【実施例】
【0041】
以下、実験例に基づいて、本開示の触媒担体用炭素材料及びその製造方法を具体的に説明する。
なお、以下の実験例において調製された触媒担体用炭素材料の粉末X線回折測定〔結晶化物含有度〕、BET比表面積(m
2/g)、細孔径2〜10nmの積算細孔容積V
2-10、窒素ガス吸着量V
macro〔cc(STP)/g〕、ラマン分光スペクトルの1550〜1650cm
−1の範囲に検出されるG−バンドの半値幅ΔG(cm
−1)、及び分級処理の歩留まり(%)についての測定は、それぞれ以下のようにして実施した。また、得られた触媒担体用炭素材料の一部について、透過型電子顕微鏡(TEM)及び走査型電子顕微鏡(SEM)を用いて観察を行った。
【0042】
<粉末X線回折スペクトル(結晶化物含有度)の測定>
後述する各実験例で準備した試料をアルゴン雰囲気下2050℃で1時間の加熱処理を行ったものを約3mg量り採った。その後、株式会社リガク製のガラス試料板(外寸35×50mm、厚さ2mm、試料部20×20、試料部深さ0.5mm)に隙間なく充填し、試料上面がガラス上面と同一平面になるように試料を摺り切る。その試料をX線回折装置(株式会社リガク製のRINT−TTRIII)にセットし、常温下、走査ステップ0.02°、角度掃引速度1°/分、線源にCu−Kαを用いて、粉末X線回折スペクトを測定した。得られたスペクトルは、
図2〜
図4に示される通りのものである。黒鉛結晶で通常見られる(002)面の位置は回折角(2θ)≒26.5°だが、本開示においては、回折角が20°〜30°の間にグラファイトおよびそれに類する高結晶性炭素の(002)面の回折ピークが存在し、且つ回折角25.5〜26.5°近傍において、結晶化物に相当する鋭いピークが観察された。得られた粉末X線回折スペクトルから、
図2の通りにA値、B値及びC値に該当する強度をそれぞれ求めて、結晶化物含有度[(C/A)−(B/A)]を算出した。
なお、結晶化物含有度の算出においてA点、B点およびC点の強度は、スペクトルの0点を基準としている。例えば、ガラス試料板のみを測定した際は炭素の回折強度に対するガラス試料板の回折強度は十分に小さく、試料板がスペクトルに与える影響は無視してよい。一方、炭素のスペクトルと同程度の回折強度を与える試料板を使用するなどバックグラウンドノイズを多く含む場合、結晶化物含有度の算出には多孔質炭素を測定したスペクトルから試料板のみを測定した際のスペクトル差し引くなど、バックグラウンドノイズの影響を適切に取り除いたスペクトルを用いなければならない。
【0043】
<BET比表面積(m
2/g)、細孔径2〜10nmの積算細孔容積V
2-10、及び窒素ガス吸着量V
macro〔cc(STP)/g〕の測定>
後述する各実験例で準備した触媒担体用炭素材料を試料とし、これを約30mg測り採り、200℃で2時間真空乾燥した。その後に、自動比表面積測定装置(カンタクローム・インスツルメンツ・ジャパン社製 AUTOSORB I−MP)を用い、窒素ガスを吸着質に用いて窒素ガス吸着等温線を測定した。吸着時の等温線の相対圧が0.05〜0.15の範囲においてBET解析を実施しBET比表面積を算出した。
また、細孔径2〜10nmの積算細孔容積V
2-10については、前記同様の窒素ガス吸着等温線を用い、それを付属のソフトを用いたDollimore−Heal法(DH法)により解析して算出した。
さらに、窒素ガス吸着量V
macroについては、前記同様の窒素ガス吸着等温線の相対圧が0.95の時の吸着量〔cc(STP)/g〕と、0.99の時の吸着量〔cc(STP)/g〕との差を算出してV
macro〔cc(STP)/g〕の値とした。
【0044】
<ラマン分光スペクトルの1550〜1650cm
−1の範囲に検出されるG−バンドの半値幅ΔG(cm
−1)>
後述する各実験例で準備した触媒担体用炭素材料を試料とし、これを約3mg測り採った。その後、試料をレーザラマン分光光度計(日本分光(株)製NRS−3100型)にセットし、励起レーザー:532nm、レーザーパワー:10mW(試料照射パワー:1.1mW)、顕微配置:Backscattering、スリット:100μm×100μm、対物レンズ:×100倍、スポット径:1μm、露光時間:30sec、観測波数:2000〜300cm
−1、及び、積算回数:6回の測定条件で、ラマン分光スペクトルを測定した。得られた6個のスペクトルから各々1580cm
−1近傍に現れるいわゆる黒鉛のG−バンドの半値幅ΔG(cm
−1)を求め、その平均値を測定値とした。以下の基準にて判定した。
【0045】
<TEM観察>
結晶化物の様子を観察するために、後述する実験例27で準備した触媒担体用炭素材料を試料とし、透過型電子顕微鏡を用いて観察を行った。結果を
図1に示す。
【0046】
<SEM観察>
樹状構造の様子を観察するため後述する実験例5で準備した触媒担体用炭素材料を試料とし、高分解能走査型電子顕微鏡を用いて観察を行った。結果を
図5A及び
図5Bに示す。
【0047】
<分級処理の歩留まりの測定>
当該歩留まりの測定については、粉砕・分級装置として、日清エンジニアリング株式会社製の気流式粉砕分級機SJ−100GMPを用いた。後述する各実験例に係る触媒担体用炭素材料をそれぞれ100g用い、これらを粉砕圧力0.8MPa、粉挿入速度100g/hrの条件において装置に供して粉砕と同時に分級を行った。回収濾布に回収された粉末(フィルター粉)と、粗大であるために回収濾布には回収されず分級された粉末(サイクロン粉)を回収し、それぞれの重量を測定した。そして、〔(フィルター粉の重量)/(フィルター粉及びサイクロン粉の合計重量)〕×100の計算式により、分級処理の歩留まり(%)を算出した。以下の基準にて判定した。
〔合格ランク〕
良:歩留まりが95%以上であるもの。
可:歩留まりが90%以上95%未満であるもの。
〔不合格ランク〕
否:歩留まりが90%未満であるもの。
【0048】
[実験例1]
(1)銀アセチリド生成工程
硝酸銀46gに25質量%アンモニア水溶液200gを加えて溶解し、さらに水2Lを加えた後、乾燥窒素を吹き込むことで残留酸素を除去した。次いで、その溶液を攪拌すると共に超音波振動子を浸して振動を与えながら、アセチレンガスを100mL/minの流速で15分間吹き付けた。これによって、溶液中に銀アセチリドの固形物を沈殿させた。次いで、得られた沈殿物をメンブレンフィルターで濾過したが、濾過の際には、沈殿物をメタノールで洗浄し、さらに若干のメタノールを加えて沈殿物中にメタノールを含浸させた。
【0049】
(2)分解工程
上記の銀アセチリド生成工程で得られた各実験例の銀アセチリドについて、メタノールが含浸された状態のまま約0.5gを直径5cmのステンレス製円筒容器内に装入し、これを真空乾燥機に入れて、30〜40℃で1時間かけて真空乾燥し、銀アセチリド由来の銀粒子内包中間体を調製した(第1の加熱処理)。
次に、上記第1の加熱処理工程で得られた真空乾燥直後の30〜40℃の銀粒子内包中間体を、そのまま更に真空加熱電気炉から取り出すことなく160〜200℃まで急速に加熱し、20分間加熱を実施した(第2の加熱処理)。この過程で、容器内ではナノスケールの爆発反応が起こり、内包されていた銀が噴出し、表面及び内部には多数の噴出孔が形成された銀内包ナノ構造物(炭素材料中間体)を、銀と炭素とを含む複合材料として得た。
【0050】
(3)洗浄処理工程
上記第2の加熱処理で得られた銀と炭素との複合材料からなる炭素材料中間体について、その10gを濃度30質量%の硝酸溶液200mLに浸漬し、90℃で2時間洗浄することにより、残存する銀粒子を除去した。次いで、遠心分離機を用いて、上記洗浄後の炭素材料中間体から硝酸を除去し、さらに、残留する硝酸を十分に除去するために、上記遠心分離後の炭素材料中間体を再び純水中に分散させ、それを再度遠心分離機に供して、炭素材料中間体(固体)を液体から分離させた。このような水洗する操作を2回行うことにより、硝酸を除去して清浄化された炭素材料中間体として得た。
その清浄化された炭素材料中間体を、140℃、空気雰囲気下で2時間処理することにより水分を除去して乾燥させ、その後、アルゴン流通下、1100℃で2時間の熱処理を行い、多孔質な炭素材料として得た。
【0051】
(4)加熱処理工程(第3の加熱処理)
上記(3)で得られた多孔質な炭素材料を、さらに、アルゴン流通下、2050℃まで15℃/分で昇温した。そして、所定の温度に達した後、その温度にて2時間維持して加熱処理を行い、実験例1に係る触媒担体用炭素材料を得た。
【0052】
以上のようにして調製された実験例1の触媒担体用炭素材料について、前述の方法にて、粉末X線回折測定(結晶化物含有度)、BET比表面積(m
2/g)、細孔径2〜10nmの積算細孔容積V
2-10、窒素ガス吸着量V
macro〔cc(STP)/g〕、ラマン分光スペクトルの1550〜1650cm
−1の範囲に検出されるG−バンドの半値幅ΔG(cm
−1)、及び分級処理の歩留まり(%)の測定を行った。
結果を表1に示す。
【0053】
[実験例2〜8]
銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ20分、22分、23分、25分、27分、28分又は30分に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
【0054】
[実験例9〜11]
加熱処理工程の温度を2025℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、25分、28分又は30分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
【0055】
[実験例12〜17]
加熱処理工程の温度を2000℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、15分、20分、23分、25分、28分又は30分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
【0056】
[実験例18〜20]
加熱処理工程の温度を1900℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、25分、28分又は30分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
【0057】
[実験例21〜22]
加熱処理工程の温度を1800℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、28分又は30分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
【0058】
[実験例23〜24]
加熱処理工程の温度を1700℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、28分又は30分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
【0059】
[実験例25]
加熱処理工程の温度を1500℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を30分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
【0060】
[実験例26〜27]
銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、32分又は35分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0061】
[実験例28〜29]
加熱処理工程の温度を2025℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、32分又は35分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0062】
[実験例30〜34]
加熱処理工程の温度を2200℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、25分、28分、30分、32分又は35分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0063】
[実験例35〜36]
加熱処理工程の温度を2000℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、32分または35分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0064】
[実験例37〜38]
加熱処理工程の温度を1900℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、32分または35分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0065】
[実験例39〜40]
加熱処理工程の温度を1800℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、32分または35分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0066】
[実験例41]
加熱処理工程の温度を1700℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、32分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0067】
[実験例42〜43]
加熱処理工程の温度を1500℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、32分または35分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0068】
[実験例44]
加熱処理工程の温度を2300℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、25分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0069】
[実験例45〜46]
加熱処理工程の温度を2300℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、それぞれ、30分又は35分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0070】
[実験例47]
加熱処理工程の温度を1300℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、30分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0071】
[実験例48]
加熱処理工程の温度を1100℃に変更し、また、銀アセチリド生成工程におけるアセチレンガス吹き込み時間を、30分とした以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
【0072】
[実験例49〜51]
また、市販の多孔質炭素材料について、実験例49〜51として検討した。
市販の多孔質炭素材料としては、樹状構造を持ち細孔も発達し比表面積が大きい多孔質炭素であるライオン社製ケッチェンブラックEC600JDをアルゴン流通下、1400℃まで15℃/分で昇温した。そして、所定の温度に達した後、その温度にて2時間維持して加熱処理を行い、実験例49に係る触媒担体用炭素材料を得た。
【0073】
また、加熱処理工程の温度を1800℃、2000℃に変更した以外は、実験例49と同様の手順で、実験例50〜51に係る触媒担体用炭素材料を調製した。
【0074】
以上のようにして調製された実験例49〜51の触媒担体用炭素材料について、前述の方法にて、BET比表面積 (m
2/g)、細孔径2〜10nmの積算細孔容積V
2-10、窒素ガス吸着量V
macro〔cc(STP)/g〕、ラマン分光スペクトルの1550〜1650cm
−1の範囲に検出されるG−バンドの半値幅ΔG(cm
−1)の測定を行った。
なお、実験例49〜51の触媒担体用炭素材料(ケッチェンブラックの焼成品)は、粉末X線回折スペクトルにおいて、回折角25.5〜26.5°近傍のピークが検出されなかった。
【0075】
<触媒の調製、触媒層の作製、MEAの作製、燃料電池の組立、及び電池性能(耐久性)の評価>
次に、以上のようにして準備した分級処理後の各触媒担体用炭素材料を用い(なお、実施例49〜51の触媒担体用炭素材料については分級処理を行わず、めのう乳鉢で5分間すりつぶしたものを用いた。)、以下のようにして触媒金属が担持された固体高分子型燃料電池用触媒を調製し、また、得られた触媒を用いて触媒層インク液を調製し、次いでこの触媒層インク液を用いて触媒層を形成し、更に形成された触媒層を用いて膜電極接合体(MEA: Membrane Electrode Assembly)を作製し、この作製されたMEAを燃料電池セルに組み込み、燃料電池測定装置を用いて発電試験を行った。以下、各部材の調製及び発電試験によるセル評価について詳細に説明する。
【0076】
(1)固体高分子型燃料電池用触媒(白金担持炭素材料)の作製
上記で作製した各触媒担体用炭素材料を、蒸留水中に分散させ、この分散液にホルムアルデヒドを加え、40℃に設定したウォーターバスにセットし、分散液の温度がバスと同じ40℃になってから、撹拌下にこの分散液中にジニトロジアミンPt錯体硝酸水溶液をゆっくりと注ぎ入れた。その後、約2時間撹拌を続けた後、濾過し、得られた固形物の洗浄を行った。このようにして得られた固形物を90℃で真空乾燥した後、乳鉢で粉砕し、次いで水素を5体積%含むアルゴン雰囲気中200℃で1時間熱処理をして白金触媒粒子担
持炭素材料を作製した。なお、この白金担持炭素材料の白金担持量については、触媒担体用炭素材料と白金粒子の合計質量に対して25質量%となるように調整し、誘導結合プラ
ズマ発光分光分析(ICP−AES: Inductively Coupled Plasma − Atomic Emission Spectrometry)により測定して確認した。
【0077】
(2)触媒層の調製
以上のようにして調製された白金担持炭素材料(Pt触媒)を用い、また、電解質樹脂
としてDupont社製ナフィオン(登録商標:Nafion;パースルホン酸系イオン交換樹脂)を用い、Ar雰囲気下でこれらPt触媒とナフィオンとを白金触媒粒子担持炭素材料の質量に対してナフィオン固形分の質量が1.0倍、非多孔質炭素に対しては0.5倍の割合で配合し、軽く撹拌した後、超音波でPt触媒を解砕し、更にエタノールを加えてPt触媒と電解質樹脂とを合わせた合計の固形分濃度が1.0質量%となるように調整し、Pt触媒と電解質樹脂とが混合した触媒層インク液を調製した。
【0078】
このようにして調製された固形分濃度1.0質量%の各触媒層インク液に更にエタノー
ルを加え、白金濃度が0.5質量%のスプレー塗布用触媒層インク液を作製し、白金の触
媒層単位面積当たりの質量(以下、「白金目付量」という。)が0.1mg/cm
2となるようにスプレー条件を調節し、上記スプレー塗布用触媒層インクをテフロン(登録商標)シート上にスプレーした後、アルゴン中120℃で60分間の乾燥処理を行い、触媒層を作製した。
【0079】
(3)MEAの作製
以上のようにして作製した触媒層を用い、以下の方法でMEA(膜電極複合体)を作製した。
ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。
また、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層については、それぞれカッターナイフで一辺2.5cmの正方形状に切り出した。
このようにして切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが無いように、この電解質膜を挟み込み、120℃、100kg/cm
2で10分間プレスし、次いで室温まで冷却した後、アノード及びカソード共にテフロン(登録商標)シートのみを注意深く剥ぎ取り、アノード及びカソードの各触媒層が電解質膜に定着した触媒層−電解質膜接合体を調製した。
【0080】
次に、ガス拡散層として、カーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの大きさで一対の正方形状カーボンペーパーを切り出し、これらのカーボンペーパーの間に、アノード及びカソードの各触媒層が一致してずれが無いように、上記触媒層−電解質膜接合体を挟み、120℃、50kg/cm
2で10分間プレスしてMEAを作製した。
なお、作製された各MEAにおける触媒金属成分、炭素材料、電解質材料の各成分の目付量については、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差からナフィオン膜(電解質膜)に定着させた触媒層の質量を求め、触媒層の組成の質量比より算出した。
【0081】
(4)燃料電池の発電性能評価
各実験例に係る各触媒担体用炭素材料を用いて作製したMEAについて、それぞれセルに組み込み、燃料電池測定装置にセットして、次の手順で燃料電池の性能評価を行った。
カソード側には酸化性ガスとして空気を、また、アノード側には反応ガスとして純水素を、それぞれ利用率が40%と70%となるように、セル下流に設けられた背圧弁で圧力調整し、背圧0.05MPaで供給した。また、セル温度は80℃に設定し、また、供給する酸化性ガス及び反応ガスについては、カソード及びアノード共に、加湿器中で60℃に保温された蒸留水でバブリングを行い、低加湿状態での発電評価を行った。
【0082】
このような設定の下にセルに反応ガスを供給した条件下で、負荷を徐々に増やし、電流密度1000mA/cm
2におけるセル端子間電圧を出力電圧として記録し、燃料電池の性能評価を実施した。そして、下記の合格ランクA及びBと不合格ランクCの基準で評価を行った。結果を表1に示す。
〔合格ランク〕
A:1000mA/cm
2における出力電圧が0.65V以上であるもの。
B:1000mA/cm
2における出力電圧が0.60V以上であるもの。
〔不合格ランク〕
C:合格ランクBに満たないもの。
【0083】
〔耐久性の評価〕
上記セルにおいて、アノードはそのままに、カソードには上記と同じ加湿条件のアルゴンガスを流しながら、セル電圧を1.0Vにして4秒間保持する操作とセル電圧を1.3Vにして4秒間保持する操作とを繰り返す操作(矩形波的電圧変動の繰返し操作)を1サイクルとし、この矩形波的電圧変動の繰返し操作を250サイクル実施した。その後、上記の大電流特性の評価と同様にして耐久性を調査し、下記の合格ランクA及びBと不合格ランクCの基準で評価を行った。結果を表1に示す。
〔合格ランク〕
A:1000mA/cm
2における出力電圧が0.65V以上であるもの。
B:1000mA/cm
2における出力電圧が0.60V以上であるもの。
〔不合格ランク〕
C:合格ランクBに満たないもの。
【0084】
【表1】
【0085】
【表2】
【0086】
【表3】
【0087】
備考欄にEと記載した実験例の触媒担体用炭素材料の枝径を既述の方法で観察したところ、いずれも枝径が500nm以下となっているのが確認された。
【0088】
なお、日本国特許出願第2017−071626号の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。