(58)【調査した分野】(Int.Cl.,DB名)
Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、造形部材を形成する積層造形工程と、
前記造形部材を昇温加熱し、1080℃以上1180℃以下の温度範囲で保持する熱処理工程と、
前記熱処理後の造形部材を、保持温度から800℃迄の温度範囲を110℃/分以上600℃/分未満の冷却速度で冷却する強制冷却工程と、
を有することを特徴とする合金部材の製造方法。
Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、造形部材を形成する積層造形工程と、
前記造形部材を昇温加熱し、1080℃以上1180℃以下の温度範囲で保持する熱処理工程と、
前記熱処理後の造形部材を、保持温度から800℃迄の温度範囲を110℃/分以上600℃/分未満の冷却速度で冷却する強制冷却工程と、
前記強制冷却工程後に、500℃以上900℃未満の温度範囲で時効処理を施す時効処理工程と、
を有することを特徴とする合金部材の製造方法。
前記強制冷却工程は、大気圧以上の、窒素、アルゴン、ヘリウムのうち少なくとも1種の不活性ガスを用いることを特徴とする請求項1または請求項2に記載の合金部材の製造方法。
前記熱処理工程において、800℃から1080℃迄の昇温過程の昇温速度が5℃/分以上であることを特徴とする請求項1〜請求項3のいずれか一項に記載の合金部材の製造方法。
前記積層造形工程における積層造形法に使用する熱源がレーザビームあるいは電子ビームであることを特徴とする請求項1〜請求項4のいずれか一項に記載の合金部材の製造方法。
【発明を実施するための形態】
【0014】
[本発明の基本思想]
まず、本発明者等は、HEAとしての特徴を犠牲にすることなく、形状制御性や延性に優れるHEA部材(以下、合金部材と言う。)を開発すべく、合金組成と製造方法について鋭意研究を重ねた。その結果、Co-Cr-Fe-Ni-Ti-Mo系合金の粉末を用いた積層造形法により造形部材を形成することで、従来の普通鍛造によるHEA部材よりも形状制御性が良く、機械的強度および延性並びに耐食性に優れる合金部材を得ることができた。即ち、1080℃以上1180℃以下の温度範囲における熱処理を施すことでナノスケールの極小粒子が分散析出した微細組織を形成し、これによって機械的強度や延性が共に大きく改善されることが判った。具体的には、部材形状を自由に形成でき、且つニアネットシェイプの合金部材が得られるとともに、この合金部材は良好な機械的特性(例えば、1100 MPa以上の引張強さ、10%以上の破断伸び)を有することが確認された。また、高い孔食発生電位を示し、優れた耐食性も有することが確認された。しかしながら、この合金部材を用いた機械装置について耐食性試験を行った結果、高濃度の酸環境など過酷な条件において更なる耐食性が望まれるものであることが分かった。
【0015】
そこで、本発明者等は、製造方法に由来する合金部材の微細組織と諸特性との関係について調査、研究を重ねた。その結果、熱処理後に粒界に生じる六方晶の析出物を起点として粒界腐食が生じることを知見した。さらに検討をした結果、この六方晶の析出物は熱処理後の冷却速度を制御することによって、析出量を低減できることが分かり本発明に想到した。尚、本発明において、六方晶の析出物とは、合金部材において安定相として生成する六方晶の析出物を含む金属間化合物(以下、六方晶の析出物と記載する。)のことを言う。
【0016】
以上より、本発明の合金部材の製造方法は、
(1)Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、造形部材を形成する積層造形工程と、前記造形部材を昇温加熱し、1080℃以上1180℃以下の温度範囲で保持する熱処理工程と、前記熱処理後の造形部材を、保持温度から800℃迄の温度範囲を110℃/分以上2400℃/分以下の冷却速度で冷却する強制冷却工程と、を有することを基本とする。この強制冷却工程を行うことで、六方晶の析出物の生成を抑え、より高い耐食性を備えることができる。
【0017】
また、強制冷却工程後に、500℃以上900℃未満の温度範囲で時効処理を施す時効処理工程を含ませることができる。即ち、本発明の合金部材の製造方法は、
(2)Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、造形部材を形成する積層造形工程と、前記造形部材を昇温加熱し、1080℃以上1180℃以下の温度範囲で保持する熱処理工程と、前記熱処理後の造形部材を、保持温度から800℃迄の温度範囲を110℃/分以上2400℃/分以下の冷却速度で冷却する強制冷却工程と、前記強制冷却工程後に、500℃以上900℃未満の温度範囲で時効処理を施す時効処理工程と、を有するものである。この時効処理を加えて行うことで、ナノスケールの微小粒子の析出を促進して、主に機械的特性を向上することができる。
【0018】
上記合金部材の製造方法において、以下のような改良や変更を加えることができる。
(3)前記強制冷却工程での冷却速度範囲を、110℃/分以上600℃/分未満とする。この冷却速度範囲であれば、主に高圧ガスを用いた炉内での冷却が可能となり、熱処理後に炉内の不活性ガス雰囲気内で直ぐに冷却工程に入ることができる。
(4)前記強制冷却工程は、大気圧以上の、窒素、アルゴン、ヘリウムのうち少なくとも1種の不活性ガスを用いることができる。このような不活性ガスによるガス冷却を行うことで、熱処理後の炉内での冷却が可能となり、合金部材の表面酸化などによる変質を防ぐことができる。
(5)前記強制冷却工程での冷却速度範囲を、600℃/分以上2400℃/分以下とする。この冷却速度範囲であれば、主に液体を用いた浸漬による浴内での冷却が可能となり、熱処理後に浸漬時間を調節して冷却工程を実施することができる。
(6)前記強制冷却工程は、塩浴、焼入油、ポリマー水溶液のいずれか1種の液体を用いることができる。このような液体による浸漬冷却を行うことで、不活性ガスによるガス冷却よりも高い冷却速度とすることができる。これにより、熱容量の大きい大型の合金部材に対しても全体をより確実に高い冷却速度で冷却することが可能となる。
【0019】
(7)前記熱処理工程において、800℃から1080℃迄の昇温過程の昇温速度を5℃/分以上とすることができる。この昇温速度とすることで、昇温工程における六方晶の析出物の生成を抑制し、熱処理後の六方晶の析出物量の抑制をより確実とすることができる。
(8)前記積層造形工程における積層造形法に使用する熱源としてレーザビームあるいは電子ビームを用いることができる。これにより真空中での積層造形を行えるようになり、合金部材中の酸素、窒素など雰囲気起因の不純物の混入を低減することができる。
【0020】
(9)上記浸漬冷却を用いるときは、液体中で熱処理することもできる。即ち、Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金粉末を用いた積層造形法により、造形部材を形成する積層造形工程と、前記造形部材を昇温加熱し、1080℃以上1180℃以下の温度範囲の液体中で保持する熱処理工程と、前記熱処理後の造形部材を液体に浸漬して、保持温度から800℃迄の温度範囲を600℃/分以上2400℃/分以下の冷却速度で冷却する強制冷却工程と、を有する合金部材の製造方法である。尚、前記熱処理工程で用いる液体は、塩浴、焼入油、ポリマー水溶液のいずれか1種の液体であることが好ましい。
【0021】
また、本発明の合金部材は、
(10)Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる合金部材であって、母相の結晶組織が等軸晶であり、該母相の結晶粒中に、平均粒径100nm以下の極小粒子が分散析出しており、かつ母相の結晶粒界に生じる六方晶の析出物が1体積%未満であることを特徴とする。
【0022】
上記合金部材において、以下のような改良や変更を加えることができる。
(11)前記母相の結晶構造が、面心立方構造または単純立方構造の少なくとも一方を有している。このような結晶構造は、変形能に優れる点でマトリックスとして必要な延性を付与することに有効である。
(12)前記合金部材は、引張強さが1100MPa以上、破断伸びが10%以上、10%沸騰硫酸腐食速度が5mm/年以下であることが好ましい。引張強さの上限は特に限定されるものではなく、例えば1500MPa以上とすることもできる。破断伸びの上限も特に限定されるものではなく、例えば30%とすることができる。耐食性は従来に比べて優れており、例えば10倍の耐食性を発揮できる。このように本発明の合金部材は、機械的特性と延性に優れており、且つ、過酷な環境での耐食性がより優れている。
【0023】
以下、本発明の実施形態について、図面を参照しながら製造方法の手順に沿って説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。
【0024】
<合金部材の製造方法>
図1は、本発明に係る合金部材の製造方法の一例を示す工程図である。本発明の実施形態による製造方法は、積層造形工程と、熱処理(本発明では擬溶体化熱処理と呼んでも良い。)工程と、強制冷却工程と、を有する。以下、工程毎に本発明の実施形態をより具体的に説明する。
【0025】
まず、所望のHEA組成(Co-Cr-Fe-Ni-Ti-Mo)を有する合金粉末20を用意する。使用する合金粉末20は、例えばアトマイズ法で得ることができる。アトマイズの方法には特段の限定はなく、従前の方法を利用できる。例えば、ガスアトマイズ法(真空ガスアトマイズ法、電極誘導溶解式ガスアトマイズ法など)や遠心力アトマイズ法(ディスクアトマイズ法、プラズマ回転電極アトマイズ法など)、プラズマアトマイズ法などを好ましく用いることができる。
【0026】
(化学組成)
本発明のHEA組成は、主要成分としてCo、Cr、Fe、Ni、Tiの5元素をそれぞれ5原子%以上35原子%以下の範囲で含み、副成分としてMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなるものである。
【0027】
前記化学組成は、Coを20原子%以上35原子%以下で、Crを10原子%以上25原子%以下で、Feを10原子%以上25原子%以下で、Niを15原子%以上30原子%以下で、Tiを5原子%以上15原子%以下で、含むようにしても良い。
前記化学組成は、Coを25原子%以上33原子%以下で、Crを15原子%以上23原子%以下で、Feを15原子%以上23原子%以下で、Niを17原子%以上28原子%以下で、Tiを5原子%以上10原子%以下で、Moを1原子%以上7原子%以下で、含むようにしても良い。
前記化学組成は、Coを25原子%以上30原子%未満で、Crを15原子%以上20原子%未満で、Feを15原子%以上20原子%未満で、Niを23原子%以上28原子%以下で、Tiを7原子%以上10原子%以下で、Moを1原子%以上7原子%以下で、含むようにしても良い。
前記化学組成は、Coを30原子%以上33原子%以下で、Crを20原子%以上23原子%以下で、Feを20原子%以上23原子%以下で、Niを17原子%以上23原子%未満で、Tiを5原子%以上7原子%未満で、Moを1原子%以上3原子%以下で、含むようにしても良い。
これらの組成範囲に制御することにより、延性の向上と機械的強度の向上とを両立することができる。言い換えると、各成分がそれぞれの好ましい組成範囲を外れると、望ましい特性の達成が得にくくなる。
【0028】
上記組成範囲の中で、機械的強度の向上をより優先する場合、Co成分は25原子%以上30原子%未満がより好ましく、Cr成分は15原子%以上20原子%未満がより好ましく、Fe成分は15原子%以上20原子%未満がより好ましく、Ni成分は23原子%以上28原子%以下がより好ましく、Ti成分は7原子%以上10原子%以下がより好ましく、Mo成分は1原子%以上7原子%以下がより好ましい。
【0029】
また、上記組成範囲の中で、延性の向上をより優先する場合、Co成分は30原子%以上33原子%以下がより好ましく、Cr成分は20原子%以上23原子%以下がより好ましく、Fe成分は20原子%以上23原子%以下がより好ましく、Ni成分は17原子%以上23原子%未満がより好ましく、Ti成分は5原子%以上7原子%未満がより好ましく、Mo成分は1原子%以上3原子%以下がより好ましい。
【0030】
(粉末粒径)
合金粉末20の平均粒径は、ハンドリング性や充填性の観点から、10μm以上200μm以下の範囲に入ることが好ましい(以下同様)。また、この中で用いる積層造形の方法によって好適な平均粒径は異なり、選択的レーザ溶融法(Selective Laser Melting: SLM)では10μm以上50μm以下、電子ビーム積層造形法(Electron Beam Melting: EBM)では45μm以上105μm以下がより好ましい。また、レーザビーム粉末肉盛法(Laser Metal Deposition: LMD)法では50μm以上150μm以下とすると良い。平均粒径が10μm未満になると、次工程の積層造形工程において合金粉末20が舞い上がり易くなり、合金積層造形体の形状精度が低下する要因となる。一方、平均粒径が200μm超になると、次工程の積層造形工程において積層造形体の表面粗さが増加したり、合金粉末20の溶融が不十分になる要因となる。
【0031】
[積層造形工程]
次に、上記で用意した合金粉末20を用いた金属粉末積層造形方法(以下、単に積層造形法と言う。)により、所望形状を有する合金積層造形部材(以下、単に造形部材と言う。)101を形成する積層造形工程を行う。焼結ではなく溶融し凝固すること(溶融・凝固と言う)によってニアネットシェイプの合金部材を造形する積層造形法の適用により、鍛造材と同等以上の硬度とともに、三次元の複雑形状を有する造形部材を作製することができる。積層造形法としては、SLM法、EBM法、LMD法を用いた金属粉末積層造形法を好適に利用できる。
【0032】
以下はSLM法による積層造形工程を説明する。
図2は、SLM法の粉末積層造形装置100の構成を示す模式図である。積層造形しようとする造形部材101の1層厚さ分(例えば、約20〜50μm)でステージ102を下降させる。ステージ102上面上のベースプレート103上にパウダー供給用コンテナ104から合金粉末105を供給し、リコータ160により合金粉末105を平坦化して粉末床107(粉末の層)を形成する。
【0033】
次に、造形しようとする造形部材101の3D-CADデータから変換された2Dスライスデータに基づいて、レーザ発振器108から出力されるレーザビーム109をガルバノメーターミラー110を通してベースプレート103上の未溶融の粉末へ照射し、微小溶融池を形成すると共に、微小溶融池を移動させ逐次溶融・凝固させることにより、2Dスライス形状の凝固層112を形成する。なお、未溶融粉末は回収用コンテナ111に回収される。この操作を繰り返して積層することにより、造形部材101を製作する。
【0034】
造形部材101はベースプレート103と一体となって製作され、未溶融の粉末に覆われた状態となる。取出し時には、レーザビームの照射が終了して粉末と造形部材101が十分に冷却された後に未溶融の粉末を回収し、造形部材101とベースプレート103を粉末積層造形装置100から取り出す。その後に造形部材101をベースプレート103から切断することで造形部材101を得る。
【0035】
ここで、取出し後の造形部材101から微細組織観察用の試料を採取し、電子顕微鏡を用いて、該試料の微細組織を観察した。その結果、造形部材101の母相は、微細な柱状晶(平均幅50μm以下)が造形部材101の積層方向に沿って林立した組織(いわゆる、急冷凝固組織)を有していた。
【0036】
[熱処理工程]
図3に示すように、上記の造形部材101を昇温加熱し、最高温度(保持温度)で所定時間保持する熱処理を行う。熱処理工程での保持温度は、1080℃以上1180℃以下(1080℃〜1180℃)の温度範囲としている。好ましくは1100℃〜1140℃である。1080℃未満では、六方晶の析出物が析出し残存し易くなる。また、1180℃を超えると結晶粒径の粗大化や部分溶融などの不良が生じ易くなる。最高温度での保持時間は0.5時間以上24時間以下が良く、より好ましくは0.5時間以上8時間以下に設定する。0.5時間以上とすると造形部材101中に六方晶の析出物の生成を抑制することができ、24時間以下であると結晶粒径の粗大化を抑制することができる。
【0037】
また、この熱処理における昇温プロセスでは、六方晶の析出物が生じ易い温度帯(例えば800℃から1080℃まで)は速やかに、例えば5℃/分以上の昇温速度とすれば六方晶の析出物量を熱処理前に低減できるので好適である。好ましくは10℃/分以上である。上限は特別には限定されないが、造形部材101中の温度均一性、特に過熱部の発生防止の確保の観点で1000℃/分程度である。なお、本願では、合金の固溶限が明確ではないこと、および最終生成物である合金部材には平均粒径100 nm以下の極小粒子が分散析出していることから、上述のような熱処理を擬溶体化熱処理と呼ぶことができる。
【0038】
[強制冷却工程]
次に、熱処理工程後の造形部材に強制冷却工程を施す。強制冷却工程は、熱処理において少なくとも保持温度から800℃迄の温度範囲を110℃/分以上2400℃/分以下の冷却速度で強制冷却を行うものである。ここで強制冷却とは、従来の空放冷よりも速く、かつ水冷よりも遅い冷却速度の範囲に制御することを意図して強制冷却と呼んでいる。強制冷却速度の中でも低速側は、110℃/分以上600℃/分未満、より好ましくは200℃/分以上600℃/分未満の冷却速度で行うことができる。また、高速側は、600℃/分以上2400℃/分以下、より好ましくは1000℃/分以上2000℃/分以下の冷却速度で行うことができる。110℃/分未満の冷却速度(例えば炉冷や空放冷処理)では、六方晶の析出物が粒界から生じ易く耐食性が低下する課題が生じる。また、2400℃/分を超える冷却速度(例えば水槽への浸漬冷却)では、急速冷却中に生じる温度ムラに起因する造形部材の変形が課題となる。また、800℃以下となっても強制冷却を継続して行うのが良い。例えば800℃から室温までの温度範囲をおよそ上記冷却速度で冷却することは好ましい。
【0039】
このような強制冷却を実現できる冷却法として、低速側の冷却としては、大気圧以上の圧力の窒素、アルゴン、ヘリウムのうち少なくとも1種の不活性ガスを用いた高圧ガス冷却とすることができる。高速側の冷却としては、塩浴、焼入油、ポリマー水溶液のいずれか1種の液体を用いた浸漬冷却を適用することができる。以下、具体的に説明する。
【0040】
(高圧ガス冷却)
高圧ガス冷却の場合、およそ110℃/分以上600℃/分未満の冷却速度範囲が実施できる。例えば、上述の熱処理工程後に、高圧ガスを熱処理炉に導入して造形部材101に向けて噴出し、炉内温度が少なくとも800℃になるまでは高圧ガスを噴出し、その後室温〜800℃の範囲から選択される設定温度となった時点で高圧ガスの供給を止めることで冷却する。なお、このとき2室式の熱処理炉を用いて加熱と冷却を別室で行い、より高速で冷却する手段をとることもできる。また、製造現場では、データ取りをして経験的に決められた時間だけ高圧ガスを導入し続けて冷却するのがよい。好ましくは炉内温度が設定値となった後も継続して高圧ガスを流して造形部材101が設定温度よりも低くなるようにする。ここで高圧ガスとは、大気圧以上、より好ましくは0.2MPa以上の圧力を有する気体であり、圧力の上限は特に限定はされないが、例えば1.0MPa以下として炉体の安全性や関連法規に準拠する必要がある。また、不活性ガスとしては、コストや入手性などの観点で窒素ガスを採用することが好ましいが、表面窒化による変色などを防ぐことを目的にアルゴンやヘリウムなどの希ガスを用いることもできる。
【0041】
(浸漬冷却)
浸漬冷却の場合は、およそ600℃/分以上2400℃/分以下の冷却速度範囲が実施できる。例えば、熱処理工程を行う炉の近傍に、液温を室温〜800℃の範囲から選択される設定温度とした浸漬浴槽を予め配置する。浸漬浴槽には、例えばプールのような浴槽や冷却装置付きの浴槽がある。そして、主には浸漬浴の設定温度に合わせて溶融塩、焼入油、ポリマー水溶液などから選択される浸漬液を用いる。上述の熱処理工程後に、熱処理炉から造形部材101を浸漬浴槽に移して浸漬することで冷却する。製造現場では、データ取りをして経験的に決められた時間だけ浸漬することで冷却するのがよい。造形物が設定温度の近傍まで確実に冷却するため、熱処理工程に要した時間よりも浸漬時間を長くすることが好ましく、例えば1時間以上とする。また、生産性確保の観点で浸漬時間は24時間以下とすると良い。
【0042】
(六方晶の析出物)
本発明では,上記した高圧ガス冷却および浸漬冷却の場合を強制冷却工程と呼んでいる。この強制冷却工程を設けることによって。粒界に優先的に生じる六方晶の析出物の生成を抑止することができる。よって、ナノスケールの極小粒子が母相結晶中に分散析出した微細組織を形成すると共に、六方晶の析出物の生成を1体積%以内に抑制した合金部材を得ることが可能となる。ここで、六方晶の析出物の体積分率(体積%)については、造形部材101の断面評価によって求めることが好ましい。例えば、造形部材101の断面を研磨紙やバフ研磨を用いて鏡面研磨を施した後に、硝酸―塩酸系のエッチング液、もしくはシュウ酸溶液中での電解エッチングなどの方法で、長さ1μm以上の大きさを有する六方晶の析出物を現出させて、光学顕微鏡や走査電子顕微鏡により例えば倍率500倍程度の断面像を得る。この六方晶の析出物は板状に長く析出する特性があるので、この断面像における長辺1μm以上の析出物の面積比率、例えば領域200μm×200μm当たりの析出物の面積を観察部位の面積(40000 μm
2)で除することで六方晶の析出物の体積分率とする。
【0043】
(微小粒子)
また母相の結晶粒中に分散析出する極小粒子について、その平均粒径は100nm以下であることが好ましく、20nm以上80nm以下がより好ましい。極小粒子の平均粒径が20nm以上80nm以下である場合、延性および機械的強度(引張強さ等)に優れるとともに、耐食性を高めることが可能となる。極小粒子の平均粒径が100 nm超になると、延性が急激に低下することが分かっている。なお、微小粒子は、透過電子顕微鏡法、高分解能走査電子顕微鏡法に代表される高倍率の観察手段によって極小粒子を含む画像を取得し、その極小粒子の内接円直径と外接円直径の平均値を極小粒子の粒径とし、極小粒子20個分の粒径の平均値を平均粒径として用いる。
【0044】
[時効処理工程]
造形部材の強度を高めることを目的に、極小粒子が増加し易い温度領域、例えば500℃以上900℃未満の温度範囲で保持する時効処理工程を施すことができる。好ましくは600℃以上800℃以下である。時効処理温度が500℃に満たない場合は、強度の改善効果が安定しない。また、時効処理温度が900℃以上の場合は、六方晶の析出物が再び生じて延性が低下する可能性があるため不適である。保持時間は0.5時間以上24時間以下が良く、より好ましくは0.5時間以上8時間以内に設定する。0.5時間以上であると強度の改善効果が得られ、24時間以下であると六方晶の析出物が再び生成することを抑制できる。この時効処理により、熱処理後の造形部材におけるナノスケールの極小粒子を増加させ、強度を改善することができる。時効処理後の冷却工程は特に限定はされないが、時効処理温度近傍で長時間保持するとナノスケールの極小粒子が過剰に生成する可能性があるため、空放冷、または前述の強制冷却工程と同じ冷却法によって室温まで冷却すると良い。
また、熱処理パターンは種々変更が可能である。例えば、時効処理工程は上述の強制冷却工程と連続して実施することができる。この場合は、強制冷却工程における目標温度を設定し(例えば700℃)、これを時効処理の温度として、目標温度に達した時点から所定時間保持する時効処理工程を施して、再び強制冷却によって室温まで冷却することで実施できる。
【0045】
<合金部材の微細組織>
図4は、後述する実施例の合金部材(高圧窒素ガス冷却材:M1-SHN)の微細組織の一例を示すもので、(a)が走査電子顕微鏡像(SEM像、1000倍)、(b)が走査型透過電子顕微鏡像(STEM像、225,000倍)である。本発明の合金部材は、結晶粒径50μm〜150μm(平均結晶粒径100μm以下)の等軸晶を主とする母相結晶組織であり、母相結晶粒中に、平均粒径100nm以下の極小粒子が分散析出しており(
図4(b)参照)、且つ、母相結晶粒の粒界に生じる六方晶の析出物が1体積%未満である組織を有している。
図4(b)においてSTEM像における高倍のHAADF(High Angle Annular Dark Field)像に対応するディフラクションパターンでは、熱処理を施した造形部材で認められた微細な規則相に起因するサテライトパターンが認められ、極小粒子が母相結晶粒と整合性のある規則相に相当することが確認された。また、STEM-EDXによる元素マッピング像ではNiとTiが濃化した極小粒子の平均粒径は60nm程度であった。
図4(a)のSEM像は、沸騰硫酸試験後の試験片を対象に取得したものであるが、結晶粒界部にエッチング痕が見られるものの六方晶の析出物を起点とする腐食は見受けられず、過酷な腐食環境での腐食が抑制されていることが判る。
【0046】
一方、
図5は、比較例に関わる合金部材(低圧ガス冷却材:M1-SLN)の微細組織の一例を示すもので、(a)(b)は走査電子顕微鏡像(SEM像、300倍及び1000倍)、(c)が走査型透過電子顕微鏡像(STEM像、225,000倍)である。
図4と同様に沸騰硫酸試験後の試験片の外観を示している。この合金部材は、
図4と同様に結晶粒径50μm〜150μm(平均結晶粒径100μm以下)の等軸晶を主とする母相組織を有していたが、
図5(a)に示すように母相結晶粒の粒界に六方晶の板状の析出物が生成しており、その量は1体積%を超えていた。その為、沸騰硫酸試験において母相結晶粒の粒界に生じた六方晶の析出物を起点として
図5(b)のように粒界腐食を受けた。
図5(b)は沸騰硫酸試験後のものであるので六方晶の析出物を見ることは出来ないが、
図5(b)において曲線状に並ぶ凹部(符号1)が六方晶の析出物を起点として溶解することで粒界に生じた粒界腐食部、直線状に見られる凹部(符号2)が粒界を起点として粒内へと成長した板状形状の六方晶の析出物を起点とした腐食部である。
図5(c)においてSTEM像における高倍のHAADF像に対応するディフラクションパターンでは、
図4(c)とは異なり六方晶系の析出物に対応したサテライトパターンが認められ、観察部位に六方晶系の析出物を含むことが確認された。
【実施例】
【0047】
以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
【0048】
[実験1]
(HEA粉末P1〜P2の作製)
表1に示す名目組成で原料を混合し、真空ガスアトマイズ法により、溶湯から合金粉末を製造した。次に、得られた合金粉末に対して、ふるいによる分級を行って粒径を10μm以上53μm以下、平均粒径(d50)を約35μmとなるよう選別してHEA粉末P1、P2を用意した。尚、P1、P2の組成を選定した理由は、発明者による予備検討において特に強度、延性に関わる機械特性に優れていたためである。
【0049】
【表1】
【0050】
[実験2]
(合金部材M1(M2)、M1(M2)-SA、M1(M2)-SW、M1(M2)-SLN、M1(M2)-SHN、M1(M2)-SSの作製)
実験1で用意したHEA粉末P1に対し、
図2に示したような粉末積層造形装置(EOS社製EOS M290)を用いて、積層造形工程の手順に沿ってSLM法による造形部材M1(合金積層造形体:25mm×25mm×高さ70mmの角柱材、高さ方向が積層方向)を積層造形した。尚、積層造形時のレーザ出力は、発明者による事前検討を基にレーザ出力を300Wに設定し、レーザ走査速度は1000mm/秒、走査間隔は0.11mmとした。また、一層毎の積層厚みは約0.04mmに設定した。
【0051】
積層造形工程の後、造形部材M1を取り出した。取出後の造形部材M1に各種の熱処理及び強制冷却を施して、各種熱処理を施した合金部材を作製した。溶体化の熱処理条件は、保持温度1120℃において1時間保持する条件にて固定した。冷却工程は以下のようにして行った。
まず、熱処理に大気炉を用い、1120℃保持後に炉外にてセラミックス板に置いて空冷(放置による放冷)を行った試料をM1-SAとし、1120℃保持後に炉外の精製水に浸漬して水冷を行った試料をM1-SWとした。
【0052】
一方、熱処理に真空炉を用い、1120℃保持後に、設定圧0.1MPaの大気圧窒素ガスを用いて冷却した試料をM1-SLNとし、一方、設定圧0.5MPaの高圧窒素ガスを用いて冷却した試料をM1-SHN(実施例)とした。
また、熱処理に塩浴炉を用い、1120℃保持後に、180℃の低温塩浴に移して2時間保持することで塩浴冷却を施した試料をM1-SS(実施例)とした。
さらに、HEA粉末P2に対しても上記と同様に、積層造形工程と、取出工程と、熱処理工程と、各種強制冷却工程とを行って、造形部材M2、M2-SA、M2-SW、M2-SLN、M2-SHN、M2-SSを作製した。
以上の各試料の熱処理工程における熱処理条件と、強制冷却工程における強制冷却条件とその温度計測から算出した冷却速度を表2に示す。
【0053】
【表2】
【0054】
(時効処理した合金部材M1-SHN-A、M1-SS-A、M2-SHN-A、M2-SS-Aの作製)
母相結晶中に分散析出した極小粒子の析出量や形態の制御を意図して、実験2で用意した合金部材M1-SHN(高圧窒素ガス冷却材)に対して、さらに時効処理(大気中、500℃、600℃、700℃、800℃、900℃で1時間保持した後、空冷)を施した合金部材M1-SHN-A500、M1-SHN-A600、M1-SHN-A700、M1-SHN-A800、M1-SHN-A900を作製した。
また同様に、実験2で用意した合金部材M1-SS (塩浴冷却材)、M2-SS (塩浴冷却材)、及びM2-SHN(高圧窒素ガス冷却材)についても上記と同様の時効処理を行った。以上により各種の時効処理を施した合金部材を得た。
【0055】
[実験3]
(合金部材の微細組織観察)
上記で作製した各種合金部材から微細組織観察用の試験片を採取し、光学顕微鏡、各種電子顕微鏡(SEM、STEM、STEM-EDX)を用いて、上記した手法にて微細組織観察を行った。SEMによる観察は300倍から1000倍の範囲で結晶粒の大きさに合わせた倍率にて実施した。また、STEMによる観察は同じく10万倍以上の倍率で粒内の極小粒子の大きさに合わせた倍率で実施した。各合金部材の作製仕様と共に、微細組織観察結果を表3に示す。なお、表中には記載していないが、全試験片において、XRD測定によって求められた結晶構造は単純立方晶(SC)と面心立方晶(FCC)との混合であった。また、粒界析出物量は、長辺1μm以上の粒界析出物が見られない場合は<0.1%とした。
【0056】
【表3】
【0057】
表3に示したように、熱処理前の合金部材M1およびM2の母相組織は、平均粒径40μm以下の微細な柱状晶が積層造形体の積層方向に沿って林立した組織(いわゆる局所急冷凝固組織)を有していた。なお、ここでいう柱状晶とは結晶粒の長軸長さの短軸長さに対する比が2以上の結晶と定義する。
【0058】
一方、合金部材M1およびM2以外の全ての合金部材について、強制冷却後の母相組織は、結晶形状が前記の柱状晶とは異なる異方性を有さない多角形状であり、等軸晶からなることを確認した。そして、母相の結晶粒中に平均粒径100nm以下の極小粒子が生じ、分散析出していることをTEM、STEM-EDX によって確認した。さらに、この極小粒子ではNi成分とTi成分とが母相結晶よりも濃化していることを確認した。この極小粒子の直径は、熱処理後の冷却速度と相関があり、冷却速度の速い水冷や塩浴冷では小さくなり、冷却速度の遅い空冷や低圧窒素ガス冷で大きくなる傾向が見られた。また、時効処理を加えた試料においては、時効処理温度の上昇と共に極小粒子の直径が増加し、特に900℃の時効処理温度となると100nmを超えて成長した。
【0059】
また、合金部材M1およびM2以外の合金部材には、母相結晶の粒界に長辺1μm以上の六方晶系の粒界析出物が生じたことをSTEMによって確認した。また、この粒界析出物は、先に示した極小粒子と同様にNi成分とTi成分とが母相結晶よりも濃化していることを確認した。そして、この粒界析出物の析出量もまた熱処理後の冷却速度と相関があり、冷却速度の速い水冷や塩浴冷では小さくなり、冷却速度の遅い空冷や低圧窒素ガス冷で大きくなる傾向が見られた。また、時効処理を加えた試料においては、時効処理温度の上昇と共に粒界析出物量が増加し、特に900℃の時効処理温度とすると、長辺1μm以上の粒界析出物の体積分率が3%を超える結果となった。
【0060】
[実験4]
(合金部材の機械的特性および耐食性の測定)
上記で作製した各合金部材から引張試験用の試験片(平行部直径:4 mm、平行部長さ:13 mm)を採取した。なお、造形部材および熱処理後の合金部材は、試験片長手方向が積層造形方向と一致するように採取した。
【0061】
各試験片に対して、材料万能試験機を用いて室温引張試験を行い(JIS Z 2241に準拠、ひずみ速度:5×10
-5s
-1)、引張強さと破断伸びとを測定した。引張試験の測定結果は、5測定のうちの最大値と最小値とを除いた3測定の平均値として求めた。引張強さの評価は、1100MPa以上を「合格」と判定し、1100MPa未満を「不合格」と判定した。また、破断伸びの評価は、10%以上を「合格」と判定し、10%未満を「不合格」と判定した。結果を表4に示す。
因みに、従来のアーク溶解材では、引張強さは775MPa程度、伸びは3%程度の機械的特性でしかなかった。
【0062】
また、上記で作製した各合金部材か
ら沸騰硫酸浸漬試験用の浸漬試験片(縦25 mm×横25 mm×厚さ2 mm)を採取した。沸騰硫酸浸漬試験は、資源採掘環境や化学プラントなど強酸性雰囲気で用いられる部材に対して特に追加で実施する試験であり、より高い耐食性を評価するためのものである。浸漬試験は、各試験片に対して試験面積:14.5 cm
2、試験器具:ガラス製逆流水冷コンデンサを接続したガラス製フラスコ(容量:1000 mL)、試験溶液: 10%硫酸水溶液(試験片の表面積1cm
2当たり約10 mL)、試験温度:沸騰条件とした。
以上の条件下で24時間浸漬した後の重量減少量を求め、合金密度(8.04 g/cm
3)、を用いて腐食速度(mm/年)の指標とした。耐食性の評価は、沸騰硫酸中の腐食速度5mm/年以下を「合格」と判定し、5mm/年を超える場合を「不合格」と判定した。なお、ここでは5mm/年を超える場合を「不合格」と判定したが、従来技術の使用環境では実用に供せる数値と言える。以上の腐食試験の結果を表4に併記する。
【0063】
[表4]
【0064】
表4および
図6〜
図8に各試験体の評価結果と合否判定、並びに熱処理後の冷却速度及び時効処理条件と特性の関係を示す。まず、熱処理工程を行っていない試料である合金部材M1、M2は、1100MPa以上の引張強さを有し、且つ破断伸びが10%以上であり、良好な機械的特性を示すことが実証された。しかし、耐食性では他の材料よりも沸騰硫酸中の腐食速度が高く、基準とする5mm/年の値を上回り不適であった。この原因は積層造形工程時に導入される残留応力による腐食促進であり、耐食性の改善には溶体化処理が必要であることが確認された。
【0065】
合金部材M1-SA、M2-SA並びにM1-SLN、M2-SLNは、1100MPa以上の引張強さと10%以上の破断伸びとを示し、良好な機械的特性を有していることが実証された。しかし、耐食性では他の材料よりも沸騰硫酸中の腐食速度が高く、基準とする5mm/年の値を上回り不適であった。耐食試験後の外観評価では結晶粒界に生成した六方晶系の粒界析出物を起点として腐食が進行していることが確認された。これらの合金部材では六方晶系の粒界析出物の体積分率が1%を超えており、粒界析出物が過剰に生成したために比較的過酷な試験環境である沸騰硫酸中の耐食性が劣ったものとみられる。また、M1-SHN-A900、M2-SHN-A900では耐食性に加えて延性も10%を下回り不合格となった。この延性の低下は結晶粒内の極小粒子が100nm以上に成長したためとみられるが、六方晶系の粒界析出物が成長したこともこの延性低下に影響していると考えられる。
【0066】
一方、その他の合金部材(実施例)は、1100MPa以上の引張強さと10%以上の破断伸びを示し、良好な機械的特性を有していることが実証された。また、耐食性についても沸騰硫酸中の腐食速度が低減しており、基準とする5mm/年の値を下回り好適となった。熱処理後の冷却速度と引張強さ、および破断伸びには
図6の関係があり、冷却速度が高いほど高延性となり、冷却速度が低いほど高強度となる傾向がみられた。また、
図7にみられるように耐食性に対しては、110℃/分以上の冷却速度とすることで、基準とする5mm/年以下となることが分かった。ただし、最も冷却速度の大きい水冷での試験片(M1-SW、M2-SW)については、試験片端部に不均一な冷却に起因するとみられる微小な割れが最表面に生じた試験片が一部に発生した。このような点で冷却速度は2400℃/分以下に抑えることが望ましいと考えられた。
【0067】
また、熱処理後に時効処理を施すことによって極小粒子の増加を図った合金部材(M1-SHN-A600、M1-SHN-A700、M1-SHN-A800、M1-SS-A600、M1-SS-A700、M1-SS-A800、及びM2-SHN-A600、M2-SHN-A700、M2-SHN-A800、M2-SS-A600、M2-SS-A700、M2-SS-A800)は、それぞれ析出物の平均粒径が時効処理を施さないM1-SHN、M1-SS、M2-SHN、M2-SSと同等か、それよりも大きくなり、破断伸びを10%以上に保持しつつ、
図8にみられるように引張強さが改善した。
一方で、熱処理後の時効処理温度を500℃とした合金部材(M1-SHN-A500、M1-SS-A500、M2-SHN-A500、M2-SS-A500)は、上記時効処理を施さない試験片と同等であった。また、時効処理温度を900℃とした合金部材( M1-SHN-A900、M1-SS-A900、M2-SHN-A900、M2-SS-A900)は、結晶粒内の極小粒子の平均粒径が100nmを超え、機械的特性が著しく低下した。以上の結果から時効処理温度は900℃未満とし、母相結晶中に分散析出する極小粒子の平均粒径を100 nm以下にできる温度が好ましいことが確認された。
【0068】
上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除したり、他の構成に置換したり、また他の構成の追加をすることが可能である。このような実施形態の調整により、本発明で開示した合金部材は、より過酷な使用環境にある資源分野や化学プラントで用いられる耐食部品へと適用することが可能となる。