【実施例】
【0059】
以下、実施例を用いて、本発明をより詳細に説明する。
【0060】
[合成例1]
オクチル酸第一錫0.1質量部の存在下、ポリエーテルポリオール(三菱化学株式会社製「PTMG2000」、数平均分子量;2,000、以下「PTMG2000」と略記する。)1,000質量部と、2,2−ジメチロールプロピオン酸(以下、「DMPA」と略記する。)24質量部と、ジシクロヘキシルメタンジイソシアネート(以下、「HMDI」と略記する。)262質量部とをNCO%が2.1質量%に達するまで100℃で反応させてウレタンプレポリマーA1を得た。
70℃に加熱したA1とトリエチルアミン、乳化剤として、ドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS−20F」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA1:10kg/時、トリエチルアミン:0.2kg/時、乳化剤水溶液:2.0kg/時、水:5.1kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のイソホロンジアミン(以下、「IPDA」と略記する。)の水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が50質量%のポリウレタンエマルジョン(X−1)を得た。
【0061】
[合成例2]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、DMPA24質量部と、HMDI262質量部とをNCO%が2.1質量%に達するまで100℃で反応させてウレタンプレポリマーA2を得た。
70℃に加熱したA2とトリエチルアミン、乳化剤としてポリプロピレンポリエチレン共重合体(株式会社ADEKA製「プルロニックL−64」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA2:10kg/時、トリエチルアミン:0.2kg/時、L−64:0.5kg/時、水:7.1kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が50質量%のポリウレタンエマルジョン(X−2)を得た。
【0062】
[合成例3]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、DMPA24質量部と、HMDI262質量部とをNCO%が2.1質量%に達するまで100℃で反応させてウレタンプレポリマーA3を得た。
70℃に加熱したA3とトリエチルアミン、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA3:10kg/時、トリエチルアミン:0.2kg/時、水:6.6kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が50質量%のポリウレタンエマルジョン(X−3)を得た。
【0063】
[合成例4]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、ポリエチレングリコール(日油株式会社製「PEG600」、数平均分子量;600、以下「PEG」と略記する。)37.5質量部と、HMDI262質量部とをNCO%が2.8質量%に達するまで100℃で反応させてウレタンプレポリマーA4を得た。
70℃に加熱したA4と乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS−20F」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA4:10kg/時、乳化剤水溶液:2.0kg/時、水:1.2kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が58質量%のポリウレタンエマルジョン(X−4)を得た。
【0064】
[合成例5]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、PEGを18質量部と、HMDI262質量部とをNCO%が3.1質量%に達するまで100℃で反応させてウレタンプレポリマーA5を得た。
70℃に加熱したA5と乳化剤として、ポリプロピレンポリエチレン共重合体(株式会社ADEKA製「プルロニックL−64」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA5:10kg/時、乳化剤:0.5kg/時、水:5.8kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が50質量%のポリウレタンエマルジョン(X−5)を得た。
【0065】
[合成例6]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、ポリエチレングリコールジメチルエーテル(日油株式会社製「M550」、数平均分子量;550、以下「MPEG」と略記する。)18質量部と、HMDI262質量部とをNCO%が3.3質量%に達するまで100℃で反応させてウレタンプレポリマーA6を得た。
70℃に加熱したA6と、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA6:10kg/時、水:4.9kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が50質量%のポリウレタンエマルジョン(X−6)を得た。
【0066】
[合成例7]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、PEG18質量部と、HMDI262質量部とをNCO%が3.1質量%に達するまで100℃で反応させてウレタンプレポリマーA7を得た。
70℃に加熱したA7と乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS−20F」)、ポリプロピレンポリエチレン共重合体(株式会社ADEKA製「プルロニックL−64」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA7:10kg/時、乳化剤水溶液S−20F:1.3kg/時、乳化剤L−64:0.3kg/時、水:1.1kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のエチレンジアミン(以下「EA」と略記する。)の水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が60質量%のポリウレタンエマルジョン(X−7)を得た。
【0067】
[比較合成例1]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、DMPA34質量部と、HMDI262質量部とをNCO%が1.6質量%に達するまで100℃で反応させてウレタンプレポリマーA’1を得た。
70℃に加熱したA’1とトリエチルアミン、乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS−20F」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。
なお、供給液、二軸押出機運転条件を実施例1と同じくして固形分濃度50%のポリウレタンエマルジョン製造を試み、得られた乳化液に直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させたがゲル化するためエマルジョンを得ることができなかった。
そのため、水量を増やし固形分を下げてポリウレタンエマルジョンを製造した。供給液それぞれの流量はA’1:10kg/時、トリエチルアミン:0.2kg/時、乳化剤水溶液:2.5kg/時、水:19.6kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が30質量%のポリウレタンエマルジョン(XR−1)を得た。
【0068】
[比較合成例2]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、DMPA34質量部と、HMDI262質量部とをNCO%が1.6質量%に達するまで100℃で反応させてウレタンプレポリマーA’2を得た。
70℃に加熱したA’2とトリエチルアミン、乳化剤としてポリプロピレンポリエチレン共重合体(株式会社ADEKA製「プルロニックL−64」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。
なお、供給液、二軸押出機運転条件を実施例2と同じくしてウレタン樹脂の含有率50質量%のポリウレタンエマルジョン製造を試み、得られた乳化液に直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させたがゲル化するためエマルジョンを得ることができなかった。
そのため、水量を増やし固形分を下げてポリウレタンエマルジョンを製造した。供給液それぞれの流量はA’2:10kg/時、トリエチルアミン:0.2kg/時、乳化剤水溶液:0.5kg/時、水:21.6kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が30質量%のポリウレタンエマルジョン(XR−2)を得た。
【0069】
[比較合成例3]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、DMPA34質量部と、HMDI262質量部とをNCO%が1.6質量%に達するまで100℃で反応させてウレタンプレポリマーA’3を得た。
70℃に加熱したA’3とトリエチルアミン、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。
なお、供給液、二軸押出機運転条件を実施例3と同じくしてウレタン樹脂の含有率が50質量%のポリウレタンエマルジョン製造を試み、得られた乳化液に直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させたがゲル化するためエマルジョンを得ることができなかった。
そのため、水量を増やし固形分を下げてポリウレタンエマルジョンを製造した。供給液それぞれの流量はA’3:10kg/時、トリエチルアミン:0.2kg/時、乳化剤水溶液:0.5kg/時、水:20.4kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が30質量%のポリウレタンエマルジョン(XR−3)を得た。
【0070】
[比較合成例4]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、PEG75質量部と、HMDI262質量部とをNCO%が2.4質量%に達するまで100℃で反応させてウレタンプレポリマーA’4を得た。
70℃に加熱したA’4と乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS−20F」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。
なお、供給液、二軸押出機運転条件を実施例4と同じくしてウレタン樹脂の含有率が60質量%のポリウレタンエマルジョン製造を試み、得られた乳化液に直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させたがゲル化するためエマルジョンを得ることができなかった。
そのため、水量を増やし固形分を下げてポリウレタンエマルジョンを製造した。供給液それぞれの流量はA’4:10kg/時、乳化剤水溶液:2.5kg/時、水:9.3kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が、40質量%のポリウレタンエマルジョン(XR−4)を得た。
【0071】
[比較合成例5]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、PEG75質量部と、HMDI262質量部とをNCO%が2.4質量%に達するまで100℃で反応させてウレタンプレポリマーA’5を得た。
70℃に加熱したA’5と乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS−20F」)、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。
なお、供給液、二軸押出機運転条件を実施例5と同じくしてウレタン樹脂の含有率が50質量%のポリウレタンエマルジョン製造を試み、得られた乳化液に直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させたがゲル化するためエマルジョンを得ることができなかった。
そのため、水量を増やし固形分を下げてポリウレタンエマルジョンを製造した。供給液それぞれの流量はA’5:10kg/時、乳化剤水溶液:0.5kg/時、水:11.3kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が40質量%のポリウレタンエマルジョン(XR−5)を得た。
【0072】
[比較合成例6]
オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部と、MPEG69質量部と、HMDI262質量部とをNCO%が2.8質量%に達するまで100℃で反応させてウレタンプレポリマーA’6を得た。
70℃に加熱したA’6と、水を二軸押出機(TEM−18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。
なお、供給液、二軸押出機運転条件を実施例6と同じくしてウレタン樹脂の含有率が50質量%のポリウレタンエマルジョン製造を試み、得られた乳化液に直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させたがゲル化するためエマルジョンを得ることができなかった。
そのため、水量を増やし固形分を下げてポリウレタンエマルジョンを製造した。供給液それぞれの流量はA’6:10kg/時、水:10.3kg/時、二軸押出機運転条件は50℃、260rpmであった。
その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的にウレタン樹脂の含有率が40質量%のポリウレタンエマルジョン(XR−6)を得た。
【0073】
[実施例1]
合成例1で得られたポリウレタンエマルジョン(X−1)1,000質量部、増粘剤(Borchers社製「Borchi Gel ALA」)2質量部をメカニカルミキサーで2,000rpmにて攪拌した配合液を作成した。次に、ローター・ステーター型の連続式混合器(IKA社製「MagicLab」)に上記配合液と空気とを連続供給し、混合して泡液を得た。この際、配合液の体積・重量を測定して密度を算出し、泡液の密度が2/3となるように空気の供給量を調整した。
ポリエステル不織布を得られた泡液中に浸し、次いで、ポリエステル不織布厚みと同じクリアランスに調整したマングルロールを使用して、泡液の含浸量を調整した後、熱風乾燥機にて、70℃で2分間、更に120℃で2分間乾燥することで、ウレタン樹脂が充填された繊維基材を得た。
【0074】
[実施例2〜7、比較例1〜6]
用いるポリウレタンエマルジョン(X−1)の種類を表1〜2に示す通りに変更した以外は、実施例1と同様にして繊維基材を得た。
なお、実施例1〜3は参考例である。
【0075】
[数平均分子量等の測定方法]
合成例及び比較合成例で用いたポリオール等の数平均分子量は、ゲル・パーミエーション・カラムクロマトグラフィー(GPC)法により、下記の条件で測定し得られた値を示す。
【0076】
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
【0077】
(標準ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
【0078】
[ウレタン樹脂(X)の平均粒子径の測定方法]
実施例及び比較例で得られたウレタン樹脂水分散体をレーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製「LA−910」)を使用して、分散液として水を使用し、相対屈折率=1.10、粒子径基準が面積の時の平均粒子径を測定した。
【0079】
[泡保持性の外観評価方法]
不織布を泡液に浸しマングルロールにて泡液量を調整した後の不織布表面を目視観察により以下のように評価した。
「A」;泡を維持し、不織布表面に泡液の膜を形成している。
「B」;マングルロール使用後に泡がはじけて消失する様子がわずかに確認できる。
「C」;マングルロール使用後に泡がはじけて消失する様子が多く確認できる。
「D」;マングルロール使用後に泡が消失し、不織布の繊維が剥き出しになっている。
【0080】
[泡保持性の顕微鏡評価方法]
実施例及び比較例で得られた繊維基材の断面を走査型電子顕微鏡(日立ハイテクノロジー株式会社製「SU3500」、倍率200倍)を使用して観察し、以下のように評価した。
「T」;繊維基材内部で、ウレタン樹脂が多孔を形成している。
「F」;繊維基材内部で、ウレタン樹脂が多孔を形成していない。
【0081】
[風合いの評価方法]
得られた加工布を触感により以下のように評価した。
「A」;柔軟性に富む。
「B」;やや柔軟性がある。
「C」;柔軟性に劣る。
「D」;硬い。
【0082】
[屈曲状態の評価方法]
得られた加工布を手で90°屈曲させた際の外観状態を目視観察により以下のように評価した。
「A」;曲線を描いて曲がり、シワを形成しない。
「B」;曲線を描いて曲がり、小さなシワを形成する。
「C」;鋭角に折れて、小さなシワを形成する。
「D」;鋭角に折れて大きなシワを形成する。
【0083】
【表1】
【0084】
【表2】
【0085】
本発明の繊維基材は、実施例1〜7の通り、ウレタン樹脂の充填状態に優れ、優れた風合いを有することが分かった。
【0086】
一方、比較例1〜6は、ウレタン樹脂(X)の含有率が、本発明で規定する範囲を下回る態様であるが、泡保持性が悪く不織布内部の多孔形成が不良で、風合いが不良であった。