(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、コイルを用いた発電方法においては、誘導起電力は周波数に比例するため、50Hz又は60Hzの系統電源に対して小型のコイルを用いる場合、電子回路等を駆動させる十分な出力電圧を得ることは困難である。
【0006】
また、特許文献1のAC電流センサによれば、交流磁場に応じた信号が出力されるものの、電子回路等を駆動させる十分な出力電圧を得ることは困難である。
【0007】
本発明は斯かる事情に鑑みてなされたものであり、その目的は、導線の周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことが可能な発電装置及び発電方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明の一態様に係る発電装置は、圧電部材を有する弾性体と、該弾性体の第1部位を、交流が流れる導線に対して固定する固定部と、外力によって前記導線に対する位置が変化する前記弾性体の第2部位に設けられた永久磁石と、前記圧電部材に発生した電圧を出力する出力部とを備え、前記導線の周囲に形成される交流磁場によって前記永久磁石が振動し、該永久磁石の振動によって前記圧電部材に発生した電圧が前記出力部から出力される。
【0009】
本態様によれば、弾性体に設けられた永久磁石は、導線の周囲に形成される交流磁場によって振動する。弾性体が有する圧電部材は、永久磁石の振動によって変形して発電し、圧電部材に発生した電圧は出力部から出力される。本発明に係る発電装置は、交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場をエネルギー源として発電することが可能である。
なお、弾性体に設けられた永久磁石の振動周波数は、交流磁場の周波数に略一致させる構成が好ましい。例えば、交流磁場の周波数が50Hzである場合、永久磁石の振動周波数を50Hzとし、交流磁場の周波数が60Hzである場合、永久磁石の振動周波数を60Hzとする構成が望ましい。但し、所要の電力が得られる範囲で永久磁石の振動周波数を交流磁場の周波数からずらした構成も本発明に含まれる。
また、本態様に係る導線は、電流を通ずることが可能な材料で形成された線条の部材であり、レール状の導通部材、バスバー、角柱状の導体、長手方向を有する板状の導体も導線に含まれる。また、導線は特定の用途のものに限定されるものでは無く、アース線であっても良い。
【0010】
本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に対して非直交方向に並ぶS極及びN極を有し、交流の通流方向及び前記離隔方向に交差する方向に振動する構成が好ましい。
【0011】
本態様によれば、振動する永久磁石と、導線との衝突する可能性を低減することができ、交流磁場を用いた効率的な発電が可能である(例えば、
図4、
図17等参照)。仮に、永久磁石が、導線及び永久磁石の離隔方向に対して直交方向に並ぶS極及びN極を有し、前記離隔方向に振動するように構成した場合(
図18参照)、永久磁石の振動によって、当該永久磁石が導線に衝突する可能性がある。
一方、本態様によれば、
図4、
図17に示すように、永久磁石は、導線の中心に向かう方向から逸れた方向へ振動するため、永久磁石が導線に衝突する可能性を低減することができる。なお、上記説明は、本態様に係る発明の範囲を限定するものでは無い。
【0012】
本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に並ぶS極及びN極を有し、交流の通流方向及び前記離隔方向に直交する方向に振動する構成が好ましい。
【0013】
本態様によれば、振動する永久磁石と、導線との衝突を確実に回避することができ、交流磁場を用いた効率的な発電が可能である(例えば、
図4参照)。
図4に示す実施形態によれば、永久磁石は静止位置において導線から
図4中上方に離隔しており、交流磁場によって永久磁石は
図4中左右方向に振動する。この場合、永久磁石と、導線との距離は必ず大きくなり、これ以上、導線に接近することは無い。従って、永久磁石が導線と衝突することを確実に回避することができる。なお、上記説明は、本態様に係る発明の範囲を限定するものでは無い。
【0014】
本態様に係る発電装置は、振動方向における前記永久磁石の幅は、下記式を満たす構成が好ましい。
w≦2(d−√2a)
但し、
w:振動方向における前記永久磁石の幅
d:前記導線の中心と、前記永久磁石との距離
a:前記永久磁石の振幅
【0015】
本態様によれば、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。
【0016】
本態様に係る発電装置は、前記離隔方向における前記永久磁石の幅は、前記導線の中心と前記永久磁石との距離の0.5倍以上、2倍以下である構成が好ましい。
【0017】
本態様によれば、上記のように離隔方向における永久磁石の幅を設定することにより、交流磁場を用いた効率的な発電が可能である。
【0018】
本態様に係る発電装置は、前記永久磁石は、交流の通流方向に直交し、かつ前記導線及び前記永久磁石の離隔方向に対して略45度の方向に並ぶS極及びN極を有し、前記S極及びN極の並び方向に振動する構成が好ましい。
【0019】
本態様によれば、S極及びN極の並び方向に永久磁石を振動させた発電が可能である。
【0020】
本態様に係る発電装置は、前記永久磁石は、交流の通流方向と、前記導線及び前記永久磁石の離隔方向とに直交する方向に並ぶS極及びN極を有し、前記離隔方向に振動する構成が好ましい。
【0021】
本態様によれば、前記離隔方向に永久磁石を振動させた発電が可能である。
【0022】
本態様に係る発電装置は、前記永久磁石は、振動方向に並ぶ複数組みのS極及びN極を有し、振動方向におけるS極及びN極の並びは、隣り合う各極が異極になるようにしてある構成が好ましい。
【0023】
本態様によれば、複数組みのS極及びN極を有する永久磁石を備え、かつ永久磁石の各部に逆向きの力が働かないようにS極及びN極を配置することにより、交流磁場を用いた効率的な発電が可能である。
【0024】
本態様に係る発電装置は、前記永久磁石は、前記導線を囲繞するC字状をなし、径方向に並ぶS極及びN極を有し、前記導線の周方向に振動する構成が好ましい。
【0025】
本態様によれば、導線の周方向に沿って幅広く永久磁石を配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。
【0026】
本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に偏平である構成が好ましい。
【0027】
本態様によれば、永久磁石を離隔方向に偏平となる姿勢で配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。
【0028】
本態様に係る発電装置は、前記永久磁石は前記導線に沿う長手方向を有する構成が好ましい。
【0029】
本態様によれば、永久磁石の各部を導線に沿って配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。
【0030】
本態様に係る発電装置は、前記永久磁石は、少なくとも振動中心位置で各部が同一方向の磁気力を受ける寸法を有する構成が好ましい。
【0031】
本態様によれば、少なくとも永久磁石の静止位置において、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。
【0032】
本態様に係る発電装置は、前記永久磁石は、任意の振動位置で各部が同一方向の磁気力を受ける寸法を有する構成が好ましい。
【0033】
本態様によれば、永久磁石の振動時においても、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。
【0034】
本態様に係る発電装置は、前記弾性体は、第2部位に前記永久磁石を除く他の構造物を有しない構成が好ましい。
【0035】
本態様によれば、余分な非磁性体部品を備え無いため、交流磁場を用いた効率的な発電が可能である。
【0036】
本態様に係る発電装置は、前記弾性体の第2部位は、前記永久磁石の中心部に接続されている構成が好ましい。
【0037】
本態様によれば、永久磁石を弾性体にバランス良く支持させることができ、交流磁場を用いた効率的な発電が可能である。
【0038】
本態様に係る発電装置は、前記弾性体はカンチレバーである構成が好ましい。
【0039】
本態様によれば、カンチレバーの自由端に永久磁石を設ける簡単な構成で、交流磁場を用いた発電が可能である。
【0040】
本態様に係る発電装置は、前記弾性体は長板部を有し、前記圧電部材は板状であり、前記長板部の両面にそれぞれ配されている構成が好ましい。
【0041】
本態様によれば、カンチレバーを構成する長板部の両面に圧電部材を配することによって、交流磁場を用いた効率的な発電が可能である。
【0042】
本態様の一態様に係る送信装置は、上述のいずれか一つの発電装置と、信号を送信する送信部とを備え、前記送信部は、前記発電装置から出力される電圧にて駆動する。
【0043】
本態様によれば、発電装置が出力する電圧を用いて送信部を駆動することができる。従って、電源を用意することができない環境であっても、送信部から信号を送信させることが可能である。
【0044】
本発明の一態様に係る発電方法は、圧電部材を有する弾性体の第1部位を、交流が流れる導線に対して固定し、外力によって前記導線に対する位置が変化する前記弾性体の第2部位に設けられた永久磁石を、前記導線の周囲に形成される交流磁場によって振動させ、前記永久磁石の振動によって前記圧電部材に発生した電圧を出力させる。
【0045】
本態様によれば、上記の通り、交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場をエネルギー源として発電することが可能である。
【発明の効果】
【0046】
本発明によれば、導線の周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことができる。
【発明を実施するための形態】
【0048】
以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は、本発明の実施形態1に係る発電装置100の斜視図、
図2は、発電装置100の平面図、
図3は、発電装置100の側面図、
図4は、発電装置100の正面図である。本発明の実施形態1に係る発電装置100は、圧電部材12を有する弾性体としてのカンチレバー1と、カンチレバー1の固定端1a(第1部位)を、十Hzオーダの低周波数の交流が流れる導線Wに対して固定する固定部2と、カンチレバー1の自由端1b(第2部位)に設けられた永久磁石3と、カンチレバー1の圧電部材12に発生した電圧を出力する出力部4とを備える。本実施形態1においては、導線Wは、電流を通ずることが可能な断面略円形の材料で形成された線条の部材であり、導線Wは50Hz又は60Hzの系統電源に接続されているものとする。発電装置100は、導線Wの周囲に形成される交流磁場を永久磁石3の運動エネルギーに変換し、永久磁石3の運動エネルギーを圧電部材12によって電力に変換することによって、発電するものである。発電装置100は、本発明に係る発電方法を実施ないし実現する装置である。
なお、上記導線Wの構成は一例であり、永久磁石3を振動させる交流磁場を形成可能な電流が流れる構成であれば、その形状は特に限定されるものでは無く、レール状の導通部材、バスバー、角柱状の導体、長手方向を有する板状の導体であっても良い。また、導線Wは、部分的に方形板状のような非線条部分を有していても良く、全体として所定方向に交流電流が流れるような形状であれば良い。当該非線条部分に発電装置100を固定する構成も本願発明に含まれる。更に、導線Wは、必ずしも直線状である必要は無く、部分的に湾曲していても良い。更にまた、導線Wは特定の用途のものに限定されるものでは無く、アース線であっても良い。以下、本実施形態1では、導線Wが直線状の部材であるものとして説明する。
【0049】
カンチレバー1は、バイモルフ型圧電素子を用いてなる発電部材である。カンチレバー1は、外力によって弾性変形が可能な導電部材からなる長板部11と、厚み方向に分極した2枚の板状ないしシート状の圧電部材12とを備え、2枚の圧電部材12が長板部11を挟み込むように当該長板部11の両面に貼り合わされている。圧電部材12の長手方向の長さは、長板部11の固定部2からの突出部分の長さの2/3程度で十分である。また、2枚の圧電部材12には、それぞれシート状の電極13が設けられている。長板部11を構成する部材は、例えばステンレス等の金属である。圧電部材12は、例えば圧電セラミックスである。長板部11の長手方向一端部は固定部2に固定される固定端1aであり、長板部11の長手方向他端部は外力によって変位可能な自由端1bである。自由端1bが変位した場合、2枚の圧電部材12はそれぞれ伸張及び伸縮し、電極13及び長板部11間に電圧が発生する。
なお、ここではバイモルフ型圧電素子を説明したが、片面のみに圧電部材12を張り付けたユニモルフ構造であっても良い。
【0050】
固定部2は、カンチレバー1の固定端1aを導線Wに対して固定する部材である。固定部2は、例えば、略直方体形状をなし、導線Wが挿通する貫通孔21を有する。貫通孔21は、中心部を貫通する正面視円形状であり、貫通孔21が形成された固定部2の一面側の角部にカンチレバー1の固定端1aが固定され、カンチレバー1を保持している。より詳細には、固定部2は、カンチレバー1の自由端1bが、導線Wの中心線方向及び導線Wの径方向に略直交する方向に変位又は振動するように、カンチレバー1を保持している。言い換えると、カンチレバー1を構成する長板部11の厚み方向と、上記中心線方向及び径方向とが略直交するように、固定部2は、長板部11の固定端1aを保持している。
【0051】
永久磁石3は、矩形板状をなし、厚み方向が導線Wの径方向を向く姿勢でカンチレバー1の自由端1bに接着固定されている。厚み方向とは、永久磁石3の縦寸法、横寸法及び高さ寸法の内、最も長さが短い方向を意味する。なお、接着は、永久磁石3の固定方法の一例である。カンチレバー1の自由端1bには永久磁石3及び接着剤を除く他の構造物を有しない。永久磁石3は、導線W及び永久磁石3の離隔方向、つまり厚み方向に並ぶ単一対のS極3b及びN極3aを有する。なお、永久磁石3の形状及び導線Wに対する姿勢は本発明の本質的な構成では無く、あくまで一構成例を示したものである。本実施形態1では、永久磁石3を構成するS極3b及びN極3aが上記離隔方向に配列している点がより重要である。
カンチレバー1に設けられた永久磁石3の振動周波数は、導線Wの周囲に形成される交流磁場の周波数に略一致するように構成されている。例えば、交流磁場の周波数が50Hzである場合、永久磁石3の振動周波数を50Hzとし、交流磁場の周波数が60Hzである場合、永久磁石3の振動周波数を60Hzとする。なお、振動周波数が交流磁場の周波数に略一致するとは、所要の電力が得られる範囲で、振動周波数を交流磁場の周波数からずれた構成も本実施形態1に係る発電装置100に含まれることを意味する。
【0052】
永久磁石3は、少なくとも振動中心位置で各部が同一方向の磁気力を受ける寸法を有する。好ましくは、永久磁石3は、任意の振動位置で各部が同一方向の磁気力を受ける寸法を有する。具体的には、振動方向における永久磁石3の幅は、下記式(1)を満たすように設定すると良い。
w≦2(d−√2a)…(1)
但し、
w:振動方向における永久磁石3の幅
d:導線Wの中心と、永久磁石3の導線側端面との距離
a:永久磁石3の振幅
【0053】
また、離隔方向における永久磁石3の幅は、下記式(2)を満たすように設定すると良い。
0.5a≦d≦2a…(2)
【0054】
出力部4は、カンチレバー1の電極13と、長板部11とに接続されており、永久磁石3の振動により伸縮した圧電部材12に発生した電圧を出力する回路である。
【0055】
図5は、本実施形態1に係る発電装置100の回路図である。出力部4は、整流回路41及び平滑コンデンサ42を備える。整流回路41は、例えばダイオードブリッジ回路である。ダイオードブリッジは2つの順接続されたダイオードからなる直列回路を2組並列させた回路構成である。整流回路41の入力端子は圧電部材12及び長板部11に接続されており、整流回路41の出力端子対には平滑コンデンサ42の各端子が接続されている。整流回路41は、圧電部材12に発生した交流を全波整流し、平滑コンデンサ42にて平滑化された直流の電圧を負荷Rへ出力する。
【0056】
以下、交流磁場を用いた効率的な発電を可能にする発電装置100の構造及び発電特性の詳細を説明する。
【0057】
<導線Wの近くに配された永久磁石3に働く力>
図6は、導線Wの周囲に配された永久磁石3に働く力を説明するための概念図である。導線Wに電流を流すとアンペールの法則に従って、導線Wの周囲に磁界が形成される。
図6中、x軸、y軸及びz軸は直交座標系の座標軸であり、z軸の正方向(紙面手前方向)に電流が流れるものとする。導線W周辺の磁界はx軸方向及びy軸方向に勾配を有する。y軸方向を向いた磁気双極子を有する永久磁石3を導線Wの近傍に配した場合、永久磁石3が受ける磁気力は下記式(3)及び(4)で表される。
【0059】
図7は、導線Wに対する永久磁石3の位置と、当該永久磁石3に働く力との関係を示すベクトル図である。永久磁石3に働く力の大きさは、導線Wからの距離のみに依存するが、永久磁石3に働く力の方向は、導線Wに対する位置によって異なる。
図7中、導線Wの上下及び左右の位置では、x軸方向の力が働き、x軸又はy軸に対して45度の位置ではy軸方向の力が働いていることが分かる。
【0060】
図8は、導線Wに対する永久磁石3の位置と、当該永久磁石3に働くx軸方向の力の大きさ及び向きとの関係を示すコンター図である。
図8Aは、シミュレーション結果の出力画像をグレースケールで示すコンター図であり、
図8Bは、グレースケールで表現できない力の向き(色)を便宜上、ハッチングの有無で模式的に示したコンター図である。
図8B中、ハッチングが付されていない白抜きの領域P1は、永久磁石3に左方向の力が働くことを示し、ハッチングが付されている領域P2は、永久磁石3に右方向の力が働くことを示している。破線で示すように、x軸及びy軸に対して略45度の境界で区分けされた4つの領域中、
図8中、左右の領域P1(
図8B中、白抜きの領域P1)に配された永久磁石3には、白抜き左矢印で示すように左方向の力が働き、
図8中、上下の領域P2(
図8B中、ハッチングが付された領域P2)に配された永久磁石3には、白抜き右矢印で示すように右方向の力が働く。このように、領域P1と、領域P2とでは、永久磁石3に働く力の向きが左右逆向きである。発電装置100の永久磁石3を振動させて発電を行う場合、同一方向の力が働くように、領域P1又は領域P2のいずれか一方の領域を利用することが好ましい。
【0061】
<圧電振動発電素子の支配方程式>
カンチレバー1の自由端1bに永久磁石3を設けてなる圧電振動発電素子の支配方程式は、
図8中、導線Wの上下、即ちy軸上に永久磁石3を配した場合、下記式(5)及び(6)で表される。なお、導線Wの左右、即ちx軸上に永久磁石3を配した場合の支配方程式も同様にして表される。
【0063】
図9は、永久磁石3の配置及び周波数並びに負荷Rの抵抗値と、発電量との関係を示すシミュレーション結果のグラフである。横軸は交流の周波数、縦軸は発電量である。磁気モーメントがy軸方向を向いた磁気双極子を、
図8中、x軸上、導線Wの右側又は、y軸上、導線Wの下側に配置したときの発電量を、上記支配方程式に基づいてシミュレートした。dは導線Wと、永久磁石3の導線W側の面との距離である。計算条件は以下の通りである。ただし、導線Wの径及び永久磁石3の大きさを無限小として取り扱った。
永久磁石3の質量:1g
電流値(実効値):10A
導線Wと永久磁石3の距離:10mm
電気機械連成係数:5%
素子の共振周波数:60Hz
カンチレバー1の非線形バネ定数:k3=0
圧電部材12の静電容量:170nF
負荷Rの抵抗値:3kΩ
残留磁束密度:1T
機械的品質係数(Q値):100
【0064】
なお、導線Wに対する永久磁石3の位置及び姿勢を、
図8を参照して導線Wの「右側」及び「下側」として説明するが、導線Wを基準とした鉛直方向又は水平方向の位置は必ずしも問題では無い。永久磁石3を導線Wの右側に配置することは、導線Wの径方向及び交流の通流方向に対して直交する方向にS極3b及びN極3aが並ぶように永久磁石3を配した構成を意味する。永久磁石3を導線Wの下側に配置することは、導線Wの径方向に沿ってS極3b及びN極3aが並ぶように永久磁石3を配した構成を意味する。
【0065】
図9A及び
図9Bは、永久磁石3をそれぞれ導線Wの下側及び右側に配置したときの、複数の負荷抵抗値(100Ω、300Ω、1kΩ、3kΩ、10kΩ)毎のシミュレーション結果を示している。
図9A及び
図9Bに示すように、共振周波数付近で発電量が最大となる。また、負荷Rの抵抗値が3kΩのとき、発電装置100及び負荷Rがインピーダンス整合し、発電量が最大となることが分かる。上記条件においては、永久磁石3の配置による発電量の際はほとんど無い。
【0066】
図10は、導線W及び永久磁石3間の距離と発電量との関係を示すシミュレーション結果のグラフである。横軸は負荷Rの抵抗値、縦軸は発電量である。
図10A及び
図10Bは、上記と同様の条件で永久磁石3をそれぞれ導線Wの下側及び右側に配置したときのシミュレーション結果を示している。ただし、交流の周波数は、各抵抗値において発電量が最大になるときの周波数を用いて、発電量をプロットしている。
導線W及び永久磁石3間の距離が15mm以上では、永久磁石3の配置による発電量の差は僅かであるが、10mmでは永久磁石3を右側に配置したときの方が、発電量が数%大きい。導線W及び永久磁石3間の距離を5mmまで接近させると、永久磁石3を導線Wの右側に配置した場合においては、永久磁石3が導線Wに衝突してしまい、シミュレーション結果が得られなかった。
【0067】
以上の通り、導線Wの下側に永久磁石3を配置した場合、導線Wに永久磁石3を接近させても衝突の問題は生じないため、結果として、導線Wの右側に永久磁石3を配置する場合に比べて大きな発電量を得ることができる。
【0068】
図11は、導線Wに対する永久磁石3の距離と発電量及び変位量との関係を示すシミュレーション結果のグラフである。横軸は導線W及び永久磁石3間の距離を示し、
図11Aの縦軸は発電量、
図11Bの縦軸は変位量を示している。各グラフには、異なる機械的品質係数Qの値(30、50、100、200、500)毎に、距離と、発電量及び変位量との関係がプロットされている。
図11中の「Q値」は、機械的品質係数を示す。
図11のグラフから、発電量は機械的品質係数Qに比例することが分かる。
また、
図11のグラフから、永久磁石3と導線Wとの距離が10mm以上である場合、発電量は永久磁石3と導線Wの距離の4乗に反比例することが分かる。しかし、永久磁石3と導線Wとの距離が10mm未満である場合、反比例関係が崩れ始め、永久磁石3の変位量が永久磁石3及び導線W間の距離と同程度になると、それ以上、永久磁石3を導線Wに近づけても発電量と変位量が減少することが分かる。これは、永久磁石3の振幅が大きくなり、
図8に示す領域P2で振動していた永久磁石3が、領域P1に進入し、永久磁石3に逆方向の力が働くためであると考えられる。
以上の結果から、永久磁石3の横方向の長さ、つまり永久磁石3の振動方向であるx軸方向の長さが大きいと、振動を制限するような逆方向の力が働く領域に永久磁石3が進入し易くなってしまうことが分かる。永久磁石3の横方向の長さは、永久磁石3が領域P2内に留まるように設計することが好ましい。
【0069】
図12は、永久磁石3の特性が発電量に及ぼす影響を示すシミュレーション結果のグラフである。当該シミュレーションにおいては、共振周波数を49Hzとした。横軸は交流の周波数、縦軸は発電量を示す。
図12Aは、永久磁石3の残留磁束密度(0.22T、0.44T、0.88T、1.76T)と、発電量との関係を示すグラフであり、
図12Bは、永久磁石3の質量(0.5g、1g、2g、4g、8g)と発電量との関係を示すグラフである。なお、永久磁石3の質量を変化させた際、係数k1の値を調整し、共振周波数が変化しないようにしてシミュレーションを行った。
図12Aに示すグラフから、発電量は残留磁束密度の2乗に比例することが分かる。また、
図12Bに示すグラフから、共振周波数一定の条件では、発電量は永久磁石3の質量に比例することが分かる。
【0070】
以上の結果を総括すると、発電量と4乗の比例関係を有するパラメータは、導線W及び永久磁石3間の距離であり、2乗の比例関係を有するのは永久磁石3の残留磁束密度であり、1乗の比例関係を有するのは永久磁石3の質量及び機械的品質係数Qであることが分かる。大きな発電量を得るためには、4乗又は2乗の比例関係を有するパラメータを優先して発電装置100を設計すると良い。
例えば、カンチレバー1の自由端1bに部品を取り付ける場合、可能な限り、磁性体からなる部品を用いることが望ましい。カンチレバー1の自由端1bに非磁性体部品を取り付けた場合、その質量に比例して発電量が増加すると考えられるが、磁性体部品を取り付ける場合に比べて、2乗の比例関係を有する残留磁束密度が低下し、結果として発電特性は低下してしまう。
【0071】
また、永久磁石3は可能な限り導線Wに近い位置に配置し、永久磁石3の振動方向が導線Wに接近しない方向に設定することが望ましい。
【0072】
更に、振動を抑制する力が永久磁石3に作用しないよう、振動方向における永久磁石3の寸法を短く形成することが望ましい。
【0073】
図13は、永久磁石3の配置姿勢の例を示す模式図である。3辺の長さが異なる直方体の永久磁石3を配置する方法としては、
図13A〜
図13Cに示す3通りがある。上記の見地から、
図13A〜
図13Cに示す永久磁石3の体積及び質量が同じ永久磁石3であっても、発電量は
図13Aに示す配置姿勢で最も大きく、
図13A、
図13B及び
図13Cの順に発電量が小さくなると考えられる。
つまり、永久磁石3の厚み方向が導線Wの径方向を向き、永久磁石3の長辺方向が導線Wに沿うように配置すると良い。
【0074】
一方、永久磁石3に振動を抑制する力が作用しないようにするためには、振動する永久磁石3が常に
図8に示す領域P2にあることが望ましく、振動方向の永久磁石3の幅は、上記式(3)の範囲内で設定すると良いことが分かる。
【0075】
図14は、永久磁石3の厚みと発電量の関係を示すシミュレーション結果のグラフである。横軸は永久磁石3の厚み、縦軸は発電量を示す。導線Wの上側に永久磁石3を配置した場合を考える。導線Wの中心と、永久磁石3の導線側の面(下面)との距離をa、永久磁石3の厚み(上下方向の幅)をdとすると、発電量Pは、下記式(7)で表される。
【0077】
ただし、導線Wの径を無限小とし、永久磁石3の振幅は距離aよりも十分に小さいものと仮定する。
図14は、上記式(7)をグラフ化したものである。
図14のグラフからd≒aのとき、発電量が最大となることが分かる。最大発電量の90%以上の発電量が得られる永久磁石3の厚みdは、約0.5a以上、2a以下である。
【0078】
<実験結果>
図15は、実験用発電装置を示す模式図である。実験用発電装置の基本的な構成は、
図1に示した発電装置100と同様である。長手方向が鉛直方向となるようにカンチレバー1の下端を固定部2によって固定している点が
図1に示した発電装置100と異なるが、永久磁石3に働く磁気力Fの向き、永久磁石3の振動方向、磁気双極子の向き等は同じであり、原理的には同一構造と見なせる。なお
図15は、導線Wの右側に永久磁石3を配置した例を図示している。永久磁石3を導線Wの下側に配置すると、
図1に示す発電装置100と実質的に同じ構成となる。
圧電発電部であるカンチレバー1にはPZTセラミックスをステンレス基板の両面に接着したバイモルフ素子(FDK製PZBA00030)を用いた。圧電体の長さと幅はそれぞれ48mm及び20mmである。永久磁石3には、残留磁束密度が0.43TのNd−Fe−Bを用いた。永久磁石3の体積と質量は、それぞれ250mm
3、1.8gである。
また、素子の共振周波数が50Hz程度になるように永久磁石3の質量や取り付け位置を調整した。Q値の低下を防ぐために圧電バイモルフ素子の固定端1aは精密バイスで固定している。永久磁石3は双極子が下向きになるように固定している。圧電部材12の静電容量は140nFである。発電量の評価のために負荷Rとして抵抗を接続した。共振周波数との関係からインピーダンス整合する負荷Rの抵抗値は24kΩであった。永久磁石3の振動振幅はレーザ変位計を用いて測定した。負荷Rに発生する起電力はロックインアンプで測定した。
【0079】
図16は、永久磁石3の配置及び周波数と、発電量の関係を示す実験結果のグラフである。横軸は周波数、縦軸は発電量である。
図16A、
図16B及び
図16Cは、永久磁石3を、それぞれ導線Wの右側、右下側及び下側に配置した場合の発電量と、周波数の関係を示している。電流量は0.06A、0.12A、0.25Aと変化させ、素子の共振周波数付近で、発電量の周波数依存性を調べた。導線Wと永久磁石3の距離は6mmで一定になるように調整した。すべての測定において共振周波数付近で発電量が最大になっている。永久磁石3が導線Wに対して右と下の位置ではほぼ同じ発電量であるのに対し、右下位置では発電量が減少している。上記構成において永久磁石3を導線Wの右側又は下側に配置した場合、発電装置100は、約1μWの電力を発電していることが分かる。
【0080】
<本実施形態に係る発電装置100の作用効果>
以上の通り、本実施形態1に係る発電装置100によれば、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことができる。
【0081】
また、振動する永久磁石3と、導線Wとの衝突を確実に回避することができ、交流磁場を用いて効率的に発電することができる。
【0082】
更に、永久磁石3を離隔方向に偏平となる姿勢で配置することにより、永久磁石3の各部を導線Wに接近させることができ、効率的に発電することができる。
【0083】
更にまた、本発明によれば、永久磁石3の各部を導線Wに沿って配置することにより、永久磁石3の各部を導線Wに接近させることができ、効率的に発電することができる。
【0084】
更にまた、離隔方向における永久磁石3の幅を、導線W及び永久磁石3の距離の0.5倍以上、2倍以下に設定することにより、効率的に発電することができる。
【0085】
更にまた、永久磁石3の静止位置及び振動時の任意の位置において、永久磁石3の各部に逆向きの力が働かないようにすることができ、効率的に発電することができる。
【0086】
更にまた、余分な非磁性体部品を備え無いため、効率的に発電することができる。
【0087】
更にまた、カンチレバー1の自由端1bに永久磁石3を設ける簡単な構成で、交流磁場を用いた発電を行うことができる。
【0088】
更にまた、カンチレバー1を構成する長板部11の両面に圧電部材12を配することによって、効率的に発電することができる。
【0089】
(実施形態2)
実施形態2に係る発電装置200は、導線Wに対する永久磁石3の配置及び姿勢、振動方向が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
【0090】
図17は、本実施形態2に係る発電装置200を示す正面図である。本実施形態2に係る永久磁石3は、導線W及び永久磁石3の離隔方向に対して略45度の方向に並ぶS極3b及びN極3aを有する。そして、カンチレバー1は、永久磁石3がS極3b及びN極3aの並び方向(
図17中、上下方向)に振動するように固定部2に固定されている。
【0091】
実施形態2に係る発電装置200によれば、実施形態1と同様、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、導線Wの周囲に形成される交流磁場に基づいて発電を行うことができる。
【0092】
また、永久磁石3は、導線W及び永久磁石3の離隔方向に対して略45度の角度で振動するため、永久磁石3を導線Wから所定距離離隔させることにより、振動する永久磁石3と、導線Wとの接触を回避することができる。
【0093】
(実施形態3)
本実施形態3に係る永久磁石3は、導線Wに対する永久磁石3の配置及び姿勢、振動方向が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
【0094】
図18は、本実施形態3に係る発電装置300を示す正面図である。本実施形態3に係る永久磁石3は、交流の通流方向と、導線W及び永久磁石3の離隔方向とに直交する方向に並ぶS極3b及びN極3aを有する。そして、カンチレバー1は、永久磁石3の離隔方向、つまり導線Wの径方向に振動するように固定部2に固定されている。
【0095】
実施形態3に係る発電装置300によれば、実施形態1と同様、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、導線Wの周囲に形成される交流磁場に基づいて発電を行うことができる。
【0096】
(実施形態4)
本実施形態4に係る永久磁石403は、永久磁石403及びカンチレバー401の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
【0097】
図19は、本実施形態4に係る発電装置400を示す斜視図である。カンチレバー401は、長板部11の厚み方向が、導線Wの径方向及び交流の通流方向に交差する姿勢、つまり、自由端1bが導線Wの径方向及び上記通流方向に略直交する方向に変位する姿勢で固定部2に固定されている。
【0098】
カンチレバー401の自由端1bには、複数の磁極対431,432,433を有する永久磁石403が設けられている。カンチレバー401の自由端1bは、永久磁石403の中心部に接続されている。永久磁石403は、複数の磁極対431,432,433を支持するための矩形板状の支持板430を有し、支持板430の長手方向が長板部11の厚み方向を向き、支持板430の厚み方向が導線Wの径方向と略一致するように、カンチレバー401の自由端1bに固定されている。
【0099】
支持板430の長手方向略中央部及び両端部にはそれぞれ、厚み方向に着磁された磁極対431,432,433が設けられている。上記略中央部に設けられた磁極対431は導線W側がS極、反導線側がN極である。上記両側に設けられた磁極対432,433は導線W側がN極、反導線側がS極である。
【0100】
支持板430に設けられた3つの磁極対431,432,433は、間隙を設けて配されている。支持板430の略中央部に配された磁極対431は、導線Wに電流が流れて永久磁石403が振動する際、同一方向の力が作用するように配されている。具体的には、支持板430の略中央部に設けられた磁極対431は
図8に示すように、領域P2に位置し、支持板430の両端部に設けられた磁極対432,433は、領域P1に位置するように構成されている。
【0101】
実施形態4に係る発電装置400によれば、複数組みのS極及びN極を有する永久磁石403を備え、かつ上記の通り、永久磁石403の各部に逆向きの力が働かないようにS極及びN極を配置することにより、効率的に発電することができる。
【0102】
また、永久磁石403の中心部分にカンチレバー401の自由端1bが接続されているため、永久磁石403を弾性体にバランス良く支持させることができ、効率的に発電することができる。
【0103】
(実施形態5)
本実施形態5に係る永久磁石503は、永久磁石503及びカンチレバー501の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
【0104】
図20は、本実施形態5に係る発電装置500を示す斜視図である。実施形態5に係る発電装置500は、2本のカンチレバー501を備える。各カンチレバー501の固定端1aは、貫通孔21を挟んで上部及び下部に固定されている。各カンチレバー501の長板部11の厚み方向が、導線Wの径方向及び交流の通流方向に交差する姿勢で固定部2に固定されている。
【0105】
各カンチレバー501の自由端1bには、導線Wを囲繞する正面視略C字状をなし、径方向に並ぶN極503a及びS極503bを有する永久磁石503が固定されている。第1のカンチレバー501の自由端1bは、C字状の永久磁石503の一端部が固定され、第2のカンチレバー501の自由端1bには、当該永久磁石503の他端部が固定されている。
【0106】
このように構成された永久磁石503は、導線Wの周方向に沿って幅広く永久磁石503を配置することにより、永久磁石503の各部を導線Wに接近させることができ、交流磁場を用いて効率的に発電することができる。
【0107】
実施形態5に係る発電装置500によれば、導線Wの周囲に沿って幅広く永久磁石503を配置することができ、効率的に発電することができる。
【0108】
(実施形態6)
図21は、本実施形態6に係る電圧調整装置を示すブロック図である。実施形態6に係る電圧調整装置は、系統に接続された導線Wの電圧を調整するための電圧調整機605と、電圧調整機605の状態を検出する検出装置606と、当該検出装置606にて検出された検出情報を外部へ無線送信する送信装置607とを備える。電圧調整機605は、例えば、SVR(Step Voltage Regulator)、SVC(static var compensator)等であり、検出情報は、電圧調整機605の上流側及び下流側の電圧、電流、電圧調整内容等である。
【0109】
実施形態6に係る送信装置607は、実施形態1に係る発電装置100と、当該発電装置100が出力する電力にて駆動し、検出装置606によって検出された検出情報に係る信号を無線送信する送信部671とを備える。発電装置100は、導線Wの周囲に形成される交流磁場に基づいて発電し、電圧を送信部671へ出力し、送信部671は、発電装置100から出力される電圧にて駆動する。
【0110】
実施形態6に係る電圧調整装置によれば、発電装置100が出力する電圧を用いて送信部671を駆動することができる。従って、電源を用意することができない環境、例えば、送電線の途中に設けられた電圧調整機605の側に発電装置100及び送信部671を配し、電圧調整機605に係る情報を外部へ無線送信することができる。
【0111】
なお、実施形態6では、実施形態1に係る発電装置100を備える例を説明したが、言うまでも無く、実施形態2〜実施形態5に係る発電装置200,300,400,500を用いて、実施形態6に係る電圧調整装置を構成しても良い。
【0112】
今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。