【国等の委託研究の成果に係る記載事項】(出願人による申告)平成27年度国立研究開発法人新エネルギー・産業技術総合開発機構「太陽電池性能高度評価技術の開発」委託研究、産業技術力強化法19条の適用を受ける特許出願
【文献】
FONG, K. C. et al.,"Accurate series resistance measurement of solar cells",PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS,2013年,Vol.21,pp.490-499
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0027】
[実施の形態1]
図1は、この発明の実施の形態1による特性推定装置の概略図である。
図1を参照して、この発明の実施の形態1による特性推定装置10は、インターフェース1と、計測制御部2と、日射計測部3と、計測部4と、表示部5とを備える。計測制御部2は、特性推定部20を含む。特性推定部20は、記憶手段21と、実行手段22とを含む。記憶手段21は、後述するプログラムを記憶する。実行手段22は、記憶手段21からプログラムを読み出し、その読み出したプログラムを実行して太陽電池の電流−電圧特性を推定する。ここで、計測制御部2、日射計測部3、計測部4および表示部5のそれぞれは、計測制御回路、日照計測回路、計測回路、表示回路によるハードウェアによって実現することができる。また、以下に説明する実施の形態1〜実施の形態8における各フローチャートは、太陽電池の電流−電圧特性の推定方法を構成する。
特性推定装置10が特性を推定する対象とする太陽電池(より一般的には、「光電変換素子」と呼ぶ。)は、半導体pn接合からなる太陽電池、例えば、単結晶シリコン太陽電池および多結晶シリコン太陽電池等の結晶シリコン太陽電池、GaAs等の化合物を用いた化合物太陽電池、CIS系太陽電池およびカルコパイライト系の太陽電池である。
【0028】
なお、後述する実施の形態2〜実施の形態8においては、それぞれ、特性推定装置10A〜10Gが用いられ、特性推定装置10A〜10Gは、特性推定装置10の計測制御部2をそれぞれ計測制御部2A〜2Gに変えた構成からなる。また、計測制御部2A〜2Gは、それぞれ、特性推定部20A〜20Gを含む。特性推定部20Aは、記憶手段21Aと、実行手段22Aとを含む。同様に、特性推定部20B〜20Gは、それぞれ、記憶手段21B〜21Gと、実行手段22B〜22Gとを含む。
【0029】
インターフェース1は、外部から照度G
1,G
2および温度T
1,T
2を受け、その受けた照度G
1,G
2および温度T
1,T
2を計測制御部2へ出力する。
【0030】
計測制御部2は、インターフェース1から照度G
1,G
2および温度T
1,T
2を受ける。計測制御部2は、ソーラーシミュレータから太陽電池6に照射される疑似太陽光または自然太陽光等の光源の日射または照度を計測するように日射計測部3を制御する。そして、計測制御部2は、日射計測部3から疑似太陽光等の日射または照度の計測結果を受ける。そうすると、計測制御部2は、照度G
1および温度T
1で太陽電池6の電流−電圧特性(以下、「IV特性」という。)を測定するように計測部4を制御する。この場合、計測制御部2は、日射または照度の計測結果に基づいて、ソーラーシミュレータから太陽電池6への光の照射タイミングに同期してIV特性を測定するように計測部4を制御する。また、計測制御部2は、光源にちらつきがあれば、ちらつきを有する光源を太陽電池6に照射してIV特性を測定するように計測部4を制御する。
【0031】
また、計測制御部2の特性推定部20は、計測部4からIV特性を受け、その受けたIV特性に基づいて、後述する方法によって、照度G
2および温度T
1(または照度G
2および温度T
2)における太陽電池6のIV特性を推定する。そして、特性推定部20は、その推定したIV特性を表示部5に表示する。
【0032】
日射計測部3は、太陽電池モジュール(PVモジュール)型の日射センサーを用いて日射または照度を計測し、その計測結果を計測制御部2へ出力する。PVモジュール型の日射センサーは、応答速度、分光感度特性および入射角特性が太陽電池6と類似しているため、日射計測部3は、低照度時または日射変動時でも高精度な計測が可能である。
【0033】
計測部4は、4端子によって太陽電池6と接続される。そして、計測部4は、4端子法を用いて計測制御部2からの制御に従って太陽電池6のIV特性を測定し、その測定したIV特性を計測制御部2へ出力する。
【0034】
表示部5は、計測制御部2の特性推定部20によって推定されたIV特性を表示する。太陽電池6は、1つの太陽電池または複数の太陽電池を直列に接続した太陽電池モジュールからなる。
計測制御部2の特性推定部20におけるIV特性の推定方法について説明する。この発明の実施の形態においては、次式で表されるダイオード特性の理論式に基づいた導出法を用いる。
【数3】
【0035】
式(3)において、qは、素電荷(1.6022×10
−19C)であり、Vは、太陽電池の両端の電圧であり、Iは、太陽電池から出力される電流であり、kは、ボルツマン定数(1.3806×10
−23J/K)であり、Tは、絶対温度であり、I
0は、逆方向飽和電流であり、nは、ダイオード特性のn値であり、I
phは、光電流であり、R
Sは、直列抵抗であり、R
shは、シャント抵抗である。
【0036】
式(3)において、(V+R
SI)/R
shの項が無視でき、exp(q(V+R
SI)/nkT)>>1である場合、式(3)は、次式のようになる。
【数4】
【0037】
なお、通常、I
phは、短絡光電流I
SCにほぼ等しいので、式(4)の導出においては、I
phをI
SCに置き換えた。また、exp(q(V+R
SI)/nkT)>>1は、例えば、1つの太陽電池当たりの電圧が0.1Vよりも大きい場合に成立する。更に、1つの太陽電池当たりの電圧をvとし、1つの太陽電池当たりの直列抵抗をr
Sとすれば、複数の太陽電池を直列に接続した太陽電池モジュールの電圧Vは、V=N
c×vであり、太陽電池モジュールの直列抵抗R
Sは、R
S=N
c×r
Sである。ここで、N
cは、太陽電池モジュール内において直列に接続された太陽電池の個数である。
【0038】
式(4)を電流Iで微分すると、次式が得られる。
【数5】
【0039】
式(5)によれば、−∂V/∂Iと1/(I
SC−I)との関係を示す直線の傾きおよび切片からそれぞれn値および直列抵抗R
Sを求めることが可能である。
【0040】
しかし、太陽電池のIV特性の計測値は、離散的であり、微分係数である−∂V/∂Iを含む式(5)に正確に適用することができず、n値および直列抵抗R
Sの導出に誤差が生じる。
【0041】
そこで、この問題を解決するために、発明者は、式(4)において、電流Iが電圧Vの指数関数であることを考慮して、IV特性上の2点((I
a,V
a)および(I
b,V
b))の差分を用いて、横軸を1/(I
SC−I)に代えて−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)とすることにより、n値および直列抵抗R
Sを導出できることを見出した。即ち、次式を用いてn値および直列抵抗R
Sを導出する。
【0043】
式(4)に従うIV特性上のデータ点(I
a,V
a),(I
b,V
b)を用いると、次式が得られる。
【0045】
式(7)の式(7d)を変形すると、次式が得られる。
【数8】
【0046】
また、(I
a,V
a)および(I
b,V
b)が相互に近い場合((I
a−I
b)/(I
a+I
b)が0.3程度以下の場合)、式(6)を次式のように変形する。
【0048】
式(8)と式(9c)とから次式が得られる。
【数10】
【0049】
よって、次式が得られる。
【数11】
【0050】
従って、特性推定部20は、式(8)を用いて、−(V
a−V
b)/(I
a−I
b)と−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係をプロットして−(V
a−V
b)/(I
a−I
b)と−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係を示す回帰直線を求め、その求めた回帰直線の傾きからn値を導出し、回帰直線の切片から直列抵抗R
Sを導出する。この場合、特性推定部20は、傾き=N
cnkT/qによってn値を導出し、切片=R
Sによって直列抵抗R
Sを導出する。
【0051】
また、特性推定部20は、式(11)を用いて、−(V
a−V
b)/(I
a−I
b)と1/(I
SC−(I
a+I
b)/2)との関係をプロットして−(V
a−V
b)/(I
a−I
b)と1/(I
SC−(I
a+I
b)/2)との関係を示す回帰直線を求め、その求めた回帰直線の傾きからn値を導出し、回帰直線の切片から直列抵抗R
Sを導出する。
【0052】
なお、式(11)を用いることができるのは、I
Δ=(I
b−I
a)がI’=I
SC−(I
a+I
b)/2、I
SC−I
bおよびI
SC−I
aに比べて小さいときである。数値で言うと、式(11)にx%オーダーの誤差が許容される場合には、I
Δ/I’もx%以内が「近い場合」と言える。xは、例えば、30%よりも小さい。
【0053】
更に、I
Δ=(I
b−I
a)がI’=I
SC−(I
a+I
b)/2、I
SC−I
bおよびI
SC−I
aに比べて小さく、かつ、I
a−I
bがx%以内であれば、式(5)を用いて、n値および直列抵抗R
Sを導出できる。この場合、xは、好ましくは、3%よりも小さい値に設定される。従って、特性推定部20は、−(V
a−V
b)/(I
a−I
b)と1/(I
SC−I)との関係をプロットして、−(V
a−V
b)/(I
a−I
b)と1/(I
SC−I)との関係を示す回帰直線を求め、その求めた回帰直線の傾きからn値を導出し、回帰直線の切片から直列抵抗R
Sを導出する。
【0054】
特性推定部20は、n値および直列抵抗R
Sを導出すると、照度G
1および温度T
1で測定された短絡光電流I
SC1と、直列抵抗R
Sと、照度G
1および温度T
1で測定されたIV特性IV
1上のデータ点(I
1,V
1)と、照度G
1,G
2とを次式に代入して照度G
2および温度T
1における電流I
2および電圧V
2を求め、照度G
2および温度T
1におけるIV特性を推定する。
【0056】
上述した方法によって、照度G
1および温度T
1で測定されたIV特性IV
1から照度G
2および温度T
1におけるIV特性IV
2を推定した場合、IV特性IV
1においてダイオード電流(=式(4)の右辺第2項I
0exp(q(V+R
SI)/nkT))が短絡光電流I
SCよりも大きくなる高電圧側のデータが無ければ、IV特性IV
2において、高電圧側のデータが欠落する。
【0057】
この場合、n値が既知であれば、次の方法によって、IV特性IV
2における高電圧側のデータを推定できる。IV特性が式(4)によって表される場合、次式が得られる。
【0059】
低照度および高照度におけるIV特性上のデータ点をそれぞれ(I
low,V
low)および(I
high,V
high)とすると、これらのデータ点(I
low,V
low),(I
high,V
high)の各々は、式(13)を満たすので、低照度および高照度における短絡光電流をそれぞれI
SC,low,I
SC,highとすると、次式が得られる。
【0061】
式(14)において、I
low=I
high=Iである場合、次式となる。
【数15】
【0062】
そして、式(15)から次式が得られる。
【数16】
【0063】
従って、特性推定部20は、式(16)を用いて、低照度におけるIV特性の電圧値V
lowおよび電流値I
low(=I)と、低照度における短絡光電流I
SC,lowと、高照度における短絡光電流I
SC,highとを式(16)に代入して高照度における電圧値V
highを算出し、電圧値
Vhighおよび電流値I
low(=I)を高照度におけるIV特性IV
2の高電圧側のデータ点として推定する。
【0064】
図2は、高電圧側のデータ点の推定を示す概念図である。
図2を参照して、黒四角は、照度G
1および温度T
1で測定されたIV特性IV
1を示し、黒三角は、IV特性IV
1から推定されたIV特性IV
2を示す。そして、IV特性IV
2において、高電圧側のデータ点が欠落している。
【0065】
この場合、特性推定部20は、IV特性IV
2において欠落している領域に対応するIV特性IV
1の領域REG1における電流値および電圧値を(I
low,V
low)として検出する。また、特性推定部20は、IV特性IV
1に基づいて、短絡光電流I
SC,lowを検出する。更に、特性推定部20は、照度G
2および温度T
1で測定された短絡光電流I
SC,highを計測部4から受ける。若しくは、特性推定部20は、G
1≠0の場合には、I
SC,high=I
SC,low×G
2/G
1によって短絡光電流I
SC,highを算出する。
【0066】
そして、特性推定部20は、電流値I
low(=I)、電圧値V
lowおよび短絡光電流I
SC,low,I
SC,highを式(16)に代入して、IV特性IV
2における電圧値V
highを算出する。そうすると、特性推定部20は、(I
low(=I),V
high)をプロットしてIV特性IV
2における高電圧側のデータ点(
図2に示す白三角)を推定する。上述したように、I
low=I
high=Iであるので、白三角で表されるデータ点の電流値は、領域REG1の黒四角で表されるデータ点の電流値と同じである。
【0067】
図3は、実施の形態1による特性推定方法を説明するためのフローチャートである。
図3を参照して、特性を推定する動作が開始されると特性推定部20は、照度G
1および温度T
1で測定された1つのIV特性IV
1のうち、exp(q(V+R
SI)/nkT)>>1である領域におけるIV特性IV’
1に基づいて、2点のデータの組(I
a,V
a),(I
b,V
b)を複数組検出する(ステップS1)。
【0068】
そして、特性推定部20は、複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)(nは、2以上の整数)に基づいてn値および直列抵抗R
Sを導出する(ステップS2)。
【0069】
その後、特性推定部20は、IV特性IV
1に基づいてデータ点(I
1,V
1)を複数点検出する(ステップS3)。
【0070】
そうすると、特性推定部20は、照度G
1および温度T
1で測定された短絡光電流I
SC1、電流値I
1、電圧値V
1および直列抵抗R
Sを式(12)に代入して照度G
2および温度T
1における電流値I
2および電圧値V
2を導出することを複数のデータ点(I
1_1,V
1_1)〜(I
1_n,V
1_n)について実行し、照度G
2および温度T
1におけるIV特性IV
2を推定する(ステップS4)。これによって、特性を推定する動作が終了する。
【0071】
図4は、
図3に示すステップS2の詳細な動作を説明するためのフローチャートである。なお、
図4に示すフローチャートは、式(8)を用いてn値および直列抵抗R
Sを導出するときの
図3に示すステップS2の詳細な動作を説明するためのフローチャートである。
【0072】
図4を参照して、
図3のステップS1の後、特性推定部20は、複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)に基づいて、x=−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)およびy=−(V
a−V
b)/(I
a−I
b)を複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)について演算し、データ点(x
1,y
1)〜(x
n,y
n)を求める(ステップS21)。
【0073】
そして、特性推定部20は、データ点(x
1,y
1)〜(x
n,y
n)をプロットし、xとyとの関係を示す回帰直線を求める(ステップS22)。
【0074】
その後、特性推定部20は、回帰直線の傾きおよび切片を検出し、傾きからn値を導出し、切片から直列抵抗R
Sを導出する(ステップS23)。そして、ステップS23の後、特性を推定する動作は、
図3のステップS3へ移行する。
【0075】
図5は、
図3に示すステップS2の別の詳細な動作を説明するためのフローチャートである。なお、
図5に示すフローチャートは、式(11)を用いてn値および直列抵抗R
Sを導出するときの
図3に示すステップS2の詳細な動作を説明するためのフローチャートである。そして、
図5に示すフローチャートは、
図4に示すフローチャートのステップS21をステップS21Aに変えたものであり、その他は、
図4に示すフローチャートと同じである。
【0076】
図5を参照して、
図3のステップS1の後、特性推定部20は、複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)に基づいて、x=1/(I
SC−(I
a+I
b)/2)およびy=−(V
a−V
b)/(I
a−I
b)を複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)について演算し、データ点(x
1,y
1)〜(x
n,y
n)を求める(ステップS21A)。
【0077】
その後、上述した
図4のステップS22,S23が順次実行される(ステップS10A)。そして、ステップS10Aの後、特性を推定する動作は、
図3のステップS3へ移行する。
【0078】
図6は、
図3に示すステップS2の更に別の詳細な動作を説明するためのフローチャートである。なお、
図6に示すフローチャートは、式(5)を用いてn値および直列抵抗R
Sを導出するときの
図3に示すステップS2の詳細な動作を説明するためのフローチャートである。そして、
図6に示すフローチャートは、
図5に示すフローチャートのステップS21AをステップS21Bに変えたものであり、その他は、
図5に示すフローチャートと同じである。また、
図6に示すフローチャートは、上述した「I
Δ=(I
b−I
a)がI’=I
SC−(I
a+I
b)/2、I
SC−I
bおよびI
SC−I
aに比べて小さく、かつ、I
a−I
bがx%以内である。」との条件を設定して式(5)を用いてn値および直列抵抗R
Sを導出するときのフローチャートである。
【0079】
図6を参照して、
図3のステップS1の後、特性推定部20は、複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)に基づいて、x=1/(I
SC−I)およびy=−(V
a−V
b)/(I
a−I
b)を複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)について演算し、データ点(x
1,y
1)〜(x
n,y
n)を求める(ステップS21B)。この場合、特性推定部20は、I
a=I
b=Iとしてxを演算する。
【0080】
その後、上述した
図4のステップS22,S23が順次実行される(ステップS10A)。そして、ステップS10Aの後、特性を推定する動作は、
図3のステップS3へ移行する。
【0081】
図7は、実施の形態1による別の特性推定方法を説明するためのフローチャートである。なお、
図7に示すフローチャートは、
図3に示すフローチャートに従って推定したIV特性IV
2における欠落領域の電流値および電圧値を推定し、その推定した電流値および電圧値をIV特性IV
2に追加して欠落領域のデータ点を有するIV特性IV
3を推定するフローチャートである。
【0082】
そして、
図7に示すフローチャートは、
図3に示すフローチャートにステップS5〜ステップS7を追加したフローチャートである。
【0083】
図7を参照して、特性を推定する動作が開始されると、上述した
図3のステップS1〜ステップS4が順次実行される(ステップS20A)。
そして、ステップS20Aの後、特性推定部20は、IV特性IV
2の電流値および電圧値の欠落領域に対応するIV特性IV
1のデータ点(I
1,V
1)をm(mは1以上の整数)組検出する(ステップS5)。
【0084】
その後、特性推定部20は、IV特性IV
1における短絡光電流I
SC,low、IV特性IV
2における短絡光電流I
SC,highおよびm組のデータ点(I
11,V
11)〜(I
1m,V
1m)を式(16)に代入してm個の電圧値V
high_1〜V
high_mを演算する(ステップS6)。この場合、特性推定部20は、電流値I
11〜I
1mの各々を式(16)のIに代入し、電圧値V
11〜V
1mを式(16)のV
lowに代入する。
【0085】
ステップS6の後、特性推定部20は、m組のデータ点(I
11,V
high_1)〜(I
1m,V
high_m)をIV特性IV
2に追加し、欠落データ点を推定したIV特性IV
3を求める(ステップS7)。これによって、特性を推定する動作が終了する。
【0086】
なお、実施の形態1においては、特性推定部20における特性推定は、ソフトウェアによって実現されてもよい。この場合、特性推定部20は、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)を備える。
【0087】
ROMは、
図3に示すフローチャートのステップS1〜S4(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_A、または
図7に示すフローチャートのステップS20A,S5〜S7(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_Bを記憶する。RAMは、CPUによって行われる演算の途中経過および演算結果等を一時的に記憶する。
【0088】
CPUは、ROMからプログラムProg_Aを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
2を推定する。また、CPUは、ROMからプログラムProg_Bを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
2の欠落データ点を有するIV特性IV
3を推定する。なお、ROMは、記憶手段21を構成し、プログラムProg_AまたはプログラムProg_Bを実行するCPUは、実行手段22を構成する。また、直列抵抗およびn値のうち、少なくとも直列抵抗を導出するCPUは、「導出手段」を構成し、太陽電池の電流−電圧特性を推定するCPUは、「推定手段」を構成する(以下、同じ。)。更に、プログラムProg_AまたはプログラムProg_Bは、記録媒体に記録されて流通してもよい。この場合、CPUは、記録媒体からプログラムProg_Aを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
2を推定する。また、CPUは、記録媒体からプログラムProg_Bを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
2の欠落データ点を有するIV特性IV
3を推定する。
【0089】
(実施例1)
506W/m
2の照度G
1および42.16℃の温度T
1で測定されたIV特性IV
1に基づいて、上述した方法によって、n値および直列抵抗R
Sを導出した。
図8は、506W/m
2の照度G
1および42.16℃の温度T
1で測定されたIV特性IV
1を示す図である。
図8において、曲線k1は、506W/m
2の照度G
1および42.16℃の温度T
1で測定されたIV特性IV
1の実測値を示す。
【0090】
そして、
図8に示すIV特性IV
1(曲線k1)に基づいて、式(5)、式(8)および式(11)を用いてn値および直列抵抗R
Sを導出した。
図9は、−dV/dIと1/(I
SC−I)または1/(I
SC−(I
a+I
b)/2)または−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係を示す図である。
【0091】
図9において、縦軸は、−dV/dIを表し、横軸は、1/(I
SC−I)または1/(I
SC−(I
a+I
b)/2)または−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)を表す。また、直線k2は、式(8)を用いたときの−(V
a−V
b)/(I
a−I
b)と−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係を表す回帰直線、または式(11)を用いたときの−(V
a−V
b)/(I
a−I
b)と1/(I
SC−(I
a+I
b)/2)との関係を表す回帰直線を示す。直線k3は、式(5)を用いたときの−∂V/∂Iと1/(I
SC−I)との関係を表す回帰直線を示す。なお、直線k3は、上述した「I
Δ=(I
b−I
a)がI’=I
SC−(I
a+I
b)/2、I
SC−I
bおよびI
SC−I
aに比べて小さく、かつ、I
a−I
bがx%以内である。」との条件を設定しないときの回帰直線を示す。
【0092】
図9を参照して、直線k2は、式(8)を用いたとき、y=1.2369x+0.1548によって表され、式(11)を用いたとき、y=1.2424x+0.1547によって表される。直線k3は、y=1.3986x+0.1427によって表される。そして、直線y=1.2369x+0.1548の傾き(=1.2369)から求めたn値は、1.139であり、直線y=1.2369x+0.1548の切片から求めた直列抵抗は、0.1548(Ω)であった。また、直線y=1.2424x+0.1547の傾き(=1.2424)から求めたn値は、1.148であり、直線y=1.2424x+0.1547の切片から求めた直列抵抗は、0.1547(Ω)であった。
【0093】
一方、直線k3の傾き(=1.3986)から求めたn値は、1.288であり、直線k3の切片から求めた直列抵抗は、0.1427(Ω)であった。
【0094】
表1は、実施の形態1における方法によって導出したn値および直列抵抗R
Sを示す。
【表1】
【0095】
表1においては、式(5)を用いた場合、(I
a−I
b)/(I
SC−I
b)<0.3の条件と(I
a−I
b)/(I
SC−I
b)<0.03の条件とについて示されている。導出の際に、IV特性として、設定値を仮定して式(4)で理論的に計算したものを用いた。
【0096】
表1に示す結果から、式(5)を用いた場合、(I
a−I
b)/(I
SC−I
b)<0.03の条件を設定した方が、(I
a−I
b)/(I
SC−I
b)<0.3の条件を設定した場合よりも、直列抵抗R
Sおよびn値の両方が設定値に近くなる。
また、式(11)を用いた場合、直列抵抗R
Sは、設定値と同じであり、n値は、式(5)を用いた場合よりも設定値に近くなる。
【0097】
更に、式(8)を用いた場合、直列抵抗R
Sおよびn値の両方が設定値と同じである。従って、式(8)を用いて直列抵抗R
Sおよびn値を導出することによって、誤差を最も低減して直列抵抗R
Sおよびn値を導出できることが明らかになった。
【0098】
直列抵抗R
Sおよびn値を導出した後、直列抵抗R
Sを用いて1000W/m
2の照度G
2および42.16℃の温度T
1におけるIV特性IV
2を上述した方法によって推定した。
【0099】
図10は、1000W/m
2の照度G
2および42.16℃の温度T
1におけるIV特性IV
2を示す図である。
図10において、曲線k1は、506W/m
2の照度G
1および42.16℃の温度T
1で測定されたIV特性IV
1を示し、曲線k4は、1000W/m
2の照度G
2および42.16℃の温度T
1におけるIV特性IV
2を示す。IV特性IV
2は、式(11)によって導出した直列抵抗R
Sを用いて推定したIV特性である。
【0100】
図10に示すように、導出した直列抵抗R
Sを用いることによって、IV特性IV
1(曲線k1)に基づいてIV特性IV
2(曲線k4)を推定できることが分かった。そして、IV特性IV
2(曲線k4)は、約16V以下の電圧範囲において、1000W/m
2の照度および42.16℃の温度で測定された高精度IV特性(点線)と良い一致を示す。その結果、
図3に示すフローチャート(
図4〜
図6のいずれかに示すフローチャートを含む)に従って506W/m
2の照度G
1および42.16℃の温度T
1で測定されたIV特性IV
1から1000W/m
2の照度G
2および42.16℃の温度T
1におけるIV特性IV
2を精度良く推定できることが分かった。
【0101】
IV特性IV
2(曲線k4)においては、約22V以上の電圧範囲においてデータ点が欠落しているが、これは、IV特性IV
1(曲線k1)において、約22V以上の電圧範囲においてデータ点が欠落しているからである。
【0102】
そこで、上述した方法によって、約22V以上の電圧範囲におけるデータ点を推定した。この場合、n=1.14、I
SC,low=4.687A、I
SC,high=9.269AおよびT=315.16Kを用いて、式(16)によって電圧値V
2を算出した。
【0103】
図11は、欠落領域のデータ点を推定した結果を示す図である。
図11を参照して、IV特性IV
2において、領域REG2に示すデータ点が推定されている(白三角参照)。推定したデータ点は、IV特性IV
2と連続的に繋がっており、欠落領域のデータ点を精度良く推定できた。
【0104】
[実施の形態2]
実施の形態2においては、上述した方法によって推定したIV特性の電圧を温度補正して照度G
2および温度T
2におけるIV特性IV
5を推定することを説明する。
実施の形態2による特性推定装置10Aは、
図1に示す特性推定装置10の計測制御部2を計測制御部2Aに変えたものであり、その他は、
図1に示す特性推定装置10と同じである。
【0105】
電圧の温度補正を行う式として次式が非特許文献2に記載されている。
【数17】
【0106】
式(17)において、E
gは、太陽電池6を構成する半導体のバンドギャップである。そして、電圧の温度補正を行う式として次式が用いられている。
【数18】
【0107】
式(18)は、電圧>0.1Vの範囲で成立する式(4)を元にしており、IV特性全体の温度補正をするには不適である。電圧によらずに成立する式(3)に基づく電圧の温度変化は、次式のように複雑であるので、全電圧で成立する式(18)のような簡単な温度補正式は無い。
【0109】
式(19a)は、シャント抵抗R
Shを考慮しない単一の太陽電池についての式(3)に基づく電圧の温度変化を示す式である。また、式(19b)は、全電圧で成立する式(19a)にシャント抵抗の影響も考慮し、直列に接続した個数N
cのモジュールに拡張した場合の電圧の温度変化を示す式である。そして、更に、直列抵抗R
Sも考慮する場合、式(19b)の電圧Vを電圧V+R
SIに置き換えればよい。
【0110】
但し、電圧=0V付近の電圧の温度変化は、次式によって近似され、電圧=0Vでは、電圧の温度変化は、無しとして、その間のIV特性を補間することによってIV特性全体の温度補正を行うことができる。
【0112】
特性推定部20Aは、IV特性IV
2上の電流値および電圧値をそれぞれI
1,V
1とし、電圧V
1、温度T
1,T
2および太陽電池モジュールを構成する太陽電池の個数N
cを式(18)に代入して電圧値V
2を算出することによって電圧の温度補正を行う。そして、特性推定部20Aは、式(18)を用いて電圧の温度補正をk(kは2以上の整数)組のデータ点(I
11,V
11)〜(I
1k,V
1k))について行い、k個の電圧V
21〜V
2kを算出する。そうすると、特性推定部20Aは、k組のデータ点(I
11,V
21)〜(I
1k,V
2k)をプロットし、照度G
2および温度T
2におけるIV特性IV
5を推定する。
【0113】
図12は、実施の形態2による特性推定方法を説明するためのフローチャートである。
図12に示すフローチャートは、
図3に示すフローチャートにステップS8〜ステップS10を追加したものである。
【0114】
図12を参照して、特性を推定する動作が開始されると、上述した
図3のステップS1〜ステップS4が順次実行される(ステップS20A)。そして、ステップS20Aの後、特性推定部20Aは、IV特性IV
2において電圧>0.1Vの範囲からk組のデータ点(I
2_1,V
2_1)〜(I
2_k,V
2_k)を検出し、k組のデータ点(I
2_1,V
2_1)〜(I
2_k,V
2_k)をk組のデータ点(I
11,V
11)〜(I
1k,V
1k)とし、k個の電圧値V
11〜V
1k、温度T
1,T
2および個数N
cを式(18)に代入してk個の電圧値V
21〜V
2kを算出する(ステップS8)。
【0115】
その後、特性推定部20Aは、k組のデータ点(I
11,V
21)〜I
1k,V
2k)をプロットし、IV特性IV
4を推定する(ステップS9)。
【0116】
引き続いて、特性推定部20Aは、電圧=0Vにおける電圧の温度係数をゼロとし、電圧=0Vのデータ点とIV特性IV
4との間を補間し、照度G
2および温度T
2におけるIV特性IV
5を推定する(ステップS10)。これによって、特性を推定する動作が終了する。
【0117】
図13は、実施の形態2による別の特性推定方法を説明するためのフローチャートである。
図13に示すフローチャートは、
図7に示すフローチャートにステップS11を追加したものである。
【0118】
図13を参照して、特性を推定する動作が開始されると、上述した
図7のステップS20A,ステップS5〜ステップS7が順次実行される(ステップS30A)。そして、特性推定部20Aは、ステップS30Aの後、
図12に示すステップS8〜ステップS10を順次実行する(ステップS11)。これによって、特性を推定する動作が終了する。
【0119】
図13に示すフローチャートに従って特性を推定することによって、欠落領域のデータ点を推定したIV特性IV
3における電圧の温度補正を行うことができる。
【0120】
なお、実施の形態2においては、特性推定部20Aにおける特性推定は、ソフトウェアによって実現されてもよい。この場合、特性推定部20Aは、CPU、ROMおよびRAMを備える。
【0121】
ROMは、
図12に示すフローチャートのステップS20A,S8〜S10(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_C、または
図13のフローチャートに示すステップS30A,S11(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_Dを記憶する。RAMは、CPUによって行われる演算の途中経過および演算結果等を一時的に記憶する。
【0122】
CPUは、ROMからプログラムProg_Cを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
2を推定するとともにIV特性IV
2に基づいてIV特性IV
5を推定する。また、CPUは、ROMからプログラムProg_Dを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
2の欠落データ点を推定したIV特性IV
3を求めるとともにIV特性IV
3に基づいてIV特性IV
5を推定する。なお、ROMは、記憶手段21Aを構成し、プログラムProg_CまたはプログラムProg_Dを実行するCPUは、実行手段22Aを構成する。更に、プログラムProg_CまたはプログラムProg_Dは、記録媒体に記録されて流通してもよい。この場合、CPUは、記憶媒体からプログラムProg_Cを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
2を推定するとともにIV特性IV
2に基づいてIV特性IV
5を推定する。また、CPUは、記録媒体からプログラムProg_Dを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
2の欠落データ点を推定したIV特性IV
3を求めるとともにIV特性IV
3に基づいてIV特性IV
5を推定する。
【0123】
(実施例2)
図11に示す曲線k4(IV特性IV
2)に領域REG2のデータ点を追加したIV特性における電圧の温度補正を上述した方法によって行い、1000W/m
2の照度G
2および温度25℃の温度T
2におけるIV特性を推定した。
【0124】
図14は、電圧の温度補正を行ったIV特性を示す図である。
図14において、曲線k5は、電圧の温度補正を行ったIV特性を示す。また、黒破線は、屋内測定で求めたSTCにおけるIV特性を示す。
図14に示すように、電圧の温度補正を行ったIV特性(曲線k5)は、屋内測定で求めたSTCにおけるIV特性(黒破線)と非常に良く一致している。従って、上述した電圧を温度補正する方法によって、誤差を低減して電圧の温度補正を行うことができる。
実施の形態2におけるその他の説明は、実施の形態1における説明と同じである。
【0125】
[実施の形態3]
実施の形態3においては、上述した方法によって導出したn値および直列抵抗R
Sを用いてIV特性IV
1の高電圧側のデータ点を求めてIV特性IV
6を推定し、IV特性IV
6における電圧の温度補正を行い、照度G
2および温度T
2におけるIV特性IV
7を推定する。
【0126】
実施の形態3による特性推定装置10Bは、
図1に示す特性推定装置10の計測制御部2を計測制御部2Bに代えたものであり、その他は、
図1に示す特性推定装置10と同じである。
【0127】
特性推定部20Bは、上述した方法によってn値および直列抵抗R
Sを導出する。そして、特性推定部20Bは、IV特性IV
1上のデータ点(I
low,V
low)、短絡光電流I
SC1、n値および直列抵抗R
Sを次式に代入して逆方向飽和電流I
0を算出する。
【0129】
その後、特性推定部20Bは、IV特性IV
1において高電圧側のデータ点(I’
low,V’
low)を検出し、データ点(I’
low,V’
low)、逆方向飽和電流I
0、n値、直列抵抗R
Sおよび短絡光電流I
SC1を式(4)に代入してIV特性IV
1における高電圧側のデータ点を推定し、照度G
1および温度T
1におけるIV特性IV
6を推定する。
【0130】
引き続いて、特性推定部20Bは、IV特性IV
6におけるデータ点(I
1,V
1)と、直列抵抗R
Sと、照度G
2および温度T
1における短絡光電流I
SC2と、照度G
1,G
2とを式(12)に代入して照度G
2および温度T
1におけるIV特性IV
7を推定する。
【0131】
そして、特性推定部20Bは、IV特性IV
7における電圧の温度補正を行い、照度G
2および温度T
2におけるIV特性IV
8を推定する。
【0132】
図15は、実施の形態3による特性推定方法を説明するためのフローチャートである。
図15に示すフローチャートは、
図3に示すフローチャートのステップS3,S4をステップS31〜ステップS35に変えたものであり、その他は、
図3に示すフローチャートと同じである。
【0133】
図15を参照して、特性を推定する動作が開始されると、上述した
図3のステップS1,S2が順次実行される(ステップS30A)。そして、ステップS30Aの後、特性推定部20Bは、IV特性IV
1上のデータ点(I
low,V
low)を検出する(ステップS31)。
【0134】
その後、特性推定部20Bは、データ点(I
low,V
low)、短絡光電流I
SC1(照度G
1および温度T
1における短絡光電流)、n値および直列抵抗R
Sを式(21)に代入して逆方向飽和電流I
0を算出する(ステップS32)。
【0135】
引き続いて、特性推定部20Bは、IV特性IV
1におけるデータ点(I’
low,V’
low)を検出し、データ点(I’
low,V’
low)、逆方向飽和電流I
0、n値、直列抵抗R
Sおよび短絡光電流I
SC1を式(4)に代入してIV特性IV
1における高電圧側のデータ点を推定し、照度G
1および温度T
1におけるIV特性IV
6(推定した高電圧側のデータを含むIV特性)を推定する(ステップS33)。
【0136】
そして、特性推定部20Bは、IV特性IV
6におけるデータ点(I
1,V
1)、直列抵抗R
S、照度G
1および温度T
1における短絡光電流I
SC1および照度G
1,G
2を式(12)に代入して照度G
2および温度T
1におけるIV特性IV
7を推定する(ステップS34)。
【0137】
その後、特性推定部20Bは、IV特性IV
7における電圧の温度補正を行い、照度G
2および温度T
2におけるIV特性IV
8を推定する(ステップS35)。これによって、特性を推定する動作が終了する。
【0138】
なお、実施の形態3による特性推定方法は、ステップS35を備えていなくてもよい。ステップS30A,S31〜S34が実行されれば、照度G
1および温度T
1におけるIV特性IV
1に基づいて照度G
2および温度T
1におけるIV特性IV
7を推定できるからである。
【0139】
また、実施の形態3による特性推定方法は、照度G
1におけるIV特性から、照度G
1の2倍以上の照度G
2におけるIV特性を推定する場合に、より有効である。例えば、300W/m
2の照度におけるIV特性から1000W/m
2の照度におけるIV特性を推定する場合に、より有効である。
【0140】
n値および直列抵抗R
Sを導出し、その導出したn値および直列抵抗R
Sを用いて逆方向飽和電流I
0を算出すると、式(4)における全てのパラメータが揃うので、式(4)を用いて任意の照度および任意の温度におけるIV特性を推定できる。
【0141】
即ち、n値、直列抵抗R
Sおよび逆方向飽和電流I
0に加え、照度G
1および温度T
1における短絡光電流I
SCを式(4)に代入すれば、照度G
1および温度T
1におけるIV特性を推定できる。
【0142】
また、n値、直列抵抗R
Sおよび逆方向飽和電流I
0に加え、照度G
2および温度T
1における短絡光電流I
SCを式(4)に代入すれば、照度G
2および温度T
1におけるIV特性を推定できる。
【0143】
更に、n値、直列抵抗R
Sおよび逆方向飽和電流I
0に加え、照度G
1および温度T
2における短絡光電流I
SCを式(4)に代入すれば、照度G
1および温度T
2におけるIV特性を推定できる。
【0144】
更に、n値、直列抵抗R
Sおよび逆方向飽和電流I
0に加え、照度G
2および温度T
2における短絡光電流I
SCを式(4)に代入すれば、照度G
2および温度T
2におけるIV特性を推定できる。
【0145】
従って、特性推定部20Bは、n値、直列抵抗R
Sおよび逆方向飽和電流I
0を式(4)に代入して任意の照度および任意の温度におけるIV特性を推定してもよい。
【0146】
図16は、実施の形態3による特性推定方法を説明するための別のフローチャートである。
図16に示すフローチャートは、
図15に示すフローチャートのステップS33〜ステップS35をステップS36に変えたものであり、その他は、
図15に示すフローチャートと同じである。
【0147】
図16を参照して、特性を推定する動作が開始されると、上述したステップS30A,S31,S32が順次実行される(ステップS40A)。そして、ステップS40Aの後、特性推定部20は、n値、直列抵抗R
S、逆方向飽和電流I
0、および任意の照度および任意の温度における短絡光電流I
SCを式(4)に代入して任意の照度および任意の温度におけるIV特性IV
9を推定する(ステップS36)。これによって、特性を推定する動作が終了する。
【0148】
このように、n値、直列抵抗R
Sおよび逆方向飽和電流I
0を導出し、その導出したn値、直列抵抗R
Sおよび逆方向飽和電流I
0を式(4)に代入して任意の照度および任意の温度におけるIV特性を推定することによって、上述した実施の形態1,2の特性推定方法を用いた場合と同等の精度で高照度におけるIV特性を推定できる。
【0149】
なお、実施の形態3においては、特性推定部20Bにおける特性推定は、ソフトウェアによって実現されてもよい。この場合、特性推定部20Bは、CPU、ROMおよびRAMを備える。
【0150】
ROMは、
図15に示すフローチャートのステップS30A,S31〜S35(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_E、または
図16に示すフローチャートのステップS40A,S36(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_Fを記憶する。RAMは、CPUによって行われる演算の途中経過および演算結果等を一時的に記憶する。
【0151】
CPUは、ROMからプログラムProg_Eを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
7を推定するとともにIV特性IV
7に基づいてIV特性IV
8を推定する。この場合、CPUは、ステップS35を実行しなくてもよい。また、CPUは、ROMからプログラムProg_Fを読み出して実行し、上述した方法によって任意の照度および任意の温度におけるIV特性IV
9を推定する。なお、ROMは、記憶手段21Bを構成し、プログラムProg_EまたはプログラムProg_Fを実行するCPUは、実行手段22Bを構成する。更に、プログラムProg_EまたはプログラムProg_Fは、記録媒体に記録されて流通してもよい。この場合、CPUは、記録媒体からプログラムProg_Eを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
7を推定するとともにIV特性IV
7に基づいてIV特性IV
8を推定する。また、CPUは、記録媒体からプログラムProg_Fを読み出して実行し、上述した方法によって任意の照度および任意の温度におけるIV特性IV
9を推定する。
【0152】
(実施例3)
302W/m
2の照度G
1および53℃の温度T
1におけるIV特性IV
1に基づいて、上述した方法によってn値(nkT/q=1.302Vから算出されるn値)および0.152Ωの直列抵抗R
Sを導出し、その導出したn値および直列抵抗R
Sと、IV特性IV
1上のデータ点(I
low,V
low)と、短絡光電流I
SC1とを式(21)に代入して2.127×10
−7Aの逆方向飽和電流I
0を算出した。
【0153】
その後、IV特性IV
1のデータ点(I’
low,V’
low)、逆方向飽和電流I
0(=2.127×10
−7A)、n値(nkT/q=1.302Vから算出されるn値)、直列抵抗R
S(=0.152Ω)および短絡光電流I
SC1を式(4)に代入して、IV特性IV
1における高電圧側のデータ点を推定し、302W/m
2の照度および53℃の温度におけるIV特性IV
6を推定した。
【0154】
引き続いて、IV特性IV
6におけるデータ点(I
1,V
1)、直列抵抗R
S(=0.152Ω)、302W/m
2の照度G
1および53℃の温度T
1における短絡光電流I
SC1、302W/m
2の照度G
1および1000W/m
2の照度G
2を式(12)に代入して1000W/m
2の照度G
2および53℃の温度T
1におけるIV特性IV
7を推定した。そして、IV特性IV
7における電圧の温度補正を行い、1000W/m
2の照度G
2および25℃の温度T
2におけるIV特性IV
8を推定した。
【0155】
図17および
図18は、実施例3におけるIV特性を示す図である。
図17を参照して、曲線k6は、302W/m
2の照度および53℃の温度におけるIV特性IV
1を示す。そして、領域REG3におけるデータ点は、逆方向飽和電流I
0を用いて推定されたデータ点である。領域REG3におけるデータ点は、IV特性IV
1と連続性を有していることが分かる。領域REG3におけるデータ点を曲線k6で示すIV特性IV
1に追加したIV特性がIV特性IV
6である。
【0156】
図18を参照して、曲線k7は、1000W/m
2の照度および53℃の温度におけるIV特性IV
7を示す。IV特性IV
7は、IV特性IV
6に基づいて式(12)を用いて推定されたIV特性である。IV特性IV
7は、高電圧側のデータ点を推定したIV特性IV
6に基づいて推定されたので、高電圧側のデータ点が欠落していない。
【0157】
曲線k8は、1000W/m
2の照度および25℃の温度におけるIV特性IV
8を示す。IV特性IV
8(曲線k8)の電圧値は、同じ電流値において、IV特性IV
7(曲線k7)の電圧値を高電圧側にシフトさせたものになっている。
【0158】
このように、n値、直列抵抗R
Sおよび逆方向飽和電流I
0を用いてIV特性IV
1における高電圧側のデータ点を推定することによって、302W/m
2の照度および53℃の温度におけるIV特性IV
6から1000W/m
2の照度および53℃の温度におけるIV特性IV
7を推定でき、IV特性IV
7から1000W/m
2の照度および25℃の温度におけるIV特性IV
8を推定できる。
実施の形態3におけるその他の説明は、実施の形態1における説明と同じである。
【0159】
[実施の形態4]
実施の形態4においては、暗状態における太陽電池6のIV特性から光照射時における太陽電池6のIV特性を推定する方法について説明する。
【0160】
実施の形態4による特性推定装置10Cは、
図1に示す特性推定装置10の計測制御部2を計測制御部2Cに代えたものであり、その他は、特性推定装置10と同じである。
【0161】
特性推定装置10Cにおいては、計測部4は、太陽電池6の暗状態のIV特性を測定し、その測定したIV特性を計測制御部2Cへ出力する。また、計測部4は、照度G
2および温度T
1で短絡光電流I
SC2を測定し、その測定した短絡光電流I
SC2を計測制御部2Cへ出力する。
【0162】
計測制御部2Cの特性推定部20Cは、照度G
1および温度T
1におけるIV特性として、照度G
1=0および温度T
1におけるIV特性、即ち、暗状態のIV特性IV
10を用いる。そして、特性推定部20Cは、計測部4から受けた暗状態のIV特性IV
10に基づいて、上述した式(5),(8),(11)のいずれかを用いて直列抵抗R
Sおよびn値を導出する。
【0163】
そして、特性推定部20Cは、直列抵抗R
Sと、短絡光電流I
SC2と、暗状態のIV特性IV
10から検出したデータ点(I
1,V
1)とを次式に代入して照度G
2および温度T
1におけるデータ点(I
2,V
2)を導出する。
【0165】
特性推定部20Cは、式(22)を用いた電流値I
2および電圧値V
2の導出を複数のデータ点(I
1_1,V
1_1)〜(I
1_n,V
1_n)について行い、照度G
2および温度T
1におけるIV特性IV
11を推定する。
【0166】
その後、特性推定部20Cは、上述した実施の形態2における方法によって電圧V
2の温度補正を行い、照度G
2および温度T
2におけるIV特性IV
12を推定する。
【0167】
図19は、実施の形態4による特性推定方法を説明するためのフローチャートである。
図19に示すフローチャートは、
図3に示すフローチャートのステップS1,S3,S4をそれぞれステップS1A,S3A,S4Aに変え、ステップS37を追加したものであり、その他は、
図3に示すフローチャートと同じである。
【0168】
図19を参照して、特性を推定する動作が開始されると、特性推定部20Cは、照度G
1(=0)および温度T
1において測定されたIV特性IV
10(暗状態のIV特性)のうち、exp(q(V+R
SI)/nkT)>>1である領域におけるIV特性IV’
10に基づいて、2点のデータの組(I
a,V
a),(I
b,V
b)を複数組検出する(ステップS1A)。
【0169】
その後、上述したステップS2が実行され、ステップS2の後、特性推定部20Cは、IV特性IV
10に基づいて、データ点(I
1,V
1)を複数点検出する(ステップS3A)。
【0170】
そして、特性推定部20Cは、照度G
2および温度T
1において測定された短絡光電流I
SC2、電流値I
1、電圧値V
1および直列抵抗R
Sを式(22)に代入して照度G
2および温度T
1における電流値I
2および電圧値V
2を導出することを複数のデータ点(I
1_1,V
1_1)〜(I
1_n,V
1_n)について実行し、照度G
2および温度T
1におけるIV特性IV
11を推定する(ステップS4A)。
【0171】
引き続いて、特性推定部20Cは、IV特性IV
11における電圧値V
2の温度補正を行い、照度G
2および温度T
2におけるIV特性IV
12を推定する(ステップS37)。これによって、特性を推定する動作が終了する。
【0172】
なお、実施の形態4による特性推定方法は、ステップS37を備えていなくてもよい。ステップS1A,S2,S3A,S4Aが実行されれば、照度G
1(=0)および温度T
1におけるIV特性IV
10に基づいて照度G
2および温度T
1におけるIV特性IV
11を推定できるからである。
【0173】
また、暗状態のIV特性と光照射時の短絡光電流I
SCとを用いてIV特性を推定した場合、光照射時のn値および逆方向飽和電流I
0は、暗状態のIV特性から求めたn値および逆方向飽和電流I
0とやや異なり、推定誤差が大きくなる可能性がある。
【0174】
このような場合、光照射時の測定点として短絡光電流I
SCに加えて、高電圧、例えば、開放電圧V
OC付近のデータを加えて、式(21)によって光照射時の逆方向飽和電流I
0を導出して使用することにより、推定誤差を低下させることができる。
【0175】
更に、例えば、光照射時のPmax付近のデータ点を実測して式(4)から求めた計算値が、そのデータ点と合うように光照射時の直列抵抗R
Sの値を補正して使用することにより、推定精度を向上させることができる。
【0176】
なお、実施の形態4においては、特性推定部20Cにおける特性推定は、ソフトウェアによって実現されてもよい。この場合、特性推定部20Cは、CPU、ROMおよびRAMを備える。
【0177】
ROMは、
図19に示すフローチャートのステップS1A,S2,S3A,S4A,S37(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_Gを記憶する。RAMは、CPUによって行われる演算の途中経過および演算結果等を一時的に記憶する。
【0178】
CPUは、ROMからプログラムProg_Gを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
11を推定し、その推定したIV特性IV
11に基づいてIV特性IV
12を推定する。この場合、CPUは、ステップS37を実行しなくてもよい。なお、ROMは、記憶手段21Cを構成し、プログラムProg_Gを実行するCPUは、実行手段22Cを構成する。更に、プログラムProg_Gは、記録媒体に記録されて流通してよい。この場合、CPUは、記録媒体からプログラムProg_Gを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
11を推定し、その推定したIV特性IV
11に基づいてIV特性IV
12を推定する。
【0179】
(実施例4)
48個の太陽電池を直列に接続したモジュールを用いて45℃における暗状態のIV特性を測定した。そして、測定した暗状態のIV特性に基づいて、式(8)を用いて直列抵抗R
Sおよびn値を導出した。
【0180】
図20は、−(V
a−V
b)/(I
a−I
b)と、−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係を示す図である。
【0181】
図20においては、直列抵抗R
Sおよびn値の導出に用いる電流−電圧特性は、暗状態において測定されるので、横軸の−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)においてI
SC=0とした。その結果、回帰直線k9は、y=1.2635x+0.1715によって表される。
【0182】
そして、回帰直線k9の傾き(=1.2365)からn値を求めると、n=1.163であった。また、直列抵抗R
Sは、回帰直線k9の切片から0.1715(Ω)であった。
【0183】
また、1000W/m
2における短絡光電流I
SC(=9.182A)を測定した。そして、直列抵抗R
S(=0.1715(Ω))と、短絡光電流I
SC(=9.182A)と、暗状態のIV特性とを用いて45℃の温度および1000W/m
2の照度におけるIV特性を推定し、その推定したIV特性の電圧の温度補正を行い、25℃の温度および1000W/m
2の照度におけるIV特性を推定した。
【0184】
図21は、実施例4におけるIV特性を示す図である。
図21を参照して、曲線k10は、45℃の温度における暗状態のIV特性IV
10を示す。曲線k11は、1000W/m
2の照度および45℃の温度におけるIV特性IV
11を示す。曲線k12は、1000W/m
2の照度および25℃の温度におけるIV特性IV
12を示す。
【0185】
図21に示すように、IV特性IV
10(曲線k10)からIV特性IV
11(曲線k11)を推定し、IV特性IV
11(曲線k11)における電圧の温度補正を行い、IV特性IV
12(曲線k12)を推定した。その結果、IV特性IV
12(曲線k12)は、25℃の温度および1000W/m
2の照度で実測したIV特性(点線)と良い一致を示すことが分かった。このように、暗状態におけるIV特性IV
10(曲線k10)から光照射時のIV特性IV
11(曲線k11)を推定できることが実証された。
実施の形態4におけるその他の説明は、実施の形態1における説明と同じである。
【0186】
[実施の形態5]
実施の形態5においては、直列抵抗R
Sの電圧依存性を考慮して太陽電池6のIV特性を推定する方法について説明する。
【0187】
実施の形態5による特性推定装置10Dは、
図21に示す特性推定装置10Cの計測制御部2Cを計測制御部2Dに代えたものであり、その他は、特性推定装置10Cと同じである。
【0188】
直列抵抗R
Sは、太陽電池の動作電圧および動作電流に依存することが知られている(非特許文献3)。その依存性は、大きくないので、直列抵抗R
Sの電圧依存性が無いと仮定した実施の形態1〜実施の形態4による特性推定方法によって推定した場合でも、実験値と1〜2%程度以内で一致する良い結果が得られている。
【0189】
しかし、直列抵抗R
Sの電圧依存性の概要が既知であれば、直列抵抗R
Sの電圧依存性を考慮することによって、更に高精度な推定が可能となる。この方法は、電流の補正量が大きい実施の形態4による特性推定方法において高精度化の効果が大きい。
【0190】
計測制御部2Dの特性推定部20Dは、実施の形態4による特性推定方法によってIV特性を推定し、その推定したIV特性に基づいて直列抵抗R
Sの電圧依存性を考慮したIV特性を推定する。
【0191】
直列抵抗R
Sの電圧依存性は、例えば、次の方法によって求められる。直列抵抗R
Sの電圧依存性は、2つの照度におけるIV特性から導出される。
図22は、直列抵抗R
Sの電圧依存性を導出する方法を説明するための図である。
図22において、曲線k13は、照度G’
1および温度T
1で測定されたIV特性を示し、曲線k14は、照度G’
1と異なる照度G’
2(>G’
1)および温度T
1で測定されたIV特性を示す。
【0192】
曲線k13によって示されるIV特性(曲線k13)と、曲線k14によって示されるIV特性(曲線k14)とを用いて、低電圧領域(電流値が短絡光電流にほぼ等しくなる領域)における電流差ΔIを計測し、その計測した電流差ΔIとなるIV特性(曲線k13)上のデータ点(V
1,I
1)とIV特性(曲線k14)上のデータ点(V
2,I
2)とを直列抵抗R
SがIV特性に効く領域において検出する。そして、データ点(V
1,I
1)の電圧値V
1とデータ点(V
2,I
2)の電圧値V
2との電圧差ΔVを算出し、R
S=ΔV/ΔIによって直列抵抗R
Sを算出する。
【0193】
この処理を直列抵抗R
SがIV特性に効く領域において複数組のデータ点(V
1_1,I
1_1);(V
2_1,I
2_1)〜(V
1_n,I
1_n);(V
2_n,I
2_n)について実行し、複数組のデータ(R
S1,ΔV
1)〜(R
Sn,ΔV
n)を検出する。
【0194】
そうすると、複数組のデータ(R
S1,ΔV
1)〜(R
Sn,ΔV
n)に基づいて直列抵抗R
Sと電圧差ΔVとの関係をプロットし、直列抵抗R
Sと電圧差ΔVとの関係を示す回帰直線の傾きを直列抵抗R
Sの電圧依存性として求める。なお、直列抵抗R
Sの電圧依存性は、上述した方法と異なる方法によって求められても良い。
【0195】
実施の形態5においては、計測制御部2Dの特性推定部20Dは、上述した方法によって求められた直列抵抗R
Sの電圧依存性を用いてIV特性を推定する。従って、特性推定部20Dは、直列抵抗R
Sの電圧依存性を予め保持している。
【0196】
特性推定部20Dは、導出された直列抵抗R
Sの電圧依存性に基づいて、式(12b)の直列抵抗R
Sを電圧によって変化させて、電圧V
2を導出する。
【0197】
図23は、実施の形態5における特性推定方法を説明するためのフローチャートである。
図23に示すフローチャートは、
図19に示すフローチャートにステップS38を追加したフローチャートである。
【0198】
図23を参照して、特性を推定する動作が開始されると、上述した
図19のステップS1A,S2,S3A,S4A,S37が順次実行される(ステップS50A)。
【0199】
そして、ステップS50Aの後、特性推定部20Dは、直列抵抗R
Sの電圧依存性に基づいて、式(12b)の直列抵抗R
Sを電圧によって変化させてIV特性IV
13を推定する(ステップS38)。これによって、特性を推定する動作が終了する。
【0200】
なお、実施の形態5においては、特性推定部20Dにおける特性推定は、ソフトウェアによって実現されてもよい。この場合、特性推定部20Dは、CPU、ROMおよびRAMを備える。
【0201】
ROMは、
図23に示すフローチャートのステップS50A,S38(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_Hを記憶する。RAMは、CPUによって行われる演算の途中経過および演算結果等を一時的に記憶する。
【0202】
CPUは、ROMからプログラムProg_Hを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
12を推定し、その推定したIV特性IV
12に基づいてIV特性IV
13を推定する。なお、ROMは、記憶手段21Dを構成し、プログラムProg_Hを実行するCPUは、実行手段22Dを構成する。更に、プログラムProg_Hは、記録媒体に記録されて流通してもよい。この場合、CPUは、記録媒体からプログラムProg_Hを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
12を推定し、その推定したIV特性IV
12に基づいてIV特性IV
13を推定する。
【0203】
(実施例5)
温度T
1を10℃,25℃,45℃,65℃と変化させて、48個の太陽電池が直列接続された太陽電池モジュールを用いて上述した方法によって直列抵抗R
Sの電圧依存性を求めた。
図24および
図25は、直列抵抗R
Sと電圧との関係を示す図である。なお、
図24および
図25においては、直列抵抗R
Sと、単位セル当たりの電圧との関係を示す。また、点線は、直列抵抗R
Sと電圧との関係を示す直線の傾きである。更に、
図24および
図25は、相互に照度が異なるときの直列抵抗R
Sと電圧との関係を示す。
【0204】
図24および
図25から分かるように、温度T
1を10℃,25℃,45℃,65℃と変化させた場合、直列抵抗R
Sと電圧との関係は、直線によって示される。そして、直線の傾きは、−5mΩ/Vであることがわかった。なお、直列抵抗R
Sは、太陽電池6の面積に概ね反比例し、太陽電池6の構造によって異なる。−5mΩ/Vの値は、6インチ結晶シリコン太陽電池に典型的な値であり、5インチ結晶シリコン太陽電池では、より大きな値が予想される。
【0205】
そこで、直列抵抗R
Sの電圧依存性(−5mΩ/V)を用いて式(12b)の直列抵抗R
Sを電圧によって変化させてIV特性IV
13を推定した。
【0206】
図26は、直列抵抗R
Sの電圧依存性を考慮した場合のIV特性と、直列抵抗R
Sの電圧依存性を考慮しなかった場合のIV特性とを示す図である。なお、
図26は、Pmax付近におけるIV特性を示す。
【0207】
図26の(a)は、直列抵抗R
Sの電圧依存性を考慮しなかった場合のIV特性を示し、
図26の(b)は、直列抵抗R
Sの電圧依存性を考慮した場合のIV特性を示す。更に、
図26の(a),(b)において、丸印は、推定したIV特性を示し、点線は、測定したIV特性を示す。
【0208】
図26の(a)を参照して、直列抵抗R
Sの電圧依存性を考慮しない場合、推定したIV特性(丸印)は、実測されたIV特性(点線)からずれる。一方、直列抵抗R
Sの電圧依存性を考慮した場合、推定したIV特性(丸印)は、実測されたIV特性(点線)と良い一致を示す。そして、直列抵抗R
Sの電圧依存性を考慮することによって、誤差を0.5%以内にできた(
図26の(b)参照)。
実施の形態5におけるその他の説明は、実施の形態1,4における説明と同じである。
【0209】
[実施の形態6]
実施の形態6においては、シャント抵抗R
Shを考慮して太陽電池6のIV特性を推定する方法について説明する。
【0210】
実施の形態6による特性推定装置10Eは、
図1に示す特性推定装置10の計測制御部2を計測制御部2Eに代えたものであり、その他は、特性推定装置10と同じである。
【0211】
計測制御部2Eの特性推定部20Eは、照度G
1および温度T
1で測定されたIV特性IV
1に基づいて、低電圧側の傾き(例えば、0VとV
OC/2との間の範囲における傾き(V
OC:開放電圧))を算出してシャント抵抗R
Shを求める。そして、特性推定部20Eは、IV特性IV
1におけるデータ点(I
1,V
1)をデータ点(I
1+V
1/R
Sh,V
1)に補正して、シャント抵抗R
Shの影響を除去したIV特性IV
1_NOを生成する。その際に、直列抵抗R
Sまたはその近似値が既知であれば、データ点(I
1,V
1)をデータ点(I
1+(V
1+I
1R
S)/R
Sh,V
1)に補正することにより、補正精度を向上することができる。
【0212】
その後、特性推定部20Eは、IV特性IV
1_NOに基づいて、実施の形態1において説明した方法によって直列抵抗R
Sおよびn値を導出する。
【0213】
引き続いて、特性推定部20Eは、直列抵抗R
Sに基づいて、実施の形態1において説明した方法によって照度G
2および温度T
1におけるIV特性IV
14を推定し、その推定したIV特性IV
14における電圧の温度補正を行い、照度G
2および温度T
2におけるIV特性IV
15を推定する。
【0214】
そして、特性推定部20Eは、シャント抵抗R
Shが照度または短絡光電流I
SCに反比例するとしてシャント抵抗R
Sh’を算出する。即ち、特性推定部20Eは、R
Sh’=R
Sh/G
2(またはR
Sh’=R
Sh/I
SC)によってシャント抵抗R
Sh’を算出する。
【0215】
そうすると、特性推定部20Eは、IV特性IV
15におけるデータ点(I
2,V
2)をデータ点(I
2−V
2/R
Sh’,V
2)に補正して、シャント抵抗の影響を再度加えることにより、シャント抵抗を考慮したIV特性IV
16を推定する。その際に、直列抵抗R
Sまたはその近似値が既知であれば、データ点(I
2,V
2)をデータ点(I
2−(V
2+I
2R
S)/R
Sh,V
2)に補正することにより、補正精度を向上することができる。
【0216】
図27は、実施の形態6による特性推定方法を説明するためのフローチャートである。
図27を参照して、特性を推定する動作が開始されると、特性推定部20Eは、照度G
1および温度T
1で測定された1つのIV特性IV
1に基づいて、上述した方法によってシャント抵抗R
Shを算出する(ステップS41)。
【0217】
そして、特性推定部20Eは、IV特性IV
1におけるデータ点(I
1,V
1)をデータ点(I
1+V
1/R
Sh,V
1)に補正してシャント抵抗R
Shの影響を除去したIV特性IV
1_NOを生成する(ステップS42)。その際に、直列抵抗R
Sまたはその近似値が既知であれば、データ点(I
1,V
1)をデータ点(I
1+(V
1+I
1R
S)/R
Sh,V
1)に補正することにより、補正精度を向上することができる。
【0218】
その後、特性推定部20Eは、IV特性IV
1_NOのうち、exp(q(V+R
sI)/nkT)>>1である領域におけるIV特性IV’
1_NOに基づいて、2点のデータの組(I
a,I
b),(I
b,V
b)を複数組検出する(ステップS43)。
【0219】
引き続いて、特性推定部20Eは、複数組のデータ点(I
a1,I
b1)〜(I
an,I
bn);(I
b1,V
b1)〜(I
bn,V
bn)に基づいて、式(5),(8),(11)のいずれかを用いてn値および直列抵抗R
Sを導出する(ステップS44)。
【0220】
そして、ステップS44の後、特性推定部20Eは、照度G
1および温度T
1で測定された短絡光電流I
SC1、IV特性IV
1_NO上のデータ点(電流値、電圧値)、および直列抵抗R
Sを式(12)に代入して照度G
2および温度T
1におけるIV特性IV
14を推定する(ステップS45)。即ち、特性推定部20Eは、シャント抵抗R
Shの影響を除去したIV特性IV
14を推定する。
【0221】
その後、特性推定部20Eは、上述した方法によって、IV特性IV
14における電圧の温度補正を行い、照度G
2および温度T
2におけるIV特性IV
15を推定する(ステップS46)。
【0222】
引き続いて、特性推定部20Eは、シャント抵抗が照度または短絡光電流に反比例するとして、シャント抵抗R
Shに基づいてシャント抵抗R
Sh’を算出する(ステップS47)。
【0223】
そして、特性推定部20Eは、IV特性IV
15上のデータ点(I
2,V
2)をデータ点(I
2−V
2/R
Sh’,V
2)に補正してシャント抵抗の影響を再度加え、シャント抵抗を考慮したIV特性IV
16を推定する(ステップS48)。その際に、直列抵抗R
Sまたはその近似値が既知であれば、データ点(I
2,V
2)をデータ点(I
2−(V
2+I
2R
S)/R
Sh,V
2)に補正することにより、補正精度を向上することができる。これによって、特性を推定する動作が終了する。
【0224】
なお、ステップS44の詳細な動作は、
図4〜
図6のいずれかに記載のフローチャートに従って実行される。
【0225】
また、実施の形態6による特性推定方法は、ステップS46を備えていなくても良い。ステップS41〜S45,S47,S48が実行されれば、照度G
1および温度T
1におけるIV特性IV
1に基づいて、シャント抵抗R
Shを考慮した照度G
2および温度T
1におけるIV特性IV
14を推定できるからである。
【0226】
この場合、特性推定部20Eは、ステップS48において、IV特性IV
14にシャント抵抗の影響を加えたIV特性を推定する。
【0227】
なお、実施の形態6においては、特性推定部20Eにおける特性推定は、ソフトウェアによって実現されてもよい。この場合、特性推定部20Eは、CPU、ROMおよびRAMを備える。
【0228】
ROMは、
図27に示すフローチャートのステップS41〜S48(
図4、
図5および
図6のいずれかに示すフローチャートを含む)を備えるプログラムProg_Iを記憶する。RAMは、CPUによって行われる演算の途中経過および演算結果等を一時的に記憶する。
CPUは、ROMからプログラムProg_Iを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
14を推定し、その推定したIV特性IV
14に基づいてIV特性IV
15を推定するとともに、IV特性IV
15に基づいてIV特性IV
16を推定する。なお、CPUは、ステップS46を実行しなくてもよい。また、ROMは、記憶手段21Eを構成し、プログラムProg_Iを実行するCPUは、実行手段22Eを構成する。更に、プログラムProg_Iは、記録媒体に記録されて流通してもよい。この場合、CPUは、記録媒体からプログラムProg_Iを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
14を推定し、その推定したIV特性IV
14に基づいてIV特性IV
15を推定するとともに、IV特性IV
15に基づいてIV特性IV
16を推定する。
【0229】
(実施例6)
上述した方法によってシャント抵抗R
Shを算出し、その算出したシャント抵抗R
Shを用いてIV特性を補正した。
【0230】
図28は、シャント抵抗R
Shの算出に用いたIV特性を示す図である。
図29は、シャント抵抗を用いて補正したIV特性を示す図である。
【0231】
図28を参照して、開放電圧V
OCが約20Vであるので、0V〜10Vの範囲(0V〜V
OC/2の範囲)におけるIV特性の傾きを算出してシャント抵抗R
Shを求めた。そして、その求めたシャント抵抗R
Shを用いて、上述した方法によって、IV特性を補正した結果、
図29に示すIV特性が得られた。
【0232】
図29におけるIV特性では、0V〜約10Vの範囲において、電流値は、電圧値の増加に対して殆ど減少していない。一方、
図28におけるIV特性では、0V〜約10Vの範囲において、電流値は、電圧値の増加に伴って減少する。
【0233】
従って、上述した方法によってシャント抵抗の影響を考慮することによって、シャント抵抗が大きい優れたIV特性を推定することができる。
実施の形態6におけるその他の説明は、実施の形態1における説明と同じである。
【0234】
[実施の形態7]
実施の形態7においては、直列に接続された太陽電池の個数が異なる太陽電池モジュール、または複数のモジュールを直列に接続した太陽電池ストリングにも適用し易くするために、太陽電池の個数を含めた式を用いて太陽電池6のIV特性を推定する方法を説明する。
【0235】
実施の形態7による特性推定装置10Fは、
図1に示す特性推定装置10の計測制御部2を計測制御部2Fに変えたものであり、その他は、特性推定装置10と同じである。
【0236】
太陽電池の個数N
cを考慮したときのダイオード特性は、次式によって表される。
【数23】
【0237】
太陽電池においては、通常、I
L≒I
SC>>I
0であり、太陽電池の最適動作電圧(V
mp)から開放電圧(V
OC)付近では、式(23)において、exp(q(V+R
SI)/N
cnkT)>>1であり、かつ、(V+R
SI)/R
sh<<I
SCであるので、式(23)は、次式に近似される。
【数24】
【0238】
式(24)において、I
0、R
Sおよびn値が電流Iおよび電圧Vによらず一定であるとすると、次式が得られる。
【数25】
【0239】
式(25)における(V
a,I
a)および(V
b,I
b)は、照度G
1および温度T
1におけるIV特性上の2点である。
【0240】
−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)を横軸に、−(V
a−V
b)/(I
a−I
b)を縦軸にプロットして求めた回帰直線の傾きがN
c×nkT/qとなり、回帰直線の切片がR
Sとなるので、n値および直列抵抗R
Sを導出することができる。
【0241】
なお、I
a−I
bがI
SC−(I
a+I
b)/2に対して十分小さい(1/x程度)場合、式(25)は、次式のように近似できる。xは、例えば、30%よりも小さい。
【数26】
【0242】
式(26)においては、誤差は、1/x
2程度である。式(26)は、対数を含まないので、測定データに誤差が含まれていても、計算が発散せず、エラーが出にくい利点がある。
式(25)および式(26)は、直列抵抗R
Sが一定であることを前提としているが、結晶シリコン太陽電池モジュールの直列抵抗R
Sを実測した結果、直列抵抗R
Sの変化が無視できないことが明らかになった。このことは、式(25)および式(26)を用いて直列抵抗R
Sおよびn値を導出する際に、直列抵抗R
Sおよびn値が一定であることを前提とすると、誤差が生じることを示している。
【0243】
直列抵抗R
Sを実測した結果、電圧が増加、または電流が減少すると、直列抵抗R
Sが減少する傾向があることが分かったので、R
S=R
S0+C
rV(C
rは、係数)の関係があるとすると、式(25)は、次式のようになる。
【数27】
【0244】
なお、I
a−I
bがI
SC−(I
a+I
b)/2に対して十分小さい場合、式(26)と同様に、次式のように近似できる。
【数28】
【0245】
式(27)および式(28)は、n値を一定として直列抵抗R
Sが変化すると考えて解析した結果である。そして、式(27)および式(28)において、R
S0は、電圧が0Vであるときの直列抵抗である。
【0246】
式(27)は、次のように導出される。
データ点(V
a,I
a)およびデータ点(V
b,I
b)においては、式(24)から次式が成立する。
【数29】
【0247】
そして、式(29)からln(I
SC−I
a)−ln(I
SC−I
b)を演算すれば、次式が得られる。
【数30】
【0248】
式(30)において、R’
S=(R
Sa+R
Sb)/2であり、ΔR=(R
Sa−R
Sb)/2=C
r(V
a−V
b)/2である。
【0249】
式(30)を変形すると、次式が得られる。
【数31】
【0250】
式(31)を変形すると、次式になり、上述した式(27)が得られる。なお、I
a−I
bがI
SC−(I
a+I
b)/2に対して十分小さい(1/x程度)場合、式(27)は、式(28)のように近似できる。
【数32】
【0251】
式(27)に基づいて、−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)を横軸に、−((V
a−V
b)/(I
a−I
b))*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2を縦軸にプロットして回帰直線を求めると、回帰直線の傾きからn値を導出でき、回帰直線の切片から直列抵抗R
S0を導出できる。
【0252】
また、式(28)に基づいて、1/(I
SC−(I
a+I
b)/2)を横軸に、−((V
a−V
b)/(I
a−I
b))*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2を縦軸にプロットして回帰直線を求めると、回帰直線の傾きからn値を導出でき、回帰直線の切片から直列抵抗R
S0を導出できる。
【0253】
そして、求めたn値および直列抵抗R
S0と、係数C
rと、照度G
2および温度T
1における短絡光電流I
SC2と、逆方向飽和電流I
0とを式(24)に代入して照度G
2および温度T
1におけるIV特性IV
18を推定する。ここで、短絡光電流I
SC2は、照度G
2および温度T
1において実測された短絡光電流であり、逆方向飽和電流I
0は、逆方向の電圧が太陽電池に印加されたときの飽和電流として求められる。
【0254】
より具体的には、式(24)において、R
S=0と設定して、電圧V’
2に対する電流I
2を算出し、電圧V’
2をV
2=V’
2−R
SI
2=V’
2−(R
S0+C
rV’
2)I
2に変換する処理をn個のV’
2_1,V’
2_2,・・・,V’
2_nについて実行し、n個のデータ点(I
2_1,V
2_1),(I
2_2,V
2_2),・・・,(I
2_n,V
2_n)を求める。そして、n個のデータ点(I
2_1,V
2_1),(I
2_2,V
2_2),・・・,(I
2_n,V
2_n)をプロットして照度G
2および温度T
1におけるIV特性IV
18を推定する。なお、V
2_1=V’
2_1−(R
S0+C
rV’
2_1)I
2_1,V
2_2=V’
2_2−(R
S0+C
rV’
2_2)I
2_2,・・・,V
2_n=V’
2_n−(R
S0+C
rV’
2_n)I
2_nである。
【0255】
実施の形態7においては、式(25)または式(26)におけるn値または直列抵抗R
Sの最適値が予め分かっている場合、その分かっている値(n値および直列抵抗R
Sの一方)を固定して最小二乗法によって他方の値(n値および直列抵抗R
Sの他方)を求めてもよい。そして、求めた他方の値(n値および直列抵抗R
Sの他方)を用いてIV特性IV
18を推定する。
【0256】
また、実施の形態7においては、式(27)または式(28)におけるn値または直列抵抗R
S0の最適値が予め分かっている場合、その分かっている値(n値および直列抵抗R
S0の一方)を固定して最小二乗法によって他方の値(n値および直列抵抗R
S0の他方)を求めてもよい。そして、求めた他方の値(n値および直列抵抗R
S0の他方)を用いてIV特性IV
18を推定する。
【0257】
計測制御部2Fの特性推定部20Fは、上述した方法によってIV特性IV
18を推定する。この場合、計測計測部2Fは、係数C
rを予め保持している。直列抵抗R
Sの電圧依存性(=係数C
r)は、例えば、実施の形態5に記載した方法によって求められるからである。
図30は、実施の形態7による特性推定方法を説明するためのフローチャートである。
図30に示すフローチャートは、
図3に示すフローチャートのステップS2〜ステップS4をステップS51〜ステップS54に変えたものであり、その他は、
図3に示すフローチャートと同じである。
【0258】
図30を参照して、太陽電池の特性を推定する動作が開始されると、上述したステップS1が実行される。そして、ステップS1の後、特性推定部20Fは、複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)に基づいてn値および直列抵抗R
S0を導出する(ステップS51)。
【0259】
その後、特性推定部20Fは、IV特性IV
1に基づいて、n個の電圧V’
2_1〜V’
2_nを検出する(ステップS52)。
【0260】
そうすると、特性推定部20Fは、R
S=0と設定して、式(24)によって、電圧V’
2に対する電流I
2を導出し、電圧V’
2を電圧V
2=V’
2−(R
S0+C
rV’
2)I
2に変換する処理をn個の電圧V’
2_1〜V’
2_nの全てについて実行し、n個のデータ点(I
2_1,V
2_1)〜(I
2_n,V
2_n)を求める(ステップS53)。
【0261】
そして、特性推定部20Fは、n個のデータ点(I
2_1,V
2_1)〜(I
2_n,V
2_n)をプロットし、照度G
2および温度T
1におけるIV特性IV
18を推定する(ステップS54)。これによって、特性を推定する動作が終了する。
【0262】
図31は、
図30に示すステップS51の詳細な動作を説明するためのフローチャートである。
【0263】
図31を参照して、
図30のステップS1の後、特性推定部20Fは、IV特性IV
1における短絡光電流I
SC1、係数C
rおよび複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)に基づいて、x=−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)およびy=−((V
a−V
b)/(I
a−I
b))*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2を複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)について演算し、データ点(x
1,y
1)〜(x
n,y
n)を求める(ステップS511)。なお、係数C
rは、予め実測された値からなる。
【0264】
そして、特性推定部20Fは、データ点(x
1,y
1)〜(x
n,y
n)をプロットし、xとyの関係を示す回帰直線を求める(ステップS522)。
【0265】
引き続いて、特性推定部20Fは、回帰直線の傾きおよび切片を検出し、傾きからn値を導出し、切片から直列抵抗R
S0を導出する(ステップS523)。その後、特性を推定する動作は、
図36のステップS52へ移行する。
【0266】
なお、
図31に示すフローチャートは、式(27)に基づいてn値および直列抵抗R
S0を導出するフローチャートであるが、実施の形態7においては、特性推定部20Fは、式(28)に基づいてn値および直列抵抗R
S0を導出してもよい。この場合、特性推定部20Fは、ステップS511において、x=1/(I
SC−(I
a+I
b)/2)を複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)について演算し、データ点(x
1,y
1)〜(x
n,y
n)を求める。
【0267】
実施の形態7においては、特性推定部20Fにおける特性推定は、ソフトウェアによって実現されてもよい。この場合、特性推定部20Fは、CPU、ROMおよびRAMを備える。
【0268】
ROMは、
図30に示すフローチャートのステップS1,S51〜S54(
図31に示すフローチャートを含む)を備えるプログラムProg_Jを記憶する。RAMは、CPUによって行われる演算の途中経過および演算結果等を一時的に記憶する。
【0269】
CPUは、ROMからプログラムProg_Jを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
18を推定する。なお、ROMは、記憶手段21Fを構成し、プログラムProg_Jを実行するCPUは、実行手段22Fを構成する。更に、プログラムProg_Jは、記録媒体に記録されて流通してもよい。この場合、CPUは、記録媒体からプログラムProg_Jを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
18を推定する。
【0270】
(実施例7)
150W/m
2の照度G
1および25℃の温度T
1で測定されたIV特性IV
1に基づいて、上述した方法によって、n値および直列抵抗R
S(R
S0)を導出した。
【0271】
図32は、150W/m
2の照度G
1および25℃の温度T
1で測定されたIV特性IV
1を示す図である。なお、
図38は、40個の太陽電池を直列に接続した太陽電池モジュールのIV特性を示す。
【0272】
図32に示すIV特性に基づいて、式(25)を用いてn値および直列抵抗R
Sを導出した。
図33は、−ΔV/ΔI(=−(V
a−V
b)/(I
a−I
b))と−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係を示す図である。
【0273】
図33を参照して、−(V
a−V
b)/(I
a−I
b)と−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係は、直線k15:y=1.2478x+0.1473によって表される。そして、直線k15の傾きからn値n
1を導出し、直線k15の切片から直列抵抗R
S1を導出した。即ち、直列抵抗R
Sが一定(電圧に依存しない)として直列抵抗R
S1を導出した。
【0274】
また、1000W/m
2の照度G
2および25℃の温度T
1における短絡光電流I
SC2を測定した。
【0275】
そして、求めたn値n
1および直列抵抗R
S1と、逆方向飽和電流I
0と、直列接続された太陽電池の個数N
cと、実測した短絡光電流I
SC2とを式(24)に代入して、上述した方法によって、n個の電圧V
2−1(1),V
2−1(2),・・・,V
2−1(n)に対するn個の電流I
2−1(1),I
2−1(2),・・・,I
2−1(n)を算出し、n個のデータ点(I
2−1(1),V
2−1(1)),(I
2−1(2),V
2−1(2)),・・・,(I
2−1(n),V
2−1(n))を求めた。その後、V
2−1からV
2−1−R
S1I
2−1への変換を電圧V
2−1(1)〜V
2−1(n)の全てについて行い、n個のデータ点(I
2−1(1),V
2−1(1)−R
S1I
2−1(1)),(I
2−1(2),V
2−1(2)−R
S1I
2−1(2)),・・・,(I
2−1(n),V
2−1(n)−R
S1I
2−1(n))を求めた。そして、n個のデータ点(I
2−1(1),V
2−1(1)−R
S1I
2−1(1)),(I
2−1(2),V
2−1(2)−R
S1I
2−1(2)),・・・,(I
2−1(n),V
2−1(n)−R
S1I
2−1(n))をプロットして1000W/m
2の照度G
2および25℃の温度T
1におけるIV特性IV
18(1)を推定した。
【0276】
図34は、各種の太陽電池における直列抵抗の電圧依存性を示す図である。なお、
図34の(a),(b),(c),(d)においては、10℃、25℃、45℃および65℃の温度における直列抵抗の電圧依存性を示す。また、
図34において、点線は、直列抵抗と電圧との関係を示す直線の傾き(=C
r)を示す。
【0277】
図34を参照して、各太陽電池は、各温度において、直列抵抗が電圧の増加に伴って減少する。そして、電圧の増加に伴って直列抵抗が減少する割合を係数C
rとして求めた。その結果、係数C
rは、−1.0Ωcm
2/V〜−3.0Ωcm
2/Vであった。
【0278】
そこで、C
r=−1.2Ωcm
2/V(=太陽電池の面積240cm
2で換算した−0.005Ω/V)を用いて、式(27)に基づいて、−((V
a−V
b)/(I
a−I
b))*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2を縦軸に、−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)を横軸にプロットした。
【0279】
図35は、−((V
a−V
b)/(I
a−I
b))*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2と、−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係を示す図である。
【0280】
図35を参照して、−((V
a−V
b)/(I
a−I
b))*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2と、−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係は、直線k16:y=1.2021x+0.2976によって表される。そして、直線k16の傾きからn値n
2を導出し、直線k16の切片から直列抵抗R
S0を導出した。
そして、求めたn値n
2および直列抵抗R
S0と、係数C
rと、逆方向飽和電流I
0と、直列接続された太陽電池の個数N
cと、実測した短絡光電流I
SC2とを式(24)に代入して、上述した方法によって、n個の電圧V
2−2(1),V
2−2(2),・・・,V
2−2(n)に対するn個の電流I
2−2(1),I
2−2(2),・・・,I
2−2(n)を算出し、n個のデータ点(I
2−2(1),V
2−2(1)),(I
2−2(2),V
2−2(2)),・・・,(I
2−2(n),V
2−2(n))を求めた。
【0281】
その後、V
2−2からV
2−2−(R
S0+C
rV
2−2)I
2−2への変換を電圧V
2−2(1)〜V
2−2(n)の全てについて行い、n個のデータ点(I
2−2(1),V
2−2(1)−(R
S0+C
rV
2−2(1))I
2−2(1)),(I
2−2(2),V
2−2(2)−(R
S0+C
rV
2−2(2))I
2−2(2)),・・・,(I
2−2(n),V
2−2(n)−(R
S0+C
rV
2−2(n))I
2−2(n))を求めた。そして、n個のデータ点(I
2−2(1),V
2−2(1)−(R
S0+C
rV
2−2(1))I
2−2(1)),(I
2−2(2),V
2−2(2)−(R
S0+C
rV
2−2(2))I
2−2(2)),・・・,(I
2−2(n),V
2−2(n)−(R
S0+C
rV
2−2(n))I
2−2(n))をプロットして1000W/m
2の照度G
2および25℃の温度T
1におけるIV特性IV
18(2)を推定した。
【0282】
図36は、推定した太陽電池のIV特性を示す図である。
図36において、曲線k17は、150W/m
2の照度G
1および25℃の温度T
1で測定されたIV特性を示す。また、曲線k18は、1000W/m
2の照度G
2および25℃の温度T
1で測定されたIV特性の実測値を示す。
【0283】
図36の(a)を参照して、
図33の直線k15から求めたn値n
1および直接抵抗R
S1を用いて推定したIV特性IV
18(1)を点線で示す。式(25)を用いてn値n
1および直列抵抗R
S1を導出した場合、最適動作点Pmax付近において、IV特性IV
18(1)が実測値(曲線k18)からずれている。この場合、IV特性IV
18(1)におけるPmaxは、実測値と約2%の誤差があった。
【0284】
図36の(b)を参照して、
図35の直線k16から求めたn値n
2および直列抵抗R
S0を用いて推定したIV特性IV
18(2)を点線で示す。式(27)を用いてn値n
2および直列抵抗R
S0を導出した場合、IV特性IV
18(2)における最適動作点Pmaxは、実測値と約0.6%の誤差であり、誤差を大幅に低減できることが分かった。
【0285】
次に、
図35において、C
r=−1.5Ωcm
2/V(太陽電池の面積240cm
2で換算した−0.0625Ω/V)およびn=1.1と固定して直列抵抗R
S0を導出し、その導出した直列抵抗R
S0を用いて1000m
2の照度G
2および25℃の温度T
1におけるIV特性IV
18(3)を推定した。
【0286】
図37は、−((V
a−V
b)/(I
a−I
b))*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2と、−(ln(I
SC−I
a)−ln(I
SC−I
b))/(I
a−I
b)との関係を示す図である。
【0287】
図37を参照して、n=1.1に固定して式(27)の直列抵抗R
S0を最小二乗法によって導出した結果、直列抵抗R
S0は、0.3402Ωであった。
【0288】
図38は、推定した太陽電池のIV特性を示す図である。
図38において、曲線k17は、150W/m
2の照度G
1および25℃の温度T
1で測定されたIV特性を示す。また、曲線k18は、1000W/m
2の照度G
2および25℃の温度T
1で測定されたIV特性の実測値を示す。
【0289】
図37の回帰直線から求めた直列抵抗R
S0、n値(=1.1)およびC
r=−1.5Ωcm
2/V(太陽電池の面積240cm
2で換算した−0.0625Ω/V)を用いて、上述した方法によって、IV特性IV
18(3)を推定し、その推定したIV特性IV
18(3)を
図38の点線で示す。
図38に示すように、IV特性IV
18(3)におけるPmaxは、実測値のPmaxとの差が0.1%であり、誤差を更に改善できることを確認した。
【0290】
なお、
図38の計算では、開放電圧V
OC、曲線因子FFおよび最適動作点Pmaxの推定精度を確認するために、短絡光電流I
SCは、実測値に合わせたので、短絡光電流I
SCの誤差は、ゼロである。
【0291】
実際の屋外測定データからSTC特性を推定する際には、短絡光電流I
SCの推定に誤差が加わる。しかし、短絡光電流I
SCは、ほぼ、照度に比例するので、短絡光電流I
SCの推定誤差は、照度測定の誤差でほぼ決定され、補正式による差はない。一例として、STCにおける短絡光電流I
SCを、低照度の短絡光電流I
SC1と、実測した照度G
1(W/m
2)および温度T
1(℃)とから、次式を用いて推定した。
【数33】
【0292】
図39および
図46は、式(33)によって推定されたSTCの短絡光電流を用いて推定した結果を示す図である。
【0293】
図39は、各種の太陽電池モジュールについて、式(25)を用いてn値および直列抵抗R
Sを推定してIV特性を計算した結果を示し、
図40は、各種の太陽電池モジュールについて、式(27)を用いて、C
r=−1.5Ωcm
2/Vおよびn=1.1を仮定して直列抵抗R
S0を推定し、その推定した直列抵抗R
S0を用いてIV特性を計算した結果を示す。
【0294】
また、
図39および
図40においては、〇は、短絡光電流I
SCを表し、▲は、開放電圧V
OCを表し、●は、最適動作点Pmaxを表し、×は、曲線因子FFを表す。
【0295】
更に、
図39の(a)および
図40の(a)は、同じ太陽電池についての特性を示し、
図39の(b)および
図40の(b)は、同じ太陽電池についての特性を示し、
図39の(c)および
図40の(c)は、同じ太陽電池についての特性を示し、
図39の(d)および
図40の(d)は、同じ太陽電池についての特性を示す。
【0296】
図39および
図40から、式(27)を用いて推定した直列抵抗R
S0を用いることによって、短絡光電流I
SC、開放電圧V
OC、最適動作点Pmaxおよび曲線因子FFの全てにおいて、推定誤差が減少することが分かった。特に、低照度における曲線因子FFの推定誤差が低減する。従って、高精度なSTC補正をできることが明らかになった。
実施の形態7におけるその他の説明は、実施の形態1,5における説明と同じである。
【0297】
[実施の形態8]
実施の形態8においては、シャント抵抗R
Shを考慮して太陽電池6のIV特性を推定する方法を説明する。
【0298】
実施の形態8による特性推定装置10Gは、
図1に示す特性推定装置10の計測制御部2を計測制御部2Gに変えたものであり、その他は、特性推定装置10と同じである。
【0299】
シャント抵抗R
shの影響を考慮すると、式(24)は、次式になる。
【数34】
【0300】
実施の形態1から実施の形態7のいずれかにおいて説明した方法によってn値および直列抵抗R
Sを導出するとともに(直列抵抗R
Sだけを導出してもよい)、照度G
1および温度T
1におけるIV特性IV
1においてプロットが最も直線に近くなる値からなるようにシャント抵抗R
Shを決定する。
【0301】
そして、IV特性IV
1のうち、exp(q(V+R
SI)/nkT)>>1である領域におけるIV特性IV’
1に基づいて、複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)を検出する。その後、電流I
a1〜I
an,I
b1〜I
bnの各々を次式によってI’
a(=I
a+(V
a+R
S*I
a)/R
Sh),I’
b(=I
b+(V
b+R
S*I
b)/R
Sh)に変換する。
【数35】
【0302】
そして、複数組のデータ点(I’
a1,V
a1)〜(I’
an,V
an);(I’
b1,V
b1)〜(I’
bn,V
bn)に基づいてn値および直列抵抗R
S0を導出する。
【0303】
その後、導出したn値および直列抵抗R
S0と、係数C
rと、逆方向飽和電流I
0とを式(34)に代入して、実施の形態7における方法によってIV特性IV
19を推定する。
【0304】
計測制御部2Gの特性推定部20Gは、上述した方法によって、IV特性IV
19を推定する。この場合、特性推定部20Gは、係数C
rを予め保持する。
【0305】
図41は、実施の形態8による特性推定方法を説明するためのフローチャートである。
図41に示すフローチャートは、
図3に示すフローチャートのステップS3およびステップS4をステップS61〜ステップS64に変えたものであり、その他は、
図3に示すフローチャートと同じである。
【0306】
図41を参照して、太陽電池の特性を推定する動作が開始されると、上述した
図3のステップS1,S2が順次実行される(ステップS30A)。なお、ステップS30AのステップS2においては、実施の形態1から実施の形態6のいずれかに記載の方法によってn値および直列抵抗R
Sが導出される。そして、ステップS30Aの後、特性推定部20Gは、IV特性IV
1に基づいて、上述した方法によってシャント抵抗R
Shを検出する(ステップS61)。
【0307】
その後、特性推定部20Gは、複数組のデータ点(I
a1,V
a1)〜(I
an,V
an);(I
b1,V
b1)〜(I
bn,V
bn)における電流I
a1〜I
an,I
b1〜I
bnの各々を式(35)によってI’
a,I’
bに変換する(ステップS62)。
【0308】
引き続いて、特性推定部20Gは、複数組のデータ点(I’
a1,V
a1)〜(I’
an,V
an);(I’
b1,V
b1)〜(I’
bn,V
bn)に基づいてn値および直列抵抗R
S0を導出する(ステップS63)。
【0309】
そして、特性推定部20Gは、
図36のステップS52〜ステップS54を順次実行してIV特性IV
19を推定する(ステップS64)。
【0310】
なお、ステップS63の詳細な動作は、
図31に示すフローチャートに従って実行される。また、ステップS64における
図30のステップS53においては、特性推定部20Gは、R
S=0と設定して、式(34)によって、電圧V’
2に対する電流I
2を導出し、電圧V’
2を電圧V
2=V’
2−(R
S0+C
rV’
2)I
2に変換する処理をn個の電圧V’
2_1〜V’
2_nの全てについて実行し、n個のデータ点(I
2_1,V
2_1)〜(I
2_n,V
2_n)を求める。
【0311】
実施の形態8においては、特性推定部20Gにおける特性推定は、ソフトウェアによって実現されてもよい。この場合、特性推定部20Gは、CPU、ROMおよびRAMを備える。
【0312】
ROMは、
図41に示すフローチャートのステップS30A,S61〜S64(
図31に示すフローチャートを含む)を備えるプログラムProg_Kを記憶する。RAMは、CPUによって行われる演算の途中経過および演算結果等を一時的に記憶する。
【0313】
CPUは、ROMからプログラムProg_Kを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
19を推定する。なお、ROMは、記憶手段21Gを構成し、プログラムProg_Kを実行するCPUは、実行手段22Gを構成する。更に、プログラムProg_Kは、記録媒体に記録されて流通してもよい。この場合、CPUは、記録媒体からプログラムProg_Kを読み出して実行し、上述した方法によって照度G
2および温度T
1におけるIV特性IV
19を推定する。
【0314】
(実施例8)
式(25)を用いて、横軸に−(ln(I
SC−I
a)−ln(I
SC−I
a))/(I
a−I
b)を、縦軸に−(V
a−V
b)/(I
a−I
b)をプロットした。また、上述したシャント抵抗R
Shを考慮した電流I’および電圧Vに基づいて、式(27)を用いて、横軸に−(ln(I
SC−I
a)−ln(I
SC−I
a))/(I
a−I
b)を、縦軸に−(V
a−V
b)/(I
a−I
b)*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2をプロットした。
【0315】
図42は、−(ln(I
SC−I
a)−ln(I
SC−I
a))/(I
a−I
b)と−(V
a−V
b)/(I
a−I
b)との関係を示す図である。
図43は、−(ln(I
SC−I
a)−ln(I
SC−I
a))/(I
a−I
b)と−(V
a−V
b)/(I
a−I
b)*(1+C
r(I
a+I
b)/2)−C
r(V
a+V
b)/2との関係を示す図である。
【0316】
なお、
図42および
図43においては、異なる温度Tのデータを比較するために、横軸にT/298.15を乗算して温度を25℃相当に揃えた。また、
図42および
図43においては、同じ複数の太陽電池モジュールについて、複数のプロットを示す。
【0317】
図42を参照して、横軸の範囲が0〜10に広くなったので、プロットは、下に凸であり、直線からのずれは、データによって異なることが明らかになった。
【0318】
図43を参照して、シャント抵抗R
Shの影響を考慮すると、横軸の範囲が0〜10に広くなっても、直線性が良いことが分かった。従って、シャント抵抗R
Shの影響を考慮することによって、より広い範囲でプロットの直線性が改善されることが分かった。
【0319】
図44は、実施の形態8による方法によって推定したIV特性IV
19を示す図である。
図44の(a)は、
図50に示すプロットを用いて導出したn値および直列抵抗R
S(R
S0)を用いてSTC補正を行ったIV特性を示し、
図44の(b)は、
図44の(a)のIV特性における最適動作点付近の拡大図を示す。
【0320】
図44を参照して、推定したIV特性IV
19は、IV特性のより広い範囲で実測値と一致している。
【0321】
従って、シャント抵抗R
shの影響を考慮してn値および直列抵抗R
S(R
S0)を導出することによって、式(34)は、式(24)に比べて、IV特性のより広い範囲で実測値と一致することが分かった。
【0322】
実施の形態8におけるその他の説明は、実施の形態1〜実施の形態7における説明と同じである
【0323】
図45は、上述した実施の形態1〜実施の形態6による特性推定方法を示す図である。
図46は、上述した実施の形態7,8による特性推定方法を示す図である。
図45を参照して、実施の形態1〜4,6においては、照度G
1(>0)および温度T
1におけるIV特性からn値および直列抵抗R
Sを導出する。また、実施の形態5においては、照度G
1(=0)および温度T
1におけるIV特性からn値および直列抵抗R
Sを導出する。
図46を参照して、実施の形態7においては、照度G
1(>0)および温度T
1におけるIV特性から、直列抵抗の電圧依存性を考慮してn値および直列抵抗R
S0を導出する。また、実施の形態8においては、照度G
1(≧0)および温度T
1におけるIV特性から、直列抵抗の電圧依存性およびシャント抵抗の影響を考慮してn値および直列抵抗R
S0を導出する。
従って、実施の形態1〜8においては、照度G
1(≧0)および温度T
1におけるIV特性からn値および直列抵抗R
S(R
S0)を導出する。
【0324】
また、実施の形態1〜3,6は、直列抵抗R
Sを式(12)に代入して照度G
2および温度T
1におけるIV特性を推定する。また、実施の形態4,5は、直列抵抗R
Sを式(22)に代入して照度G
2および温度T
1におけるIV特性を推定する。そして、式(12)および式(22)において、電流値I
2を算出する式は、同じであり、電圧値V
2を算出する式は、照度G
2における短絡光電流を電流値I
1に加算する点で共通する。更に、実施の形態7は、n値および直列抵抗R
S=R
S0+C
rVを式(24)に代入して照度G
2および温度T
1におけるIV特性を推定する。更に、実施の形態8は、n値および直列抵抗R
S=R
S0+C
rVを式(34)に代入して照度G
2および温度T
1におけるIV特性を推定する。つまり、実施の形態1〜8は、少なくとも直列抵抗R
Sを用いて照度G
2および温度T
1におけるIV特性を推定する点で共通する。
【0325】
従って、この発明の実施の形態による特性推定装置は、照度G
1(≧0)および温度T
1におけるIV特性IV
1から少なくとも直列抵抗R
Sを導出する導出手段と、IV特性IV
1における電流値および電圧値と、直列抵抗R
Sとを用いて照度G
1(≧0)と異なる照度G
2および温度T
1におけるIV特性を推定する推定手段とを備えていればよい。
【0326】
また、この発明の実施の形態によるプログラムは、導出手段が、ゼロ以上の照度を有する第1の照度および第1の温度で測定された第1の電流−電圧特性から少なくとも光電変換素子の直列抵抗を導出する第1のステップと、推定手段が、直列抵抗と、第1の電流−電圧特性における電流値および電圧値とを用いて第1の照度と異なる第2の照度および第1の温度における光電変換素子の電流値および電圧値からなるデータ点を推定して光電変換素子の第2の電流−電圧特性を推定する第2のステップとをコンピュータに実行させるためのプログラムであればよい。
【0327】
そして、この発明の実施の形態においては、照度G
2は、照度G
1よりも大きくてもよいし、照度G
1よりも小さくてもよい。また、温度T
2は、温度T
1よりも高くてもよいし、温度T
1よりも低くてもよい。