絶縁膜が架橋物を含有するものとなり、耐溶剤性の点で好適なものとなる。なお、本発明において該膜を形成した後、光架橋せずに絶縁膜として用いる場合には、該膜を形成するのに用いる汎用溶剤には良好な溶解性を示し、更に、該膜の上部に該汎用溶剤とは異なる溶剤を用いて有機半導体層を形成可能なことが必要となる。この際、該膜が有機半導体溶液に対して耐溶剤性(耐クラック性)を持つとき、該膜を形成した状態のままで絶縁膜として用いることが出来る。なお、耐溶剤性(耐クラック性)に優れるものではない場合、印刷法による製膜ができず、印刷法に比べ経済性に劣る蒸着法等の方法により製膜する必要がある。
【0084】
本発明に係る樹脂を絶縁膜として用いる場合、光架橋(光環化)には放射線が用いられ、例えば、波長245〜350nmの紫外線が例示される。照射量は樹脂の組成により適宜変更されるが、例えば、100〜1000mJ/cm
2が挙げられ、架橋度の低下を防止し、かつ、プロセスの短時間化による経済性の向上のため、好ましくは50〜500mJ/cm
2である。紫外線の照射は通常大気中で行うが、必要に応じて不活性ガス中、または一定量の不活性ガス気流下で行うことも出来る。必要に応じて光増感剤を添加して光架橋反応を促進させることも出来る。用いる光増感剤には何ら制限はなく、例えば、ベンゾフェノン化合物、アントラセン化合物、アントラキノン化合物、チオキサントン化合物、ニトロフェニル化合物等が例示されるが、本発明で用いられる樹脂との相溶性が高いベンゾフェノン化合物が好ましい。また、該増感剤は必要に応じて2種以上を組み合わせて使用できる。
【0085】
本発明の樹脂は紫外線により架橋出来るが、必要に応じて加熱しても良い。紫外線照射に加えて加熱する場合の温度は特に制限されないが、用いる樹脂の熱変形を避けるため120℃以下の温度が好ましい。
【0086】
また、本発明の樹脂は、短時間で効率良く架橋することができるものであり、架橋に要する時間を5分以内とすることができる。なお、架橋時間の制御に好適であることから、架橋に要する時間を1〜2分以内とすることが好ましい。
【0087】
本発明の樹脂を製膜して有機電界効果トランジスタ(OFET)における高分子誘電体層として用いることができる。該有機電界効果トランジスタは、例えば、基板上に、ソース電極及びドレイン電極を付設した有機半導体層とゲート電極とをゲート絶縁層(高分子誘電体層)を介して積層することにより得ることができる。
【0088】
本発明の樹脂から得られる絶縁膜は、漏電の原因となる微細な穴(ピンホール)の形成が抑制されるため、低漏洩電流である。また、該絶縁膜は、高分子誘電体層として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、漏洩電流が0.01nA以下であることが好ましい。
【0089】
本発明の樹脂から得られる絶縁膜は溶剤に対する濡れ性に優れるものであり、高分子誘電体層として用いられる場合、ボトムゲート・ボトムコンタクト(BGBC)型及びトップゲート・トップコンタクト(TGTC)型の有機電界効果トランジスタデバイスにおいて該層上のS(ソース)電極及びD(ドレイン)電極を覆う適量の有機半導体溶液を塗布したとき、電極上をくまなく覆うことができるものである。
【0090】
本発明の樹脂から得られる絶縁膜は優れた平坦性を有するものであり、高分子誘電体層として用いられる場合、平坦性の観点から、表面粗さ(Ra)が0.3nm以下であることが好ましい。
【0091】
本発明の樹脂から得られる絶縁膜を、高分子誘電体層として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該FET素子の閾値電圧が0を超えて2.0V以下、または−2.0V以上で0Vより小さいことが好ましい。
【0092】
本発明の樹脂から得られる絶縁膜を、高分子誘電体層として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該OFET素子の移動度が0.20cm/Vs以上であることが好ましい。
【0093】
本発明の樹脂から得られる絶縁膜を、高分子誘電体層として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該OFET素子のオン電流/オフ電流比が10
6以上であることが好ましい。
【0094】
本発明の樹脂から得られる絶縁膜を、高分子誘電体層として用いる場合、有機電界効果トランジスタ(OFET)素子としての実用性の観点から、該OFET素子のソース・ドレイン間電流のヒステリシスが無いことが好ましい。
【0095】
本発明の樹脂から得られる絶縁膜を、高分子誘電体層として用いる場合、有機電界効果トランジスタ(OFET)素子の絶縁破壊強度が、実用性の判断基準とされる4MV/cm以上であることが好ましい。
【0096】
本発明において、該有機電界効果トランジスタ(OFET)はボトムゲート・ボトムコンタクト(BGBC)型、ボトムゲート・トップコンタクト(BGTC)型、トップゲート・ボトムコンタクト(TGBC)型、トップゲート・トップコンタクト(TGTC)型の何れでも良い。ここで、これらの各種構造の有機電界効果トランジスタの内、例えば、ボトムゲート・ボトムコンタクト(BGBC)型素子の構造は、
図1で示される。
【0097】
該OFETにおいて、用いることが出来る基材は素子を作製できる十分な平坦性を確保できれば特に制限されず、例えば、ガラス、石英、酸化アルミニウム、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;プラスチック;金、銅、クロム、チタン、アルミニウム等の金属;セラミックス;コート紙;表面コート不織布等が挙げられ、これらの材料からなる複合材料又はこれらの材料を多層化した材料であっても良い。また、表面張力を調整するため、これらの材料表面をコーティングすることも出来る。
【0098】
基材として用いるプラスチックとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリカーボネート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリメチルペンテン−1、ポリプロピレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリスチレン、ポリイミド、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエステルエラストマー、ポリウレタンエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、スチレンブロック共重合体等が例示される。また、上記のプラスチックを2種以上用いて積層して基材として用いることができる。
【0099】
本発明で用いることが出来るゲート電極、ソース電極、又はドレイン電極としては、金、銀、アルミニウム、銅、チタン、白金、クロム、ポリシリコン、シリサイド、インジウム・錫・オキサイド(ITO)、酸化錫等の導電性材料が例示される。また、これらの導電性材料を複数、積層して用いることもできる。
【0100】
電極の形成(回路パターンの形成)の際に、前記の高分子誘電体層をUV架橋後、遮光マスクを用い、高分子誘電体層表面に真空紫外(VUV)光を照射することで、親水化した回路パターンを形成することができる。VUV光の照射時間は用いる高分子誘電体の構造、及び光源と高分子誘電体層表面間の距離により異なるが、十分な親水化及びプロセスの短時間化による経済性の向上の観点から、1分〜10分が好ましく、更に好ましくは1分〜5分である。
【0101】
また、BGTC型素子では前記の基材上または有機半導体層の上に電極を形成する。この場合、電極の形成方法としては特に制限はなく、蒸着、高周波スパッタリング、電子ビームスパッタリング等が挙げられ、前記導電性材料のナノ粒子を水又は有機溶剤に溶解させたインクを用いて、溶液スピンコート、ドロップキャスト、ディップコート、ドクターブレード、ダイコート、パッド印刷、ロールコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等の方法を採用することも出来る。また、必要に応じて電極上にフルオロアルキルチオール、フルオロアリルチオール等を吸着させる処理を行っても良い。
【0102】
本発明で用いることが出来る有機半導体には何ら制限はなく、N型及びP型の有機半導体の何れも使用することができ、N型とP型を組み合わせたバイポーラトランジスタとしても使用でき、例えば式(F−1)〜(F−10)等が例示される。
【0103】
【化7】
【0104】
【化8】
【0105】
【化9】
【0106】
【化10】
【0107】
【化11】
【0108】
【化12】
【0109】
【化13】
【0110】
【化14】
【0111】
【化15】
【0112】
【化16】
【0113】
本発明において、低分子及び高分子の有機半導体の何れも用いることができ、これらを混合して使用することも出来る。
【0114】
本発明において、有機半導体層を形成する方法としては、有機半導体を真空蒸着する方法、または有機半導体を有機溶剤に溶解させて塗布、印刷する方法等が例示されるが、有機半導体層の薄膜を形成出来る方法であれば何らの制限もない。有機半導体層を有機溶剤に溶解させた溶液を用いて塗布、または印刷する場合の溶液濃度は有機半導体の構造及び用いる溶剤により異なるが、より均一な半導体層の形成及び層の厚みの低減の観点から、0.5〜5重量%であることが好ましい。この際の有機溶剤としては有機半導体が製膜可能な一定の濃度で溶解する限り何ら制限はなく、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン、デカリン、インダン、1−メチルナフタレン、2−エチルナフタレン、1,4−ジメチルナフタレン、ジメチルナフタレン異性体混合物、トルエン、キシレン、エチルベンゼン、1,2,4−トリメチルベンゼン、メシチレン、イソプロピルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、オクチルベンゼン、シクロヘキシルベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,4−ジクロロベンゼン、トリクロロベンゼン、1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、γ−ブチロラクトン、1,3−ブチレングリコール、エチレングリコール、ベンジルアルコール、グリセリン、シクロヘキサノールアセテート、3−メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、アニソール、シクロヘキサノン、メシチレン、3−メトキシブチルアセテート、シクロヘキサノールアセテート、ジプロピレングリコールジアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、1,6−ヘキサンジオールジアセテート、1,3−ブチレングリコールジアセテート、1,4−ブタンジオールジアセテート、エチルアセテート、フェニルアセテート、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル−N−プロピルエーテル、テトラデカヒドロフェナントレン、1,2,3,4,5,6,7,8−オクタヒドロフェナントレン、デカヒドロ−2−ナフトール、1,2,3,4−テトラヒドロ−1−ナフトール、α−テルピネオール、イソホロントリアセチンデカヒドロ−2−ナフトール、ジプロピレングリコールジメチルエーテル、2,6−ジメチルアニソール、1,2−ジメチルアニソール、2,3−ジメチルアニソール、3,4−ジメチルアニソール、1−ベンゾチオフェン、3−メチルベンゾチオフェン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、クロロホルム、ジクロロメタン、テトラヒドロフラン、1,2−ジメトキシエタン、ジオキサン、シクロヘキサノン、アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、アセトフェノン、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、リモネン等が例示されるが、好ましい性状の結晶膜を得るためには有機半導体の溶解力が高く、沸点が100℃以上の溶剤が適しており、キシレン、イソプロピルベンゼン、アニソール、シクロヘキサノン、メシチレン、1,2−ジクロロベンゼン、3,4−ジメチルアニソール、ペンチルベンゼン、テトラリン、シクロヘキシルベンゼン、デカヒドロ−2−ナフトールが好ましい。また、前述の溶剤2種以上を適切な割合で混合した混合溶剤も用いることが出来る。
【0115】
有機半導体層には必要に応じて各種有機・無機の高分子若しくはオリゴマー、又は有機・無機ナノ粒子を固体若しくは、ナノ粒子を水若しくは有機溶剤に分散させた分散液として添加でき、上記高分子誘電体層上に高分子溶液を塗布して保護膜を形成出来る。更に、必要に応じて本保護膜上に各種防湿コーティング、耐光性コーティング等を行うことが出来る。