(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0025】
以下、図面を参照してこの発明に係わる実施形態を説明する。
[第1の実施形態]
(構成)
(1)システム
図1は、この発明の一実施形態に係るレーン推定装置を備えた車載システムの概略構成図である。車両6には、レーン推定装置1と、カメラ2と、GPS(Global Positioning System)センサ3と、車両センサ4と、自動運転制御装置5が搭載されている。
【0026】
カメラ2は、例えば、CMOS(Complementary Metal Oxide Semiconductor)センサ等の固体撮像デバイスを用いたもので、少なくとも車両6の進行方向における道路領域を撮像範囲に含むように設置場所、向きおよび角度が設定されている。そしてカメラ2は、上記車両6の進行方向における道路領域を含む範囲を撮像して得た画像データをレーン推定装置1へ出力する。
【0027】
なお、カメラ2は、レーン推定専用に設けられるものであってもよいが、ドライブレコーダのカメラやその他の目的で搭載されているカメラ等、同等の画像データを得ることができるものであれば、どのようなカメラでも利用可能である。例えば、車両が二輪車や自転車の場合にはドライバのヘルメットに設けられたカメラを使用してもよく、また車両の同乗者が所持するスマートフォン等の携帯端末に設けられたカメラを使用してもよい。さらにカメラの種類としては赤外線カメラを用いてもよい。また画像データとしては、動画像データでもよいが、一定の時間間隔で撮像される静止画像データであってもよい。
【0028】
GPSセンサ3は、複数のGPS衛星が送信するGPS信号をそれぞれ受信して測距演算を行うことで車両6の緯度経度を算出するもので、この算出された緯度経度を車両6の位置データとしてレーン推定装置1へ出力する。なお、GPSセンサ3の代わりに、GPSセンサと同等の機能が発揮されるのであれば、地面(道路)をベースとした位置特定システム(Ground Based Positioning System:GBPS)等を使用してもよい。
【0029】
車両センサ4は、例えば、車両6の自己診断(On-board diagnostics:OBD)を行うために、車両6の速度、加速度およびエンジンの回転数等の車両6の動きの状態を表す情報を検出するもので、その検出結果を車両センサデータとしてレーン推定装置1へ出力する。なお、車両センサ4としては、速度、加速度およびエンジンの回転数を検出するセンサ以外に、ステアリングホイールの操舵角等を検出するセンサを含んでいてもよく、さらにはOBD以外の目的で使用されるセンサを用いてもよい。
【0030】
自動運転制御装置5は、車外カメラおよびドライバカメラの撮像画像や各種車載センサから出力されるセンサデータに基づいて車両6を全自動で或いは半自動で走行させるための制御を行うもので、レーン推定装置1から出力されるレーン推定結果を表すデータをセンサデータの1つとして利用する。
【0031】
(2)レーン推定装置
(2−1)ハードウェア構成
レーン推定装置1は、車両6が走行中のレーンを推定するもので、例えばパーソナルコンピュータにより構成される。
図2は、レーン推定装置1のハードウェア構成の一例を示すブロック図である。
レーン推定装置1は、CPU(Central Processing Unit)等のハードウェアプロセッサ10Aを有し、このハードウェアプロセッサ10Aに対し、プログラムメモリ10Bと、データメモリ20と、入出力インタフェースユニット(以後入出力I/F)30とを、バス40を介して接続したものとなっている。
【0032】
入出力I/F30には、カメラ2、GPSセンサ3、車両センサ4および自動運転制御装置5等の外部機器が接続される。入出力I/F30は、カメラ2、GPSセンサ3および車両センサ4からデータを受け取るとともに、レーン推定装置1により生成された推定結果を表すデータを自動運転制御装置5へ出力する。入出力I/F30は、有線または無線の通信インタフェースを含むこともできる。
【0033】
プログラムメモリ10Bは、記憶媒体として、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の随時書込みおよび読出しが可能な不揮発性メモリと、ROM等の不揮発性メモリとを組み合わせて使用したもので、実施形態に係る各種制御処理を実行するために必要なプログラムが格納されている。
【0034】
データメモリ20は、記憶媒体として、例えば、HDDまたはSSD等の随時書込みおよび読出しが可能な不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリとを組み合わせて使用したもので、各種処理を行う過程で取得および作成された各種データを記憶するために用いられる。
【0035】
(2−2)ソフトウェア構成
図3は、この発明の第1の実施形態に係るレーン推定装置1のソフトウェア構成を、
図2に示したハードウェア構成と関連付けて示したブロック図である。
【0036】
入出力I/F30は、カメラ2、GPSセンサ3および車両センサ4から出力される各データを受信して、当該各データを制御ユニット10に供給すると共に、制御ユニット10から出力されるレーンの推定結果を表すデータを上記自動運転制御装置5へ出力する。また入出力I/F30は、上記レーン推定結果を表示するための表示データを生成し、当該表示データを例えば車両6のカーナビゲーション装置の表示部へ出力して表示させる。
【0037】
データメモリ20の記憶領域は、画像データ記憶部21と、レーン推定データ記憶部22と、道路情報記憶部23と、車両センサデータ記憶部24と、閾値記憶部25とを備えている。
【0038】
画像データ記憶部21は、カメラ2により得られた画像データを記憶するために使用される。レーン推定データ記憶部22は、後述する制御ユニット10により得られたレーン推定結果を表すデータを、その推定日時や車両6の位置データ等と関連付けて記憶するために使用される。道路情報記憶部23には、例えば、緯度経度により表される位置データに対応付けて、当該位置に該当する道路の構成を表す情報が予め記憶されている。道路の構成を表す情報には、例えば、上り下り各方向のレーン数や、歩道、路肩、側帯および中央分離帯の有無とその幅員を表す情報が含まれる。車両センサデータ記憶部24は、車両センサ4から出力された車両センサデータを、データ種別および検出時刻を表す情報と対応付けて記憶するために使用される。閾値記憶部25は、レーンごとに予め設定された、様々な特徴量に係る閾値を記憶するために使用される。
【0039】
制御ユニット10は、上記ハードウェアプロセッサ10Aと、上記プログラムメモリ10Bとから構成され、ソフトウェアによる処理機能部として、画像データ取得部11と、画像処理部12と、レーン推定処理部13と、レーン補正部14と、過去推定データ取得部15と、道路情報取得部16と、車両センサデータ取得部17と、車両動作状態推定部18と、推定データ出力制御部19とを有している。
【0040】
上記各処理部11〜19の機能は、プログラムメモリ10Bに格納されたプログラムをCPU(ハードウェアプロセッサ)10Aに実行させることにより実現される。なお、上記各処理部11〜19の処理を実行させるためのプログラムは、レーン推定装置1内のプログラムメモリ10Bに予め記憶しておく以外に、ネットワーク上のアプリケーションサーバ等に記憶されているものを使用してもよい。この場合、レーン推定装置1は必要なときに必要なプログラムをアプリケーションサーバからネットワークを介してダウンロードすることにより、上記各処理部11〜19の機能を実行させる。
【0041】
画像データ取得部11は、画像取得部として、カメラ2から出力された画像データを入出力I/F30を介して順次取り込み、当該画像データをその撮像タイミングまたは受信タイミングを表す情報と関連付けて画像データ記憶部21に記憶させる。
【0042】
画像処理部12は、上記画像データ記憶部21から画像データを読み込む。そして、当該画像データが動画像データの場合には所定のフレーム周期で静止画像データを切り出す。また画像処理部12は、上記静止画像データに対し、レーン推定の前処理として、例えばノイズ除去およびカメラ2の性能個体差や設置時の傾き等を補正するキャリブレーション処理を行う。
【0043】
レーン推定処理部13は、上記画像処理部12から上記前処理後の画像データを受け取り、当該画像データに基づいて車両6が走行中のレーンを推定する処理を行うもので、その機能として、例えば
図4に示すように道路領域抽出部131と、特徴量算出部132と、レーン推定部133とを備えている。
【0044】
道路領域抽出部131は以下の処理機能を有する。
(1) 上記画像処理部12から受け取った画像データから道路領域に相当する範囲を抽出する処理。
【0045】
(2) 道路領域として誤抽出された領域をその面積の大小等の情報を用いて除外し、さらに抽出された道路領域に対し平滑化等の処理を実施して道路領域を表す形状を抽出する処理。
【0046】
(3) 上記抽出された道路領域に相当する範囲の画像に、道路以外の物体、例えば走行中の他の車両等が含まれる場合に、当該物体を含む領域を表す形状と、上記道路領域のうち上記物体を除いた領域を表す形状をそれぞれ抽出し、抽出された各形状をもとに、上記物体が存在しないと仮定したときの道路領域を表す形状を推定する処理。
【0047】
特徴量算出部132は、上記道路領域抽出部131により抽出された道路領域を表す形状をもとに、当該形状の特徴量を算出する処理を行う。なお、特徴量の詳細については後述する。
【0048】
レーン推定部133は、上記特徴量算出部132により算出された特徴量を、例えばレーンごとに設定された閾値の範囲に含まれるか否かを判定することにより、車両6がいまどのレーンを走行中であるかを推定する処理を行う。なお、レーンごとの閾値としては、一般的な道路の形状に応じて設定される汎用的な閾値を用いてもよく、また道路の区間ごとにその道路の形状に応じて測定等により事前に設定した値を用いてもよい。
【0049】
過去推定データ取得部15は、レーン推定データ記憶部22から過去のレーン推定データを読み出し、このデータに基づいて車両6が過去に走行したレーンの変更履歴や傾向性を推定して、その推定情報を補正候補の情報の一つとしてレーン補正部14に与える。
【0050】
道路情報取得部16は、GPSセンサ3により検出された車両6の位置データをもとに、車両6が現在走行中の位置における道路の構成を表す情報を道路情報記憶部23から取得し、当該道路の構成を表す道路情報を補正候補の情報の一つとしてレーン補正部14に与える。
【0051】
車両センサデータ取得部17は、車両センサ4から出力される車両6の動きの状態を表す車両センサデータを入出力I/F30を介して受け取り、受け取った車両センサデータをその測定タイミングまたは受信タイミングを表す情報と関連付けて車両センサデータ記憶部24に記憶させる処理を行う。
【0052】
車両動作状態推定部18は、上記車両センサデータ記憶部24から車両センサデータを読み出し、この車両センサデータをもとに車両6がレーン変更を行ったか否かを推定して、その推定情報を補正候補の情報の一つとしてレーン補正部14に与える。
【0053】
レーン補正部14は、上記レーン推定部133により得られた、車両6が走行中のレーンの推定結果に対し所定の補正処理を行い、補正後のレーン推定データを現在時刻を表す情報と関連付けてレーン推定データ記憶部22に記憶させる。上記レーン推定結果の補正処理には以下の3種類の処理が考えられる。
【0054】
(1) 上記道路情報取得部16により取得された、車両6が現在走行中の位置における道路の構成を表す道路情報をもとに、上記レーン推定部133により得られた車両6の走行中のレーンの推定結果の確からしさを判定し、誤っていると見なすことができる場合に、上記推定結果を補正する処理。
【0055】
(2) 上記過去推定データ取得部15により推定された、車両6の過去のレーンの変更履歴または傾向性を表す情報をもとに、上記レーン推定部133により得られた、車両6の走行中のレーンの推定結果の確からしさを判定し、誤っていると見なすことができる場合に、上記推定結果を補正する処理。
【0056】
(3) 上記車両動作状態推定部18により推定された、車両6の動きの変化を表す情報と、上記過去推定データ取得部15により推定された、車両6の過去のレーンの変更履歴を表す情報とに基づいて、上記レーン推定部133により得られた、車両6の走行中のレーンの推定結果の確からしさを判定し、誤っていると見なすことができる場合に、上記推定結果を補正する処理。
【0057】
推定データ出力制御部19は、上記レーン推定データ記憶部22から最新のレーン推定データを読み出して、入出力I/F30から自動運転制御装置5へ出力する処理を行う。また推定データ出力制御部19は、上記最新のレーン推定データを例えば地図データ上に表示するための表示データを生成し、当該表示データを例えばカーナビゲーション装置の表示部へ出力する処理を行う。なお、推定データ出力制御部19は、最新のレーン推定データを出力する以外に、過去の任意のタイミングに対応するレーン推定データを読み出して出力するようにしてもよい。
【0058】
(動作)
次に、以上のように構成された第1の実施形態に係るレーン推定装置1によるレーン推定動作を説明する。
図5は、制御ユニット10によるレーン推定処理の全体の処理手順を示すフローチャートである。
【0059】
(1)画像データの取得と画像処理
車両6の走行中において、その進行方向の道路領域を含む景色がカメラ2により撮像され、その画像データがカメラ2からレーン推定装置1へ出力される。レーン推定装置1の制御ユニット10は、画像データ取得部11の制御の下、ステップS1により上記カメラ2から出力される画像データを入力I/F30を介して取り込み、撮像日時を表す情報と関連付けた状態で画像データ記憶部21に順次記憶させる。
【0060】
また制御ユニット10は、上記画像データの取得処理と並行して、画像処理部12の制御の下、ステップS2により上記取得された画像データに対しレーン推定のために必要な画像処理を実行する。
【0061】
図6は、上記画像処理部12による処理手順と処理内容を示すフローチャートである。すなわち、画像処理部12は、先ず上記画像データ記憶部21から画像データを読み込む。そして、画像データが動画像データであるか否かをステップS21で判定し、動画像データであれば、ステップS22により当該動画像データから一定のフレーム周期で静止画像データを切り出す。続いて画像処理部12は、ステップS23において、上記静止画像データに対しレーン推定のための前処理を行う。ここでは、例えばノイズ除去およびカメラ2の性能個体差や設置時の傾き等を補正するキャリブレーション処理が行われる。なお、この画像処理はハードウェアからなる画像処理回路により行われるようにしてもよい。
図11は上記画像処理後の静止画像データVDの第1の例を示すものである。
【0062】
(2)走行レーンの推定
次に、レーン推定装置1の制御ユニット10は、レーン推定処理部13の制御の下、ステップS3において、車両6が走行中のレーンを推定する処理を以下のように実行する。
図7は、レーン推定処理部13の処理手順と処理内容を示すフローチャートである。
【0063】
(2−1)道路領域の抽出
レーン推定処理部13は、先ず道路領域抽出部131により、上記前処理が終了した画像データから道路領域を抽出する処理を行う(ステップS31)。
【0064】
いま、片側二車線の道路を例にとると、道路は例えば
図10に示すように、中央分離帯MSを境界にして上り方向および下り方向にそれぞれ車道を構成する走行レーンTL1,TL2を配置し、走行レーンTL1の外側に路肩SRおよびコンクリートブロックからなる縁石SBを隔てるか、或いは植え込みSHを隔てて、歩道WLを配置したものとなっている。
【0065】
このような道路に対し、道路領域抽出部131は、道路領域として例えば走行レーンTL1,TL2および路肩SRを含む領域を抽出する。なお、道路領域としては、走行レーンTL1,TL2のみを抽出してもよい。
【0066】
道路領域の抽出処理手段としては、一例としてSegNetが用いられる。SegNetは、画素単位でのラベリング機能を実現するための深層エンコーダ/デコーダアーキテクチャであり、例えば画像に含まれる各部位を区別して異なる複数の表示形態(例えば色)でラベリングする。本実施形態においては、道路領域、道路上に存在する物体の領域(一例として車両領域)、それ以外の領域の3種でラベリングするものとする。
【0067】
続いて道路領域抽出部131は、道路領域として誤抽出された領域が存在する場合を考慮し、領域の面積の大小等の情報を用いて、誤検出された領域を除外する処理を行い、さらに抽出された道路領域に対し平滑化等の処理を実施して道路領域を表す形状を抽出する。なお、抽出された道路領域の形状の輪郭線が小刻みな凹凸を有している場合には、例えば上記輪郭線を直線近似するようにしてもよい。
【0068】
図12に、上記道路領域抽出処理により抽出された片側二車線の道路の道路領域を表す形状を、もとの画像に重ねて表示した一例を示す。この例では上下各方向の走行レーンTL1,TL2と、左側の路肩SRまでを含む領域REを示す形状(図中網掛け部分)が抽出された場合を示している。この場合、路肩SRには縁石SBが含まれるようにしてもよい。
【0069】
一方、画像データには路肩側の走行レーンTL1を走行中の他の車両が映っていることがあり、この場合上記他の走行車両により走行レーンTL1の側端部または路肩SRの側端部が隠れ、道路領域の真の側端部を抽出できない場合がある。そこで、道路領域抽出部131は以下のようにして真の道路領域を抽出している。
【0070】
図9は、この場合の道路領域抽出部131の処理手順と処理内容を示すフローチャートである。
すなわち、道路領域抽出部131は、ステップS51において、上記SegNetを用いて抽出された道路領域の画像をもとに、道路領域と他の走行車両の外形とを含む全体の領域を表す形状を抽出する。またそれと共にステップS52において、上記道路領域のうち上記走行車両を除いた領域を表す形状を抽出する。なお、上記ステップS51,S52における、それぞれの領域を表す形状を抽出する処理では、誤抽出された領域をその面積の大小等の情報を用いて除外する処理と、抽出された道路領域に対し平滑化等を行って輪郭を抽出する処理が行われる。そして道路領域抽出部131は、ステップS53において、上記ステップS51,S52により抽出された各形状をもとに、上記他の走行車両が存在しないと仮定したときの道路領域の真の形状を推定する。
【0071】
(2−2)特徴量の算出および特徴量に基づくレーン推定
次にレーン推定処理部13は、特徴量算出部132の制御の下、ステップS32において、上記抽出された道路領域を表す形状からその特徴量を算出する。そしてレーン推定処理部13は、レーン推定部133の制御の下、ステップS33において、上記算出された特徴量に基づいて車両6がいま路肩側の走行レーンTL1を走行中であるか、或いは中央分離帯側の走行レーンTL2を走行中であるかを推定する。
【0072】
レーン推定に使用する特徴量には複数の形態が考えられる。以下、これら複数の特徴量の各々を用いた場合のレーン推定処理の一例を説明する。
【0073】
(2−2−1)道路領域の左側端辺の傾き角を特徴量としてレーンを推定する場合
特徴量算出部132は、例えば
図13に示すような画像が得られている場合には、上記道路領域抽出部131により抽出された道路領域REを示す形状の左側端辺、つまり走行レーンTL1の左側端部または路肩SRの左側端部に対し、近似線OL1を描く。画像データが構成する画面の左下角部をx−y座標平面の基準座標(0,0)と定義するとき、上記近似線OL1は、
y=a
1 x+b
1として表される。ここで、a
1 は傾き、b
1 は点P1に対する切片を示す。
【0074】
同様に特徴量算出部132は、例えば
図14に示すような画像が得られている場合には、上記道路領域抽出部131により抽出された道路領域REを示す形状の左側端辺に対し近似線OL2を描く。この場合も、画像データが構成する画面の左下角をx−y座標平面の基準座標(0,0)と定義すると、上記近似線OL2は、
y=a
2 x+b
2 (但し、yはxがP2以下のとき0)として表される。
【0075】
かくして、特徴量算出部132により、特徴量として、道路領域REを表す形状の左側輪郭線、つまり走行レーンTL1の左端部または路肩SRの左端部の傾き角a
1,a
2 が算出される。
【0076】
続いてレーン推定部133は、ステップS33において、データメモリ20の閾値記憶部25から、レーンごとに予め設定された傾き角の閾値を読み出す。そして、上記特徴量算出部132により算出された近似線OL1,OL2の傾き角を、上記レーンごとに設定された各閾値とそれぞれ比較し、その比較結果をもとに車両6がいま走行中のレーンが路肩側の走行レーンTL1であるかまたは中央分離帯側の走行レーンTL2であるかを判定する。
【0077】
例えば、いま算出された特徴量が近似線OL1の傾き角a
1 であれば、
図13に例示したように、当該傾き角a
1 は走行レーンTL2に対応する閾値の範囲に含まれるので、車両6が走行中のレーンは中央分離帯側の走行レーンTL2であると判定する。これに対し、算出された特徴量が近似線OL2の傾き角a
2 であれば、
図14に例示したようにこの傾き角a
2 は走行レーンTL1に対応する閾値の範囲に含まれるので、車両6が走行中のレーンは路肩側の走行レーンTL1であると判定する。
【0078】
(2−2−2)道路領域の形状の重心を特徴量としてレーンを推定する場合
特徴量算出部132は、道路領域抽出部131により抽出された道路領域を示す形状から、片側の各レーンに相当する領域を表す形状を切り出し、この切り出した形状の任意の部位に特徴量算出用の図形を定義する。そして、この図形の重心の座標を特徴量として算出する。
【0079】
例えば、
図15に示すように片側の各レーンに相当する領域REを示す形状において、座標点P11〜P14で囲まれた部位を特徴量算出用の図形RE10として定義する。そして、この図形RE10の重心を示す座標W1を算出する。同様に、
図16に示すように片側のレーンに相当する領域REを示す形状において、座標点P11〜P14で囲まれた部位を特徴量算出用の図形RE20として定義し、この図形RE20の重心を示す座標W2を算出する。
【0080】
続いてレーン推定部133は、データメモリ20の閾値記憶部25から、画像データを左右に分割する中心線CLを示す座標値を読み出す。そして、上記特徴量算出部132により算出された図形RE20の重心を示す座標が、上記中心線CLの座標値に対しx軸方向の図中左側と右側のいずれの側に位置するかを判定することで、車両6が走行中のレーンが路肩側の走行レーンTL1であるか中央分離帯側の走行レーンTL2であるかを判定する。
【0081】
例えば、レーン推定部133は、
図15に示すように特徴量が図形RE10の重心座標W1だった場合には、当該重心座標W1は中心線CLの座標値に対しx軸方向の図中左側に位置するため、車両6が走行中のレーンは中央分離帯側の走行レーンTL2であると判定する。これに対し、
図16に示すように特徴量が図形RE20の重心座標W2だった場合には、当該重心座標W2は中心線CLの座標値に対しx軸方向の図中右側に位置するため、車両6が走行中のレーンは路肩側の走行レーンTL1であると判定する。
【0082】
(2−2−3)道路領域の形状を画像データのy軸方向を一辺する三角形で近似し、当該三角形の角度または面積を特徴量としてレーンを推定する場合
特徴量算出部132は、道路領域抽出部131により抽出された道路領域REを示す形状のうち、画像データが構成する画面のx軸方向の中心線CLに対し左側の領域に含まれる形状を抽出する。そして、この抽出された形状を、上記中心線CLを一辺とする直角三角形により近似し、当該直角三角形の面積または一つの頂点における角度を特徴量として算出する。
【0083】
例えば
図17に示す例では、道路領域REを示す形状のうち、画像データが構成する画面の左半分の領域VD
L に含まれる形状(輪郭RE
L )を抽出し、この形状を中心線CLを一辺とする直角三角形TA1により近似して、当該直角三角形TA1の面積または頂点P3における内角の角度θ
5 を特徴量として算出する。
【0084】
同様に、
図18に示す例では、画像データが構成する画面の左半分の領域VD
L に含まれる形状を抽出し、この形状を中心線CLを一辺とする直角三角形TA2により近似して、当該直角三角形TA2の面積または頂点P4における角度θ
6 を特徴量として算出する。なお、内角の角度を算出する以外に、頂点の外角の角度や内角+90°の角度を算出するようにしてもよい。
【0085】
続いてレーン推定部133は、データメモリ20の閾値記憶部25から、レーンごとに予め設定された直角三角形の面積の閾値または角度の閾値を読み出す。そして、上記特徴量算出部132により算出された直角三角形の面積または角度を、予め設定された面積または角度の閾値とそれぞれ比較し、その比較結果をもとに車両6がいま走行中のレーンが路肩側の走行レーンTL1であるかまたは中央分離帯側の走行レーンTL2であるかを判定する。
【0086】
例えば、
図17に示した例では、直角三角形TA1の頂点P3の角度θ
5 が角度閾値より大きくなるため、これにより車両6が走行中のレーンは中央分離帯側の走行レーンTL2であると判定する。これに対し、
図18に示した例では、直角三角形TA2の頂点P4の角度θ
6 が角度閾値以下なるため、これにより車両6が走行中のレーンは路肩側の走行レーンTL1であると判定する。
【0087】
また、直角三角形の頂点の角度θ
5 ,θ
6 の代わりに、直角三角形TA1,TA2の面積を閾値と比較することでレーンTL1,TL2を判定することも可能である。直角三角形TA1,TA2の面積は、例えば直角三角形TA1,TA2の輪郭で囲まれた領域の画素数を計数することにより求めることができる。
【0088】
(2−2−4)画像データが構成する画面上に引かれた2本の平行な水平線と道路領域の輪郭線との交点と、画面の下辺中央点との角度θを特徴量としてレーンを推定する場合
特徴量算出部132は、道路領域抽出部131により抽出された道路領域を表す形状の左右両端辺と、画像データが構成する画面に設定された2本の平行な水平線との交点を算出する。そして、画像データの下辺中央点Pc と上記各交点とを直線で結んだときの画像データの下辺に対する角度を算出し、この算出された角度を特徴量とする。
【0089】
例えば、
図19に示した例では、道路領域REを表す形状の左右両端辺と、画像データが構成する画面に設定された2本の平行な水平線H1,H2との交点P51,P52およびP53,P54を検出する。そして、画像データが構成する画面の下辺中央点Pc と上記各交点P51,P52およびP53,P54とをそれぞれ直線で結んだときの、画面の下辺に対する上記各直線の角度θ
1 ,θ
2 およびθ
3 ,θ
4 を算出し、この算出された角度θ
1 ,θ
2 の差および角度θ
3 ,θ
4 の差を特徴量とする。
図20に示した例においても、同様に画像データが構成する画面の下辺中央点Pc と各交点P51,P52およびP53,P54とを結ぶ各直線の角度θ
1 ,θ
2 の差および角度θ
3 ,θ
4 の差を特徴量として算出する。
【0090】
続いてレーン推定部133は、データメモリ20の閾値記憶部25から、レーンごとに予め設定された左辺用および右辺用の角度差閾値を読み出す。そして、上記特徴量算出部132により算出された角度θ
1 ,θ
2 の差および角度θ
3 ,θ
4 の差を、上記レーンごとに設定された左辺用および右辺用の角度差閾値とそれぞれ比較し、その比較結果をもとに車両6がいま走行中のレーンが路肩側の走行レーンTL1であるかまたは中央分離帯側の走行レーンTL2であるかを判定する。
【0091】
例えば、
図19に示した例では、角度θ
1 ,θ
2 の差が左辺用の閾値より大きく、かつ角度θ
3 ,θ
4 の差が右辺用の閾値以下であれば、車両6が走行中のレーンは中央分離帯側の走行レーンTL2であると判定する。同様に、
図20に示した例では、角度θ
1 ,θ
2 の差が左辺用の閾値以下で、かつ角度θ
3 ,θ
4 の差が右辺用の閾値より大きければ、車両6が走行中のレーンは路肩側の走行レーンTL1であると判定する。
【0092】
(2−2−5)走行レーンに他の走行車両が存在するときに抽出された道路領域を表す形状をもとに走行中のレーンを推定する場合
道路領域抽出部131では、先に述べたように、ステップS51において道路領域と他の走行車両とを含む全体の領域を表す形状が抽出され、ステップS52において上記道路領域のうち上記他の走行車両を除いた領域を表す形状が抽出される。そして、ステップS53において、上記抽出された各形状をもとに、他の走行車両が存在しないと仮定したときの道路領域を表す形状が推定される。
【0093】
特徴量算出部132は、上記ステップS53により推定された道路領域を表す形状をもとにその左側端辺に近似線を描き、この近似線の傾き角を特徴量として算出する。
【0094】
例えば、
図21に示す例では、特徴量算出部132は、ステップS51において抽出された、他の走行車両の画像MBを含む全体の領域を表す形状をもとに、その左側端辺に近似線OL2を描く。この近似線OL2は、
y=a
2 x+b
2として表される。またそれと共に特徴量算出部132は、ステップS52において抽出された、道路領域のうち上記走行車両を除いた領域を表す形状をもとに、その左側端辺に近似線OL1を描く。この近似線OL1は、
y=a
1 x+b
1として表される。
【0095】
そして特徴量算出部132は、上記各近似線OL1,OL2をもとに、これらの近似線OL1,OL2の間を取る第3の近似線OL3を算出し、この第3の近似線OL3を他の走行車両の画像MBが存在しないと仮定したときの道路領域の左側端辺の輪郭線とする。このとき第3の近似線OL3は、
y={(a
1 +a
2 )/A}x+(b
1 +b
2 )/Bにより表される。ここで、A,Bは係数であり、他の走行車両がレーンの中央から左右方向にどれだけずれて走行しているか、他走行車両の車高は何mか等のパラメータをもとに決定される。これらの係数A,Bを適宜設定することで、近似線OL3の位置を実際の道路領域の左側端辺の位置に近づけることができる。
【0096】
レーン推定部133は、上記算出された近似線OL3の傾き角{(a
1 +a
2 )/A}を、予めレーンごとに設定されている閾値と比較する。そして、その比較結果をもとに車両6がいま走行中のレーンが路肩側の走行レーンTL1であるかまたは中央分離帯側の走行レーンTL2であるかを判定する。
【0097】
例えば、
図21に示した例では、傾き角{(a
1 +a
2 )/A}が走行レーンTL2に対応する閾値の範囲に含まれているので、車両6が走行中のレーンは中央分離帯側の走行レーンTL2であると判定する。これに対し、傾き角{(a
1 +a
2 )/A}が走行レーンTL1に対応する閾値の範囲に含まれていれば、車両6が走行中のレーンは路肩側の走行レーンTL1であると判定する。
【0098】
(3)レーン推定結果の補正
次にレーン推定装置1の制御ユニット10は、レーン補正部14の制御の下、
図5に示すステップS4において、上記レーン推定処理部13により推定されたレーンの確からしさ(妥当性)を判定し、妥当ではないと判定した場合にはレーンの推定結果を補正する処理を実行する。
図8は、上記レーン補正部14の処理手順と処理内容を示すフローチャートである。
【0099】
(3−1)道路の構成を表す情報に基づく補正
レーン補正部14は、先ずステップS41において、車両6の走行位置に対応する道路の構成を表す情報をもとに、上記レーン推定結果を補正する。例えば、道路情報取得部16では、GPSセンサ3により測定された車両6の現在位置データをもとに、車両6が現在走行中の位置に対応する道路の構成を表す情報が道路情報記憶部23から読み出される。レーン補正部14は、上記レーン推定処理部13によるレーン推定結果を上記読み出された道路の構成を表す情報と照合し、上記レーン推定結果が正しいか否かを判定する。
【0100】
例えば、レーン推定結果が中央分離帯側の「走行レーンTL2」となっており、いま車両6が走行中の道路が片側一車線の道路であれば、上記レーン推定結果は誤りと判定して、レーン推定結果を「走行レーンTL1」に補正する。
【0101】
(3−2)過去のレーン変更履歴に基づく補正
新たなレーン推定結果が得られると、過去推定データ取得部15は、レーン推定データ記憶部22から過去のレーン推定データを読み出し、このデータに基づいて車両6が過去の一定期間に走行したレーンの変更履歴や傾向性を推定する。この推定処理は、例えば過去の一定期間における走行レーンTL1,TL2ごとの使用回数または頻度を算出するものでもよいが、例えば予めドライバごとに走行時間帯や走行経路、走行位置に基づいてドライバの走行の傾向性を表す学習データを作成しておき、この学習データをもとに現在の走行中のレーンを推定するものであってもよい。
【0102】
レーン補正部14は、ステップS42において、上記レーン推定処理部13により得られた最新のレーン推定結果を、上記過去推定データ取得部15により推定された、車両6のレーン変更履歴または傾向性を表す情報と比較し、上記最新のレーン推定結果の妥当性を評価する。そして、例えばドライバが日頃走行レーンTL1しか走行しないにもかかわらず、最新のレーン推定結果が中央分離帯側の「走行レーンTL2」であれば、この推定結果は誤りと判断してレーン推定結果を路肩側の「走行レーンTL1」に補正する。
【0103】
(3−3)車両6の動きの状態と過去のレーン変更履歴とに基づく補正
車両動作状態推定部18では、車両センサデータ取得部17により取得された、車両6の速度や加速度、ハンドル操作角度等の車両6の動きを表すセンサデータをもとに、車両6がレーン変更を行ったか否かを推定する。
【0104】
レーン補正部14は、ステップS43において、上記レーン推定処理部13により得られたレーン推定結果と、上記車両動作状態推定部18により得られたレーン変更の推定結果とを、時間的に対応するもの同士で比較する。そして、上記レーン推定処理部13により得られたレーン推定結果が、上記車両動作状態推定部18により得られたレーン変更の推定結果と対応していなければ、上記レーン推定処理部13により得られたレーン推定結果を、上記車両動作状態推定部18により得られたレーン変更の推定結果をもとに補正する。
【0105】
最後にレーン補正部14は、以上の各補正処理により最終的に補正されたレーン推定結果のデータを、現在時刻を表す情報と関連付けてレーン推定データ記憶部22に記憶させる。
【0106】
なお、以上述べたレーン補正処理では、(3−1)、(3−2)、(3−3)による3種類の補正処理を全て実行する場合を例にとって説明したが、上記3種類の補正処理の何れか1つまたは任意に選んだ2つのみを実行するようにしてもよく、また補正の必要がない場合には補正処理を省略してもよい。また、上記3種類の補正処理の実行順序についても、以下に設定してもよい。
【0107】
(4)レーン推定データの出力
制御ユニット10は、推定データ出力制御部19の制御の下、ステップS5において、レーン推定結果を出力するための制御を以下のように実行する。
すなわち、推定データ出力制御部19は、レーン推定データ記憶部22に最新のレーン推定データが記憶されるごとに、当該レーン推定データ記憶部22から当該レーン推定データを読み出す。そして、当該レーン推定データを、入出力I/F30から自動運転制御装置5へ出力する。この結果、自動運転制御装置5では、上記レーン推定データを車両6の現在の走行状態を表すデータの一つとして利用して、例えば車両の走行位置を維持または変更するための制御が行われる。
【0108】
また推定データ出力制御部19は、上記最新のレーン推定データをもとに、例えば車両6の走行中のレーンの位置を地図データ上に重ねて表示するための表示データを生成し、当該表示データを入出力I/F30から例えばカーナビゲーション装置へ出力する。この結果、カーナビゲーション装置では、上記表示データを表示部に表示させる処理が行われ、これによりカーナビゲーション装置の表示部には、地図上に自車両6の現在走行中のレーンの位置が表示される。
【0109】
(効果)
以上詳述したように第1の実施形態では、車両6の進行方向を撮像して得られた画像データから道路領域を表す形状を抽出し、当該形状を表す情報をもとに、一つの輪郭線の傾き角、上記道路領域の形状を表す図形の重心座標、上記形状を表す図形の一頂点を挟んで連続する2つの輪郭線間の角度、上記形状を表す図形の面積を、上記道路領域の形状の特徴量として算出する。そして、上記算出された特徴量がレーンごとに予め設定された閾値の範囲に含まれるか否かを判定することにより、車両6が走行中のレーンを推定するようにしている。
【0110】
従って、第1の実施形態によれば、車両6から進行方向を見たときの道路領域を表す形状の特徴に着目してレーンを推定することができる。このため、道路上のレーンを区分する区画線に頼ることなく走行中のレーンを推定することが可能となり、これにより例えば工事等により区画線の補修跡が残存する場合や、経年劣化により区画線が薄くなったり消えてしまっている場合でも、レーンを推定することが可能となる。
【0111】
また第1の実施形態では、道路領域上に他の走行車両等の物体が存在する場合に、画像データから上記物体を含む道路領域全体を表す形状と、上記道路領域のうち上記物体を除いた領域を表す形状をそれぞれ抽出し、これらの抽出された各形状をもとに上記物体が存在しないと仮定したときの道路領域の輪郭線を推定する。そして、この推定された輪郭線の傾き角をもとに、車両6が走行中のレーンを推定するようにしている。このため、例えば路肩側のレーンを走行中の他の車両により路肩や走行レーンの左端部が隠れている場合でも、当該路肩や走行レーンの左端部の輪郭線を推定して、その推定結果をもとにレーンを推定することが可能となる。
【0112】
さらに第1の実施形態では、車両6の走行位置に対応する道路の構成を表す情報、過去のレーン変更履歴、車両6の動きを表すセンサデータをもとに推定した車両6のレーン変更の有無を表す情報に基づいて、レーン推定処理部13により得られたレーン推定結果の妥当性が評価され、妥当ではないと判定された場合に当該レーン推定結果を補正するようにしている。このため、例えば、天候や照度等の影響により、鮮明な画像データが得られない場合や画像データから道路領域が正確に認識できない場合でも、現在移動中のレーンの推定結果を補正することが可能となり、これにより正確なレーン推定結果を得ることが可能となる。
【0113】
[第2の実施形態]
この発明の第2の実施形態に係るレーン推定装置、方法およびプログラムは、道路領域の特徴量として道路領域を表す形状をもとに道路領域内の各画素にラベリングした画素値データを用いる。そして、第2の実施形態に係るレーン推定装置、方法およびプログラムは、当該画素値データが道路ごとまたはレーンごとに予め設定された複数のパターンのうちのいずれに類似するかを判定することにより、車両6が移動中のレーンを推定する。
【0114】
この発明の第2の実施形態に係るレーン推定装置は、第1の実施形態に関して説明したレーン推定装置1と同様の構成を採用することができる。そこで、以下では、第2の実施形態について、第1の実施形態と同様の構成には同じ符号を使用して説明し、第1の実施形態と重複する詳細な説明は省略する。
【0115】
(構成)
この発明の第2の実施形態に係るレーン推定装置1を備えた車載システムは、
図1を参照して説明したのと同じ構成を採用することができる。
また、第2の実施形態に係るレーン推定装置1は、
図2を参照して説明したのと同じハードウェア構成を採用することができる。
【0116】
図22は、この発明の第2の実施形態に係るレーン推定装置1のソフトウェア構成を、
図2に示したハードウェア構成と関連付けて示したブロック図である。
【0117】
データメモリ20の記憶領域は、第1の実施形態と同様に、画像データ記憶部21と、レーン推定データ記憶部22と、道路情報記憶部23と、車両センサデータ記憶部24と、閾値記憶部25とを備える。第2の実施形態に係るレーン推定装置1では、データメモリ20の記憶領域はさらに、パターン記憶部26を備えている。
【0118】
パターン記憶部26は、道路ごとまたはレーンごとに予め設定された、画像内に映し出される道路領域の形状に対応するパターン(以下、「領域パターン」と言い、多種多様な領域パターンを総括的に「領域パターンPT」と言う)を記憶するために使用される。領域パターンPTは、車両6が各レーンの中央を走行していれば、車両6に設置されたカメラにより撮影される画像内には道路がこのように映し出されるであろうという、理想的な道路領域の形状を表す。
【0119】
領域パターンPTは、例えば、渋滞予測サービスを提供する道路管理サーバ等により、あらかじめ多数の車両から収集した画像データに基づいて作成または設定される。レーン推定装置1は、当該サーバから、例えば図示しない通信部を介してネットワーク経由で、車両6の種別(車種や車高等)に応じた複数の領域パターンPTを含むパターンのセットを取得し、パターン記憶部26に記憶させることができる。ここで、カメラが車両6のどの位置に設置されているかに応じて、当該カメラにより撮影される画像内に映し出される道路の形状は大きく異なる。そこで、レーン推定装置1は、カメラの設置位置に応じて、例えば、車両6の中央であるのか左右いずれかに偏っているのか、車両6の中心線に対する距離、道路を基準としたときの設置高さ、または画像内に映し出される自車両のボンネットの見え方などに応じて、取得した領域パターンPTに適宜補正を行ってからパターン記憶部26に記憶させてもよい。あるいは、レーン推定装置1があらかじめ車載カメラにより撮影した画像を上記サーバに送信し、その画像をもとにサーバによって補正された領域パターンPTのセットを受信するようにしてもよい。あるいは、レーン推定装置1自体が、カメラの設置位置に応じた領域パターンPTのセットを生成するようにしてもよい。
【0120】
パターン記憶部26には、上記車両6の種別に応じたパターンのセットとして、道路の種別(例えば、高速自動車国道、一般国道、都道府県道、市町村道など)や車線数(車両6が何車線の道路のいずれのレーンを走行しているか)等に応じて異なる多数の領域パターンPTが記憶される。パターン記憶部26は、例えば、GPSセンサ3により検出された車両6の位置データに基づいて必要な領域パターンPTを検索できるよう、位置情報に紐づけて各領域パターンPTを格納する。
【0121】
制御ユニット10は、第1の実施形態と同様に、画像データ取得部11と、画像処理部12と、レーン補正部14と、過去推定データ取得部15と、道路情報取得部16と、車両センサデータ取得部17と、車両動作状態推定部18と、推定データ出力制御部19とを有している。第2の実施形態に係る制御ユニット10は、レーン推定処理部13の代わりに、レーン推定処理部130を有する。
【0122】
レーン推定処理部130は、第1の実施形態に関して説明したレーン推定処理部13と同様に、画像処理部12から前処理後の画像データを受け取り、当該画像データに基づいて車両6が走行中のレーンを推定する処理を行うものであるが、レーン推定処理部13とは、推定処理に使用する特徴量および詳細な機能が異なる。
【0123】
図23は、レーン推定処理部130の機能の一例を示す。レーン推定処理部130は、道路領域抽出部131と、パターン取得部1301と、類似度判定部1302と、レーン推定部1303とを備えている。
【0124】
道路領域抽出部131は、以下の処理を行う。
(1) 画像処理部12から受け取った画像データから、道路領域、および道路上に存在する物体の領域(この実施形態では車両領域)に相当する範囲を抽出する処理。
(2) 道路領域または車両領域として誤抽出された領域をその面積の大小等の情報を用いて除外し、さらに抽出された道路領域および車両領域に対し平滑化等の処理を実施して道路領域および車両領域を表す形状を抽出する処理。
【0125】
パターン取得部1301は、パターン記憶部26に記憶された領域パターンPTを読み出し、類似度判定部1302に渡す処理を行う。
【0126】
類似度判定部1302は、特徴量算出部として、道路領域抽出部131により抽出された道路領域を表す形状をもとに、道路領域の特徴量として道路領域内の各画素にラベリングした画素値を含む画素値データを取得する処理を行う。類似度判定部1302はさらに、取得した画素値データに基づいて、パターン取得部1301により取得された領域パターンPTとの類似度を判定し、その判定結果をレーン推定部1302に渡す。
【0127】
レーン推定部1303は、推定処理部として、上記類似度判定部1302による判定結果に基づいて、車両6がいまどのレーンを走行中であるかを推定する処理を行う。
【0128】
(動作)
次に、以上のように構成された第2の実施形態に係るレーン推定装置1によるレーン推定動作を説明する。
レーン推定動作は、
図5を参照して第1の実施形態に関して説明した、制御ユニット10によるレーン推定処理の全体の処理手順と同じフローチャートに従うことができる。
【0129】
(1)画像データの取得と画像処理
ステップS1において、レーン推定装置1の制御ユニット10は、第1の実施形態と同様に、画像データ取得部11の制御の下、画像データの取得処理を実行する。またステップS2において、レーン推定装置1の制御ユニット10は、第1の実施形態と同様に、画像処理部12の制御の下、上記取得された画像データに対しレーン推定のために必要な画像処理を実行する。画像処理部12による処理手順と処理内容は、
図6に関して説明したのと同じものを採用することができる。
【0130】
図25Aは、上記画像処理後の静止画像データVDの第2の例を示す。この例は、例えば
図10に示したような片側2車線の道路を走行中の車両6に搭載されたカメラ2により撮像される。
図25Aの静止画像データVDには、自車両のボンネット部分6と、中央分離帯MSと、中央分離帯MS上のガードレールRLと、走行レーンTL1,TL2と、路肩SRおよび縁石SBと、さらに前方を走行する他車両MBが映し出されている。
【0131】
(2)走行レーンの推定
次に、第2の実施形態に係るレーン推定装置1の制御ユニット10は、レーン推定処理部130の制御の下、ステップS3において、車両6が走行中のレーンを推定する処理を以下のように実行する。
図24は、レーン推定処理部130の処理手順と処理内容を示すフローチャートである。
【0132】
(2−1)道路領域の抽出
レーン推定処理部130は、先ずステップS301において、道路領域抽出部131により、上記前処理が終了した画像データVDから道路領域を抽出する処理を行う。
【0133】
上記のような片側2車線の道路に対し、道路領域抽出部131は、道路領域として例えば走行レーンTL1,TL2および路肩SRを含む領域を抽出する。なお、第1の実施形態と同様に、道路領域抽出部131は、道路領域として、走行レーンTL1,TL2のみを抽出してもよい。
【0134】
第1の実施形態と同様に、道路領域の抽出処理手段としては、一例としてSegNetが用いられる。任意で、道路領域抽出部131は、第1の実施形態と同様に、道路領域として誤抽出された領域が存在する場合を考慮し、領域の面積の大小等の情報を用いて、誤検出された領域を除外する処理を行い、さらに抽出された道路領域に対し平滑化等の処理を実施して道路領域を表す形状を抽出してもよい。
【0135】
図25Bは、
図25Aに示した画像データVDに対してSegNetによる抽出処理を行った出力結果の一例を示す。
図25Bでは、処理済み画像データTVD内に、自車両6と同じ走行方向の走行レーンTL1,TL2と左側の路肩SRまでを含む道路領域REを示す形状(図中網掛け部分)と、前方を走行する他車両MBを含む領域MBRを示す形状(図中ドットハッチング部分)とが抽出されている。各領域には、画素単位でのラベリングに対応する色が付与されている。以下では、一例として、道路領域REが緑色([R,G,B]=[0,255,0])でラベリングされ、車両領域MBRが赤色([R,G,B]=[255,0,0])でラベリングされ、それ以外の領域(図では無色)が黒色([R,G,B]=[0,0,0])でラベリングされるものとして説明する。
【0136】
なお、画像データに他の車両が映っていて、他の車両により道路領域を抽出できない場合、道路領域抽出部131は、第1の実施形態に関して説明したのと同様に、
図9に示した道路領域抽出処理を行ってもよい。
【0137】
(2−2)領域パターンの読み出し
次にレーン推定処理部130は、パターン取得部1301の制御の下、ステップ302において、道路の種別ごと、道路ごと、またはレーンごとに予め設定された領域パターンPTをパターン記憶部26から読み出し、類似度判定部1302に渡す処理を行う。パターン取得部1301は、例えば、GPSセンサ3により検出された車両6の位置情報をもとに、当該位置情報に対応する1または複数の領域パターンPTをパターン記憶部26から読み出し、類似度判定部1302に渡す。
【0138】
図26Aは、パターン記憶部26から読み出される領域パターンPTの一例として、道路ごとに設定された領域パターンPT1を示す。
図26Aに示した領域パターンPT1は、特に片側2車線の一般国道について設定されたもので、路肩側(左側)のレーンを走行している車両6により取得される画像データに映し出される道路領域に係るパターンを表す。領域パターンPT1は、道路部分RD(網掛け部分)と、それ以外の部分BK(無色の部分)とを含む。以下では、一例として、道路部分RDには緑色([R,G,B]=[0,255,0])の画素値が付与され、それ以外の部分BKには黒色([R,G,B]=[0,0,0])の画素値が付与されているものとして説明する。
【0139】
図26Bは、
図26Aに示した領域パターンPT1に対し、説明のために走行レーンを区別する仮想線VLを描いた図である。道路部分RDは、車両6が走行している走行レーンTL1の領域と、その右側の走行レーンTL2の領域とを含む。
【0140】
図26Cは、パターン記憶部26から読み出される領域パターンPTの他の例として、道路ごとに設定された領域パターンPT2を示す。
図26Cに示した領域パターンPT2は、片側2車線の一般国道について設定されたもので、中央分離帯側(右側)のレーンを走行している車両6により取得される画像データに映し出される道路領域に係るパターンを表す。領域パターンPT2は、道路部分RD(網掛け部分)と、それ以外の部分BK(無色の部分)とを含む。
【0141】
図26Dは、
図26Cに示した領域パターンPT2に対し、説明のために走行レーンを区別する仮想線VLを描いた図である。道路部分RDは、車両6が走行している走行レーンTL2の領域と、その左側の走行レーンTL1の領域とを含む。
【0142】
図26A〜26Dに示したように、推定処理に用いられる領域パターンPTは、車両6がどのレーンを走行しているかに応じて、車両6に搭載されたカメラ2により撮像された画像に映し出される道路領域の形状が異なることを反映するように、予め道路ごとまたはレーンごとに設定されたものである。第2の実施形態に係るレーン推定装置1のレーン推定処理部130は、このような領域パターンPTの道路部分RDと画像データに映し出される道路領域とを画素レベルで比較することによって、移動中のレーン推定を行う。
【0143】
パターン取得部1301は、GPSセンサ3により検出された車両6の位置データをもとに、レーン推定に必要な1または複数の領域パターンPTをパターン記憶部26から読み出すように構成される。一例として、パターン取得部1301は、GPSセンサ3により検出された車両6の位置データをもとに、車両6が現在走行中の位置における道路の構成を表す情報を道路情報記憶部23から取得し、取得した情報に基づいて、必要な1または複数の領域パターンPTをパターン記憶部26から読み出すように構成される。
【0144】
例えば、パターン取得部1301は、現在走行中の道路が片側2車線の一般国道であるとの情報に基づいて、「片側2車線の一般国道」に紐づけられた領域パターンPT1と領域パターンPT2とを読み出すように構成される。現在走行中の道路が片側3車線の高速自動車国道である場合、パターン取得部1301は、片側3車線の高速自動車国道に紐づけられた、路肩側のレーンを走行している場合、中央のレーンを走行している場合、および中央分離帯側のレーンを走行している場合に対応する、3通りの領域パターンPTを読み出すことができる。これらは一例にすぎず、パターン取得部1301がパターン記憶部26から読み出す領域パターンPTの種類および数は、任意に設定されてよい。以下、道路の種別(一般国道、高速道、等)に関する説明は省略する。
【0145】
なお、「片側」は説明の便宜にすぎず、対向車線を含めた道路領域、車両領域であったとしても、N車線道路の各車線に対応するN個の領域パターンPTを読み出すことによってレーンを推定することが可能である。パターン取得部1301は、図示しない通信部を通じて上記道路管理サーバ等から直接領域パターンPTを取得するようにしてもよい。
【0146】
また領域パターンPTは、車両6により取得された画像データに映し出される道路領域と対比し得るものであれば、どのようなものであってもよい。上述のように、
図26Cに示した領域パターンPT2は、片側2車線の道路の中央分離帯側の走行レーンTL2を走行している車両6により取得される画像データに係るもので、走行レーンTL1および走行レーンTL2の両方を含む。しかし、領域パターンPTは、道路に含まれるすべての走行レーンを含む必要はない。
【0147】
図27A〜27Dは、そのようなレーンごとに設定された領域パターンPTの例を示す。
図27Aは、自車両6が走行中のレーンに対して1つ左側にレーンが存在する場合に、画像データに映し出される道路領域REと対比するための領域パターンPT3を示す。領域パターンPT3は、
図26Cに示した領域パターンPT2のうち、走行レーンTL1に係る領域のみを切り出した道路部分RDと、それ以外の部分BKとを含む。
【0148】
例えば、レーン推定処理部130は、車両6が片側2車線の道路を走行している場合、処理済み画像データTVD内の道路領域REが
図27Aに示した領域パターンPT3に類似する領域を含むか否かを判定し、類似する領域を含む場合には、中央分離帯側のレーンTL2を走行していると推定することができ、類似する領域を含まない場合には、路肩側のレーンTL1を走行していると推定することができる。
【0149】
図27Bは、自車両6が走行中のレーンに対して1つ右側にレーンが存在する場合に、画像データに映し出される道路領域REと対比するための領域パターンPT4を示す。領域パターンPT4は、
図26Aに示した領域パターンPT1のうち、走行レーンTL2に係る領域のみを切り出した道路部分RDと、それ以外の部分BKとを含む。
【0150】
図27Cは、片側3車線の道路など、自車両6が走行中のレーンに対して2つ左側にレーンが存在する場合に画像データに映し出される道路領域REと対比するための領域パターンPT5を示す。領域パターンPT5は、
図26Cに示した領域パターンPT2には含まれていない走行レーンに係る道路部分RDを含む。
【0151】
図27Dは、片側3車線の道路など、自車両6が走行中のレーンに対して2つ右側にレーンが存在する場合に画像データに映し出される道路領域REと対比するための領域パターンPT6を示す。領域パターンPT6もまた、
図26Aに示した領域パターンPT1には含まれていない走行レーンに係る道路部分RDを含む。
【0152】
図27A〜27Dに示した領域パターンPTを用いることによって、対比する面積がより小さいものとなり、レーン推定装置1は、より少ない処理で類似度を判定することができる。なお、
図27A〜27Dに示した領域パターンPTは、一例に過ぎない。領域パターンPTは、路肩の有無、各車線(レーン)の幅員、中央分離帯の有無、道路の曲率半径等により多様に変化し得る。
【0153】
パターン取得部1301が、
図26A〜26Dに示したような道路全体の領域パターンPTを読み出すべきか、
図27A〜27Dに示したようなレーンごとの領域パターンPTを読み出すべきかは、レーン推定装置1のユーザ等により任意に設定されてよい。なお、パターン取得部1301は、図示しない通信部を通じて上記道路管理サーバ等から直接領域パターンPTを取得するようにしてもよい。
【0154】
(2−3)類似度の判定
次にレーン推定処理部130は、類似度判定部1302の制御の下、ステップS303において、画像データVDから抽出された道路領域REと、パターン取得部1301により読み出された領域パターンPTの道路部分RDとを画素レベルで比較する。レーン推定処理部130は、処理済み画像データTVDと領域パターンPTに対し、対比可能なように、あらかじめサイズ調整や傾き調整等の前処理を行っているものとする。レーン推定処理部130はまた、カメラ2の性能個体差や設置時の傾き等に加え、車両6の車高や画像データVD内のボンネットの見え方などに応じて、あらかじめ必要なキャリブレーションを行っているものとする。
【0155】
まず類似度判定部1302は、処理済み画像データTVDおよび領域パターンPTの各々について、各画素位置における画素値を表す画素値データを取得する。上述のように、処理済み画像データTVDは、道路領域抽出部131による領域抽出処理によって、各画素位置が異なる色(画素値)でラベリングされている。領域パターンPTも同様に、各画素位置に異なるRGB値が付与されている。
【0156】
類似度判定部1302は、各画素値データから、例えば二次元配列の形で格納された各画素位置におけるRGB値を読み出し、各画素位置においてRGB値を対比して、RGB値が同一であるか否かを判定する。類似度判定部1302は、全画素位置について対比を行ってもよいし、領域パターンPT内の道路部分RDに対応する画素位置についてのみ対比を行ってもよい。対比処理については、さらに後述する。
【0157】
次いで、レーン推定処理部130は、類似度判定部1302の制御の下、ステップS304において、画素ごとの対比結果をもとに、全体の類似度を判定する。一例として、類似度判定部1302は、対比した全画素数のうちRGB値が一致すると判定された画素数の割合を算出することによって、類似度を判定する。
【0158】
ステップS305において、レーン推定処理部130は、パターン取得部1301によりパターン記憶部26から読み出されたすべての領域パターンPTについて、類似度判定部1302による類似度判定処理が終了したか否かを判定する。対比していない領域パターンPTがある場合(NOの分岐)、対比していない領域パターンPTについてステップS303〜304を繰り返す。すべての領域パターンPTについて類似度判定処理が終了した場合(YESの分岐)、ステップS306に移行する。
【0159】
ステップS306において、レーン推定処理部130は、類似度判定部1302の制御の下、類似度判定結果をレーン推定部1303に渡す。一例では、類似度判定部1302は、類似度を判定した複数の領域パターンPTのうち最も類似度が高い領域パターンPTを選択し、判定された類似度とともにレーン推定部1303に渡す。類似度判定部1302によって選択される領域パターンPTは、1つである必要はなく、一定の基準を満たす複数の領域パターンPTが選択されてもよい。例えば、類似度判定部1302は、画像データTVDとの類似度が所定の閾値を超えると判定されたすべての領域パターンPTを、レーン推定部1303に渡すように構成されてもよい。あるいは、類似度判定部1302は、パターン取得部1301により読み出された領域パターンPTが1つだけの場合、類似度が所定の閾値を超えるか否かを判定し、その判定結果とともに当該領域パターンPTをレーン推定部1303に渡すように構成されてもよい。
【0160】
(2−4)レーンの推定
ステップS307において、レーン推定処理部130は、レーン推定部1303の制御の下、類似度判定部1302から受け取った類似度判定結果に基づいて、車両6がいずれのレーンを走行中であるか推定する処理を行う。例えば、GPS情報により車両6が片側2車線の道路を走行中であると判定され、パターン取得部1301により領域パターンPT1と領域パターンPT2が読み出されて、類似度判定部1302により領域パターンPT1の方が類似度が高いと判定された場合、レーン推定部1303は、車両6が走行中のレーンは片側2車線の道路の路肩側のレーンTL1であると推定することができる。
【0161】
あるいは、片側2車線の道路を走行中のときにパターン取得部1301が領域パターンPT1だけを読み出すように設定されている場合など、レーン推定部1303は、画像データTVDと領域パターンPT1との類似度のみに基づいてレーンを推定することもできる。この場合、レーン推定部1303は、類似度判定部1302から受け取った領域パターンPT1との類似度が所定の閾値を上回るのであれば、車両6が走行中のレーンは片側2車線の道路の路肩側のレーンTL1であると推定することができ、領域パターンPT1との類似度が所定の閾値以下であれば、車両6が走行中のレーンは片側2車線の道路の中央分離帯側のレーンTL2であると推定することができる。
【0162】
他の例として、GPS情報により片側2車線の道路を走行中であると判定された場合に、パターン取得部1301が
図27Aおよび
図27Bに示した領域パターンPT3およびPT4を読み出すように設定されることも考えられる。このような場合、類似度判定部1302により、領域パターンPT4よりも領域パターンPT3の方が類似度が高いと判定された場合には、レーン推定部1303は、自車両6が走行しているレーンの左側に走行レーンが存在すると判定し、自車両6が片側2車線の道路の中央分離帯側のレーンTL2を走行中であると推定することができる。
【0163】
さらに他の例として、GPS情報により片側3車線の道路を走行中であると判定された場合に、パターン取得部1301が
図27A〜27Dに示した領域パターンPT3〜PT6を読み出し、類似度判定部1302が所定の閾値を超える類似度の領域パターンPTを選択するように設定されることが考えられる。例えば、類似度判定部1302により領域パターンPT3と領域パターンPT4が選択された場合、レーン推定部1303は、車両6が片側3車線の道路の中央のレーンを走行中であると判定することができる。あるいは類似度判定部1302により領域パターンPT3と領域パターンPT5が選択された場合、レーン推定部1303は、車両6が片側3車線の道路の中央分離帯側のレーンを走行中であると判定することができる。
【0164】
レーン推定処理部130は、閾値記憶部25に記憶された予め設定された閾値をもとに、類似度の許容範囲を判断するようにしてもよい。例えば、類似度判定部1302から最高の類似度を有する領域パターンPTを受け取った場合に、その類似度が予め設定された閾値に満たなければ、処理を中断し、推定不能とのエラーメッセージを出力するようにしてもよい。閾値は、レーンを問わず一定の値であってもよいし、レーンごとまたは領域パターンPTごとに設定された値であってもよい。あるいは、類似度判定部1302から受け取った、類似度が所定の閾値を超える領域パターンPTの数が十分でない場合など、レーン推定部1303が走行中のレーンを推定できない場合にも、レーン推定処理部130は、処理を中断し、エラーメッセージを出力するようにしてもよい。この場合、新たな画像データVDを取得して処理をやり直すようにしてもよい。
【0165】
(3)レーン推定結果の補正
次にレーン推定装置1の制御ユニット10は、第1の実施形態と同様に、レーン補正部14の制御の下、
図5に示すステップS4において、上記レーン推定処理部130により推定されたレーンの確からしさ(妥当性)を判定し、妥当ではないと判定した場合にはレーンの推定結果を補正する処理を実行する。レーン補正部14による処理手順と処理内容は、
図8に関して説明したのと同じものを採用することができる。
【0166】
(4)レーン推定データの出力
制御ユニット10は、推定データ出力制御部19の制御の下、ステップS5において、レーン推定結果を出力するための制御を実行する。この処理も、第1の実施形態と同様に実行することができる。
【0167】
(5)他の実施例
図28Aは、他の走行車両MBが存在する場合の静止画像データVDの他の例を示す。この静止画像データVDは、例えば
図10に示したような片側2車線の道路の路肩側レーンTL1を走行中の車両6に搭載されたカメラ2により撮像され、画像データ取得部11により画像処理を実行されたものである。
図28Aの静止画像データVDには、
図25Aに示した画像データVDと同様に、自車両のボンネット部分6と、中央分離帯MSと、走行レーンTL1,TL2と、路肩SRおよび縁石SBと、さらに走行レーンTL2を走行する他車両MBが映し出されている。
【0168】
図28Bは、
図28Aに示した画像データVDに対して道路領域抽出部131によりSegNetを用いた抽出処理を行った出力結果の一例を示す。
図28Bでは、処理済み画像データTVD内に、道路領域RE(網掛け部分)と、他車両MBを含む領域MBR(ドットハッチング部分)とが抽出されている。やはり、各領域には画素単位でのラベリングに対応する色が付与され、ここでは、道路領域REが緑色([R,G,B]=[0,255,0])でラベリングされ、車両領域MBRが赤色([R,G,B]=[255,0,0])でラベリングされ、それ以外の領域が黒色([R,G,B]=[0,0,0])でラベリングされている。
【0169】
この実施例では、GPS情報により自車両6が片側2車線の道路を走行中であることがわかっており、パターン取得部1301は、パターン記憶部26から領域パターンPT1と領域パターンPT2を読み出すものとする。なお、
図28Bは、領域抽出の精度が若干低く、近似処理を行っていない例を示しており、道路領域REおよび車両領域MBRには誤検出に起因する凹凸の輪郭線部分が含まれる。
【0170】
図29は、類似度判定部1302による、領域パターンPT1と処理済み画像データTVDとの類似度を判定する処理の一例を示す。この例では、類似度判定部1302は、各画像の左上を原点とし、画像の横方向をx軸、画像の縦方向をy軸、各画素位置を座標点P(x,y)として、各座標点Pにおける画素値の対比を行う。画素値の対比は、画像全体にわたって行われてもよいし、領域パターンPT1のうち道路部分RDに対応する座標だけを対象としてもよい。なお、この例では、各画像の右下の点Qの座標を(640,360)としている。
【0171】
図29において、点P1は、パターンPT1および画像データTVDの両方において道路として認識された緑色の領域にあり、RGB値が一致する。したがって、類似度判定部1302は、点P1について、例えば画素値の一致を示すフラグを立てるなどの処理を行うことができる。一方、点P2は、パターンPT1においては道路部分RD内にあるが、画像データTVDにおいては車両として識別された領域MBR内にある。したがって、類似度判定部1302は、点P2については画素値が一致しないものと判定する。
【0172】
ここで、一実施例においては、類似度判定部1302は、領域パターンPTの道路部分RDに含まれる座標点については、画像データTVDにおいて道路部分RD(網掛け部分)または車両領域MBR(ドットハッチング部分)のいずれかに含まれる限り、画素値を一致と判定するように構成されることができる。言い換えれば、この実施例に係る類似度判定部1302は、領域パターンPTの道路部分RDに含まれる座標点については、画像データTVDにおいて何も抽出されなかった黒色の領域(図では無色の領域)のみを不一致と判定するように構成される。
【0173】
すなわち、類似度判定部1302は、道路領域REに道路領域上に存在する物体の領域MBRを含めた、全形状RE+MBRを、領域パターンPTとの対比に用いる。このように、道路領域上に他の走行車両等の物体が存在し、画像データ上で道路領域の一部を抽出できない場合でも、領域パターンPTの道路部分RDに対応する座標点については道路領域とみなすことにより、容易に情報の補完を行うことができる。なお、車両領域MBRを、ラベリングされたとおり道路領域REとは異なるものとして類否判定を行ってもよい。
【0174】
図30は、類似度判定を説明するさらに他の例として、
図27Aに示したパターンPT3の道路部分PT3−RD(その輪郭を一点鎖線で示す)と、
図28Bに示した処理済み画像データTVDにおける道路領域REとを重ね合わせたイメージを示す。
図30に示したように、類似度判定部1302は、道路部分PT3−RDの部分だけを類似度判定の対象とすることも可能である。この場合、レーン推定装置1は、道路部分PT3−RD内の各座標点について、画像データTVD内の対応する座標点と画素値の対比を行う。道路部分PT3−RD内の座標点について画像データTVDと画素値が一致する点が一定数よりも多ければ、レーン推定装置1は、この領域にレーンがある、すなわち自車両6は中央分離帯側の走行レーンTL2を走行中であると推定することができる。一方、道路部分PT3−RD内の座標点について画像データTVDと画素値が一致する点が一定数以下であれば、レーン推定装置1は、この領域にレーンがない、すなわち自車両6は路肩側の走行レーンTL1を走行中であると推定することができる。
【0175】
図30に示した例によれば、パターンPT3のような一部のレーンに対応する領域パターンPTを用いることにより、レーン推定装置1は、自車両6の前方の同じレーン上を他車両が走行している場合でも支障なくレーン推定を行うことができる。また、レーン推定装置1は、より小さい面積を対比の対象とすることができ、少ない対比処理によってレーン推定を行うことができる。
【0176】
どのような領域パターンPTを対比に使用するかは、道路の状態、処理の速度、推定の精度などに応じて、レーン推定装置1のユーザ等により任意に設定されてよい。
【0177】
またレーン推定装置1は、画像および各領域パターンPTの上部や下部をカットし(例えば、640×360の画像の上部640×100、下部640×60をカットし)、残りの部分だけで画素値を比較するように構成されてもよい。これによりレーン推定に係る計算コストを抑えることができる。さらに、
図25Aおよび
図28Aに示したように、画像データVD内に自車両のボンネット部分6が映りこんでいる場合においては、当該ボンネット部分6に対応する画像および各領域パターンPTの下部をカットし、残りの部分だけで画素値を比較するよう構成することで、ボンネット形状の相違に起因する類似度の判定ミスを低減できるので、異なる車種間で共通の領域パターンPTを使用できるようになる。
【0178】
(効果)
以上詳述したように第2の実施形態に係るレーン推定装置1は、車両6の進行方向を撮像して得られた画像データから道路領域を表す形状を抽出し、道路領域を表す形状をもとに、特徴量として、当該道路領域内の各画素にラベリングした画素値データを取得する。そして、この画素値データが、道路ごとまたはレーンごとに予め設定されたパターンのうちのいずれに類似するかを判定することにより、車両6が移動中のレーンを推定する。
【0179】
このように、第2の実施形態によれば、移動中の車両6から進行方向を見たときの道路領域を表す形状が、車両6が移動中のレーンに応じて異なるという特徴に着目し、各画素にラベリングして得られた画素値をもとに、予め設定されたパターンと対比することによって、車両6が移動中のレーンを推定することができる。このため、道路上のレーンを区分する区画線に頼ることなく走行中のレーンを推定することが可能となり、これにより例えば工事等により区画線の補修跡が残存する場合や、経年劣化により区画線が薄くなったり消えてしまっている場合でも、レーンを正確に推定することが可能となる。
【0180】
一実施例では、道路上のすべてのレーンに対応する領域パターンPTを対比に用いるようにしており、これにより、推定の精度が向上することが期待される。他の実施例では、道路上の一部のレーンに対応する領域パターンPTを対比に用いるようにしており、これにより、処理の高速化とともに、他の車両の影響を軽減できることが期待される。
【0181】
さらに、一実施例では、道路領域上に他の走行車両等の物体が存在する場合にも、領域パターン中の道路部分RD内の座標点については、当該物体が道路の一部であるものとみなして類似度を判定するようにしている。このため、他の走行車両等の物体が存在するために画像データに映っている道路領域から得られる情報が不十分であっても、当該物体の形状をもとに情報を補完してレーンを推定することが可能となる。
【0182】
[他の実施形態]
(1)前記各実施形態では、レーン推定装置1を車両に搭載した場合を例にとって説明した。しかし、これに限るものではなく、レーン推定装置1をクラウドコンピュータやエッジルータ上に設置し、車両6がカメラ2により得られた画像データ、GPSセンサ3により得られた位置データおよび車両センサ4により得られた車両センサデータを、車載通信装置から上記クラウドやエッジルータ上のレーン推定装置に送信し、レーン推定装置が上記各データを受信してレーン推定処理を実行するように構成してもよい。
また、その際、レーン推定装置が備える各処理部を、車載装置、クラウドコンピュータ、エッジルータ等に分散配置し、これらの装置が互いに連携することによりレーン推定データを得るようにしてもよい。
【0183】
前記各実施形態において説明された種々の機能部は、回路を用いることで実現されてもよい。回路は、特定の機能を実現する専用回路であってもよいし、プロセッサのような汎用回路であってもよい。
【0184】
前記各実施形態の処理の少なくとも一部は、例えば汎用のコンピュータに搭載されたプロセッサを基本ハードウェアとして用いることでも実現可能である。上記処理を実現するプログラムは、コンピュータで読み取り可能な記録媒体に格納して提供されてもよい。プログラムは、インストール可能な形式のファイルまたは実行可能な形式のファイルとして記録媒体に記憶される。記録媒体としては、磁気ディスク、光ディスク(CD−ROM、CD−R、DVD等)、光磁気ディスク(MO等)、半導体メモリなどである。記録媒体は、プログラムを記憶でき、かつ、コンピュータが読み取り可能であれば、何れであってもよい。また、上記処理を実現するプログラムを、インターネットなどのネットワークに接続されたコンピュータ(サーバ)上に格納し、ネットワーク経由でコンピュータ(クライアント)にダウンロードさせてもよい。
【0185】
(2)前記各実施形態では、レーン推定装置1により得られたレーン推定データを自動運転制御装置5に出力し、自動運転制御装置5が上記レーン推定データをもとに車両6をレーン内で走行させるために、或いは車線変更の制御をするために使用する場合を例にとって説明した。しかし、この発明はそれに限るものではなく、レーン推定データをドライブレコーダへ出力してドライブレコーダが上記レーン推定データを車両6の走行履歴情報の1つとして記録するようにしてもよい。
【0186】
また、上記レーン推定データを、例えば道路管理サーバへ送信し、道路管理サーバが道路のレーン単位での交通量の監視や渋滞の予測等を行うためのデータとして使用するようにしてもよい。この場合、上記渋滞等の予測結果に基づいて、車両に対し車線の変更指示情報を提示するようにしてもよい。さらに、レーン推定データを車両に搭載されたナビゲーション装置に入力することで、例えば行き先に応じて車両の走行レーンの変更指示情報をドライバに提示するようにしてもよい。
【0187】
(3)前記各実施形態では、移動体として自動車等の車両6を例にとり、車両6が例えば片側2車線の道路を走行する場合を例にとって説明した。しかしそれに限らず、移動体としては、例えば自動二輪車や自転車、パーソナルモビリティ、馬車等の家畜が牽引する車両、耕耘機などの農作業用車両であってもよく、さらには歩行者であってもよい。
【0188】
このうち、自動二輪車を対象とする場合には、例えば、走行中のレーンの推定結果と、事前に登録した自動二輪車の排気量を表す情報をもとに、現在走行中のレーンの走行可否を判定し、走行してはいけないレーンを走行中の場合には合成音声または鳴音による警告メッセージを出力するようにしてもよい。同様に、自転車を対象とする場合には、例えば走行中のレーンの推定結果と、進行方向の検出結果とに基づいて、自転車が道路上に設定された自転車専用レーンを決められた方向に走行しているか否かを判定し、自転車専用レーン以外のレーンを走行している場合や、自転車専用レーンを走行していても逆走している場合には、合成音声または鳴音による警告メッセージを運転者に向けて出力するとよい。
【0189】
その他、推定対象の道路の種類としては片側2車線の一般道路以外に高速道路や有料道路、サイクリングロード、歩道、農道であってもよく、またレーン推定装置の構成やレーン推定方法の処理手順や処理内容、推定対象となる道路の構成等についても、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。
【0190】
(4)また前記各実施形態では、レーン推定に用いる画像データは、カメラ2が車両6の進行方向における道路領域を含む範囲を撮像して得たものとして説明したが、これに限るものではなく、例えば車両6の後方など、カメラ2が他の方向の道路領域を含む範囲を撮像して得た画像データであってもよい。
【0191】
(5)さらに、第2の実施形態では、画像データTVDの道路領域REと領域パターンPTの道路部分RDとを比較して類似度を判定する例を説明したが、道路領域以外の領域(非道路領域)と領域パターンPTの道路部分RD以外の部分BKとを比較して類似度を判定することも可能である。
【0192】
要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
【0193】
(付記)
上記各実施形態の一部または全部は、特許請求の範囲のほか以下の付記に示すように記載することも可能であるが、これに限られない。
[C1]
移動体が移動中の道路領域を含む範囲を撮像して得られた画像データを取得する画像取得部と、
前記取得された画像データから前記道路領域を表す形状を認識し、当該認識された形状をもとに前記道路領域の特徴量を算出する特徴量算出部と、
前記算出された特徴量に基づいて、前記移動体が移動中のレーンを推定する推定処理部と
を具備するレーン推定装置。
[C2]
前記特徴量算出部は、前記道路領域の特徴量として、前記認識された道路領域を表す形状をもとにその輪郭線の傾き角を算出し、
前記推定処理部は、前記算出された輪郭線の傾き角がレーンごとに予め設定された閾値の範囲のいずれに含まれるかを判定することにより、前記移動体が移動中のレーンを推定する、
上記C1に記載のレーン推定装置。
[C3]
前記特徴量算出部は、前記認識された道路領域を表す形状をもとに、前記道路領域の特徴量として、当該形状を表す図形の重心座標、前記形状を表す図形または当該図形から導かれる仮想図形の1つの頂点の角度、および前記形状を表す図形の面積のうちの少なくとも1つを算出し、
前記推定処理部は、前記算出された図形の重心座標、頂点の角度、および図形の面積がレーンごとに設定された閾値の範囲のいずれに含まれるかを判定することにより、前記移動体が移動中のレーンを推定する、
上記C1に記載のレーン推定装置。
[C4]
前記特徴量算出部は、前記認識された道路領域を表す形状をもとに、前記特徴量として、当該形状を前記画像データにより表される画面の垂直方向を一辺とする三角形に変換した図形の二辺間の角度、および前記変換された図形の面積のうちの少なくとも1つを算出し、
前記推定処理部は、前記算出された輪郭線間の角度または前記図形の面積が、レーンごとに予め設定された閾値の範囲のいずれに含まれるかを判定することにより、前記移動体が移動中のレーンを推定する、
上記C1に記載のレーン推定装置。
[C5]
前記特徴量算出部は、前記取得された画像データから、前記道路領域上に存在する物体を含む前記道路領域を表す第1の形状と、前記道路領域のうち前記物体を除いた領域を表す第2の形状をそれぞれ認識し、前記認識された第1の形状および前記第2の形状をもとに前記物体が存在しないときの前記道路領域の輪郭線を推定して当該輪郭線の傾き角の算出し、
前記推定処理部は、前記算出された輪郭線の傾き角がレーンごとに予め設定された閾値の範囲のいずれに含まれるかを判定することにより、前記移動体が移動中のレーンを推定する、
上記C1に記載のレーン推定装置。
[C6]
前記特徴量算出部は、前記道路領域の特徴量として、前記認識された道路領域を表す形状をもとに前記道路領域内の各画素にラベリングした画素値データを取得し、
前記推定処理部は、前記取得された画素値データが、前記道路領域に対して予め設定された複数のパターンのうちのいずれに類似するかを判定することにより、前記移動体が移動中のレーンを推定する、
上記C1に記載のレーン推定装置。
[C7]
前記特徴量算出部は、前記道路領域の特徴量として、前記認識された道路領域を表す形状をもとに前記道路領域内の各画素にラベリングした画素値データを取得し、
前記推定処理部は、前記取得された画素値データが、前記道路領域に含まれるレーンごとに予め設定されたパターンのうちのいずれに類似するかを判定することにより、前記移動体が移動中のレーンを推定する、
上記C1に記載のレーン推定装置。
[C8]
前記特徴量算出部は、前記取得された画像データから、前記道路領域上に存在する物体を含む前記道路領域を表す第1の形状を認識し、前記第1の形状内の各画素にラベリングした画素値データを取得し、
前記推定処理部は、前記取得された画素値データが、前記道路領域に対して予め設定された複数のパターンまたは前記道路領域に含まれるレーンごとに予め設定されたパターンのうちのいずれに類似するかを判定することにより、前記移動体が移動中のレーンを推定する、
上記C1に記載のレーン推定装置。
[C9]
前記推定処理部により過去に得られたレーン推定結果から推定される前記移動体のレーン変更履歴を表す情報と、前記移動体の移動位置における前記道路領域の構造に関する情報と、前記移動体の動きの状態から推定される前記道路領域におけるレーン変更を表す情報との少なくとも1つに基づいて、前記推定処理部により現在得られたレーン推定結果を補正する補正部を、さらに具備する上記C1乃至8のいずれかに記載のレーン推定装置。
[C10]
情報処理装置が、移動体が移動中のレーンを推定するレーン推定方法であって、
前記移動体が移動中の道路領域を含む範囲を撮像して得られた画像データを取得する過程と、
前記取得された画像データから前記道路領域を表す形状を認識し、当該認識された形状をもとに前記道路領域の特徴量を算出する過程と、
前記算出された特徴量に基づいて、前記移動体が移動中のレーンを推定する過程と
を具備するレーン推定方法。
[C11]
上記C1乃至9のいずれかに記載のレーン推定装置が具備する各部の処理を、前記レーン推定装置が備えるプロセッサに実行させるプログラム。
[C12]
コンピュータにより実行される、移動体(6)が移動中のレーンを推定するレーン推定方法であって、
前記移動体(6)が移動中の道路領域を含む範囲を撮像して得られた画像データを取得することと、
前記取得された画像データから前記道路領域を表す形状を認識し、当該認識された形状をもとに前記道路領域の特徴量を算出することと、
前記算出された特徴量に基づいて、前記移動体(6)が移動中のレーンを推定することと
を備える方法。
[C13]
前記特徴量を算出することは、前記道路領域の特徴量として、前記認識された道路領域を表す形状をもとにその輪郭線の傾き角を算出することを含み、
前記推定することは、前記算出された輪郭線の傾き角がレーンごとに予め設定された閾値の範囲のいずれに含まれるかを判定することにより、前記移動体(6)が移動中のレーンを推定することを含む、
上記C12に記載の方法。
[C14]
前記特徴量を算出することは、前記認識された道路領域を表す形状をもとに、前記道路領域の特徴量として、当該形状を表す図形の重心座標、前記形状を表す図形または当該図形から導かれる仮想図形の1つの頂点の角度、および前記形状を表す図形の面積のうちの少なくとも1つを算出することを含み、
前記推定することは、前記算出された図形の重心座標、頂点の角度、および図形の面積がレーンごとに設定された閾値の範囲のいずれに含まれるかを判定することにより、前記移動体(6)が移動中のレーンを推定することを含む、
上記C12に記載の方法。
[C15]
前記特徴量を算出することは、前記認識された道路領域を表す形状をもとに、前記特徴量として、当該形状を前記画像データにより表される画面の垂直方向を一辺とする三角形に変換した図形の二辺間の角度、および前記変換された図形の面積のうちの少なくとも1つを算出することを含み、
前記推定することは、前記算出された輪郭線間の角度または前記図形の面積が、レーンごとに予め設定された閾値の範囲のいずれに含まれるかを判定することにより、前記移動体(6)が移動中のレーンを推定することを含む、
上記C12に記載の方法。
[C16]
前記特徴量を算出することは、前記取得された画像データから、前記道路領域上に存在する物体を含む前記道路領域を表す第1の形状と、前記道路領域のうち前記物体を除いた領域を表す第2の形状をそれぞれ認識し、前記認識された第1の形状および前記第2の形状をもとに前記物体が存在しないときの前記道路領域の輪郭線を推定して当該輪郭線の傾き角の算出することを含み、
前記推定することは、前記算出された輪郭線の傾き角がレーンごとに予め設定された閾値の範囲のいずれに含まれるかを判定することにより、前記移動体(6)が移動中のレーンを推定することを含む、
上記C12に記載の方法。
[C17]
前記特徴量を算出することは、前記道路領域の特徴量として、前記認識された道路領域を表す形状をもとに前記道路領域内の各画素にラベリングした画素値データを取得することを含み、
前記推定することは、前記取得された画素値データが、前記道路領域に対して予め設定された複数のパターンのうちのいずれに類似するかを判定することにより、前記移動体(6)が移動中のレーンを推定することを含む、
上記C12に記載の方法。
[C18]
前記特徴量を算出することは、前記道路領域の特徴量として、前記認識された道路領域を表す形状をもとに前記道路領域内の各画素にラベリングした画素値データを取得することを含み、
前記推定することは、前記取得された画素値データが、前記道路領域に含まれるレーンごとに予め設定されたパターンのうちのいずれに類似するかを判定することにより、前記移動体(6)が移動中のレーンを推定することを含む、
上記C12に記載の方法。
[C19]
前記特徴量を算出することは、前記取得された画像データから、前記道路領域上に存在する物体を含む前記道路領域を表す第1の形状を認識し、前記第1の形状内の各画素にラベリングした画素値データを取得することを含み、
前記推定することは、前記取得された画素値データが、前記道路領域に対して予め設定された複数のパターンまたは前記道路領域に含まれるレーンごとに予め設定されたパターンのうちのいずれに類似するかを判定することにより、前記移動体(6)が移動中のレーンを推定することを含む、
上記C12に記載の方法。
[C20]
過去に得られたレーン推定結果から推定される前記移動体(6)のレーン変更履歴を表す情報と、前記移動体(6)の移動位置における前記道路領域の構造に関する情報と、前記移動体(6)の動きの状態から推定される前記道路領域におけるレーン変更を表す情報との少なくとも1つに基づいて、現在得られたレーン推定結果を補正することをさらに備える、上記C12乃至19のいずれか一項に記載の方法。
[C21]
上記C12乃至19のいずれか一項に記載の方法を実行する手段を備える、レーン推定装置(1)。
[C22]
コンピュータによって実行されたときに、上記C12乃至19のいずれか一項に記載の方法をコンピュータに実行させる命令を備えるプログラム。
[C23]
コンピュータによって実行されたときに、上記C12乃至19のいずれか一項に記載の方法をコンピュータに実行させる命令を備えるコンピュータ可読記憶媒体。