【実施例】
【0022】
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0023】
<合成例1:表面に溶媒が配位した金属白金ナノ粒子の分散液の調製>
ジムロート冷却器を連結した100mLの三口フラスコに、空気雰囲気下で脱水N,N−ジメチルホルムアミド(DMF)を入れ、140℃に加熱したオイルバスに浸漬して、空気雰囲気下、撹拌子を1500rpmで回転させながら還流条件で10分程度予備加熱を行った。その後、空気雰囲気下で塩化白金酸(IV)水和物(0.05mmol)を加え、撹拌しながら140℃で8時間加熱還流を行った結果、反応溶液は時間が経つごとに橙色の透明な分散液となった。8時間加熱還流後、室温まで冷却して、金属白金ナノ粒子(以下、「PtNPs」と略す場合がある。)の分散液を得た。得られた分散液の写真を
図1(a)に示す。なお、DMFは、塩化白金酸を加えた溶液が50mLになるように投入し、塩化白金酸が全て金属白金ナノ粒子になったと仮定すると、分散液の白金元素の濃度は1mmol/Lとなる。
【0024】
<合成例2:表面に溶媒が配位した酸化鉄ナノ粒子の分散液の調製>
ジムロート冷却器を連結した100mLの三口フラスコに、空気雰囲気下で脱水N,N−ジメチルホルムアミド(DMF)を入れ、140℃に加熱したオイルバスに浸漬して、空気雰囲気下、撹拌子を1500rpmで回転させながら還流条件で10分程度予備加熱を行った。その後、空気雰囲気下で酢酸鉄(II)(0.05mmol)を加え、撹拌しながら140℃で8時間加熱還流を行った結果、反応溶液は時間が経つごとに橙色の分散液となった。8時間加熱還流後、室温まで冷却して、酸化鉄ナノ粒子(以下、「FeNPs−OAc」と略す場合がある。)の分散液を得た。得られた分散液の写真を
図1(b)に示す。なお、DMFは、酢酸鉄を加えた溶液が50mLになるように投入し、酢酸鉄が全て酸化鉄ナノ粒子になったと仮定すると、分散液の鉄元素の濃度は1mmol/Lとなる。
【0025】
<合成例3:表面に溶媒が配位した鉄元素含有ナノ粒子分散液の調製>
ジムロート冷却器を連結した100mLの三口フラスコに、空気雰囲気下で脱水N,N−ジメチルホルムアミド(DMF)を入れ、140℃に加熱したオイルバスに浸漬して、空気雰囲気下、撹拌子を1500rpmで回転させながら還流条件で10分程度予備加熱を行った。その後、空気雰囲気下で鉄(III)アセチルアセトナート(0.05mmol)を加え、撹拌しながら140℃で8時間加熱還流を行った結果、反応溶液は時間が経つごとに橙色の分散液となった。8時間加熱還流後、室温まで冷却して、鉄元素含有ナノ粒子(以下、「FeNPs−acac」と略す場合がある。)の分散液を得た。なお、DMFは、鉄(III)アセチルアセトナートを加えた溶液が50mLになるように投入し、鉄(III)アセチルアセトナートが全て酸化鉄ナノ粒子になったと仮定すると、分散液の鉄元素の濃度は1mmol/Lとなる。
【0026】
<表面に溶媒が配位した金属元素含有ナノ粒子の赤外線分光法(IR)測定>
IR測定サンプルは、鉄元素から真空ポンプを用いてDMF溶媒を完全に留去し、得られたペースト状固体をIR測定装置を用いて測定した。IRスペクトルは溶媒留去した微粒子サンプル(ペースト状固体を)NaCl板に挟み、常温空気下測定を行った。IRスペクトルを
図9、10に示す。
図9の鉄元素含有ナノ粒子にはIRスペクトルより、1650cm
−1付近にDMF由来のC=O伸縮に基づくピークが現れることより、当該金属ナノ微粒子上にN,N-ジメチルホルムアミド分子の保護が確認できる。
【0027】
<表面に溶媒が配位した金属元素含有ナノ粒子の紫外線可視吸収スペクトルと蛍光スペクトル測定>
紫外線可視吸収スペクトルと蛍光スペクトル測定は得られた金属元素含有ナノ粒子の0.1mMの濃度に調製したDMF溶媒を用いて測定を行った。蛍光スペクトルは350nmのUV励起波長の条件のもと測定を行った。スペクトルを
図11に示す。
図11より、鉄微粒子と白金微粒子を混ぜ合わせることにより異なる紫外線可視吸収スペクトルと蛍光スペクトルの結果が得られており、鉄および白金微粒子前駆体とは異なる合金化微粒子の生成を確認した。
【0028】
<表面に溶媒が配位した金属元素含有ナノ粒子の高分解能透過型電子顕微鏡(HRTEM)撮影とエネルギー分散型X線分光法(EDS)の測定>
分解能透過型電子顕微鏡(HRTEM)撮影とエネルギー分散型X線分光法(EDS)は金属元素含有ナノ粒子の1mMDMF溶液の微粒子の粒子サイズを観察し、粒子上にある元素を測定した。透過型電子顕微鏡(HRTEM)は、日本電子製 電界放射型透過型電子顕微鏡(JEM−2010F)及びThermo Electron Corporation製EDX検出器(VINTAGE)を用いて、加速電圧:200kVの条件で1nM DMF溶液中の金属微粒子の観察を行った。結果を
図12、13に示す。
図12より鉄微粒子では鉄元素を含む5−6nmサイズの粒子が観測され、白金微粒子では白金を含む2−3nmサイズの粒子が観測された。また
図13より鉄−白金合金微粒子では、鉄と白金の両方を含む3−5nmサイズの粒子が観測された。
【0029】
<表面に溶媒が配位した金属元素含有ナノ粒子のX線光電分光法(XPS)の測定>
X線光電分光測定サンプルは鉄元素から真空ポンプを用いてDMF溶媒を完全に留去し、得られたペースト状固体をXPS測定装置を用いて測定した。XPS測定はアルバック・ファイ株式会社製PHI5000 VersaProbeを用いて、溶媒を真空ポンプ(10
−5Pa)で留去した金属ナノ粒子を高真空条件(10
−7Pa)で測定を行った。結果を
図14〜16に示す。XPS測定の結果、鉄白金合金サンプルには、鉄と白金元素に対応するピークが現れ、鉄微粒子と白金微粒子溶液を混ぜ合わせることにより鉄−白金合金が得られていることを確認した。また、鉄−白金合金中のXPSの白金に相当するピーク(Pt4f7/2は73.5eVであり、白金微粒子単独の対応するピーク(72.8eV)に比べて異なる位置にピークが現れることからも鉄白金合金ナノ微粒子が得られていることがわかる。
【0030】
<表面に溶媒が配位した金属元素含有ナノ粒子の蛍光X線(XRF)の測定>
XRF測定は鉄白金1:1混合物からから真空ポンプを用いてDMF溶媒を完全に留去して測定し、サンプルに含有する元素の割合を測定するためにおこなった。XRF測定はJEOL JSX−1000Sを用い溶媒を留去したサンプルをカプトンシートに付着させ測定を行った。結果を
図17に示す。Pt:Fe=47.4:52.3と合成時に調製した鉄:白金の混合割合(1:1)と合致している。
【0031】
<実施例1>
後述するアリルメチルスルフィドに対して白金元素の物質量が0.1mol%となるように、合成例1で調製したPtNPsの分散液を0.5mL(塩化白金酸が全て金属白金ナノ粒子になったと仮定した場合の白金元素の物質量:0.5μmol)シュレンク管に投入して、ロータリーエバポレーター(40hPa,70℃)を用いてDMFを留去し、シュレンク管を真空ラインに接続して、壁面についている液体を留去した。
次に、ホットスターラーを70℃に設定し、シュレンク管に撹拌子を投入し、シュレンク管の口に風船が付いている三方コックを取り付けた後、シュレンク管内をアルゴン置換した。シュレンク管内を真空・アルゴン導入を3回繰り返すことによってアルゴン雰囲気とした。
続いて、シリンジを使ってアリルメチルスルフィド(下記式の化合物1,0.5mmol)とジエトキシ(メチル)シラン(下記式の化合物2,3.0mmol)を投入して、溶液が壁面に飛び散らない程度にスターラーで強撹拌し、70℃で24時間反応させた。反応終了後、ガスクロマトグラフ質量分析(GC−MS)で分析した結果、下記式の化合物3が生成していることが確認された。化合物1の転化率と化合物3の収率を表1に、化合物3のMSスペクトルを
図2に示す。
【0032】
【化12】
【0033】
<実施例2〜5>
アリルメチルスルフィド(化合物1)とジエトキシ(メチル)シラン(化合物2)の使用量、触媒、溶媒をそれぞれ表1に記載のものに変更した以外、実施例1と同様の方法により反応を行った。化合物1の転化率と化合物3の収率を表1に示す。なお、表1の実施例5における触媒は、合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:4となり、アリルメチルスルフィドに対して0.02mol%と0.08mol%(合計0.1mol%)となる量使用した。
【0034】
【表1】
【0035】
<実施例6〜9>
ジエトキシ(メチル)シラン(ヒドロシラン類)と触媒をそれぞれ表2に記載のものに変更した以外、実施例1と同様の方法により反応を行った。生成物の収率を表2に、生成物のMSスペクトルを
図3、4に示す。なお、表2の実施例9における触媒は、合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:4となり、アリルメチルスルフィドに対して0.02mol%と0.08mol%(合計0.1mol%)となる量使用した。
【0036】
【化13】
【0037】
【表2】
【0038】
<実施例10>
合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:4となり、後述する1−デセンに対して0.02mol%と0.08mol%(合計0.1mol%)となるようにシュレンク管に投入して、ロータリーエバポレーター(40hPa,70℃)を用いてDMFを留去し、シュレンク管を真空ラインに接続して、壁面についている液体を留去した。
次に、ホットスターラーを100℃に設定し、シュレンク管に撹拌子を投入し、シュレンク管の口に風船が付いている三方コックを取り付けた後、シュレンク管内をアルゴン置換した。シュレンク管内を真空・アルゴン導入を3回繰り返すことによってアルゴン雰囲気とした。
続いて、シリンジを使って1−デセン(70.1mg,0.5mmol)とトリエトキシシラン(492.8mg,3.0mmol)を投入して、溶液が壁面に飛び散らない程度にスターラーで強撹拌し、100℃で24時間反応させた。反応終了後、ガスクロマトグラフ質量分析(GC−MS)で分析した結果、下記式の化合物3が生成していることが確認された。化合物3の収率を表3に、化合物3のMSスペクトルを
図5に示す。
【0039】
【化14】
【0040】
<実施例11>
FeNPs−OAcを合成例3で調製したFeNPs−acacに変更した以外、実施例10と同様の方法により反応を行った。化合物3の収率を表3に示す。
【0041】
<実施例12>
合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:10になるように変更した以外、実施例10と同様の方法により反応を行った。化合物3の収率を表3に示す。
【0042】
【表3】
【0043】
<実施例13〜15>
トリエトキシシランをそれぞれ表4に記載のものに変更した以外、実施例10と同様の方法により反応を行った。生成物の収率を表4に、生成物のMSスペクトルを
図6〜8に示す。
【0044】
【化15】
【0045】
【表4】
【0046】
<実施例16〜18>
合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:1となり、後述する1−ドデセンに対して0.05mol%と0.05mol%(合計0.1mol%)となるようにシュレンク管に投入して、ロータリーエバポレーター(25hPa,70℃,15min)を用いてDMFを留去し、さらにロータリーポンプ(10
−1Pa,10min)を用いて残存する微量のDMFを取り除いて、撹拌子をシュレンク管に投入した。
次に1−ドデセン(0.111mL,0.5mmol)、トリエトキシシラン(下記表5に記載の量)を加え、特に不活性ガス置換を行わず、二方コックを閉めてシュレンク管に装着して密閉した。そして、オイルバスで反応溶液を加熱(100℃,24h)して反応させた。
反応終了後、氷浴して、n−ヘキサン(10mL)を加えてクエンチを行い、内部標準としてn−ノナン(30mg)を加えて、メンブレンフィルター(0.2μm)に通した溶液をGCを用いて収率の計算を行った。結果を下記表5に示す。
次にショートカラムにシリカを詰め込み(3cm)、酢酸エチルを用いてカラムを行い、ナノ粒子触媒と不純物を除いた。そして、真空引き(10
−1Pa)及びペンタン共沸を3回行い不純物を除いた(GC収率95%以上、単離収率:81%,138mg)(実施例18の場合)。
【0047】
【化16】
【0048】
【表5】
【0049】
<実施例19>
合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:1となり、後述する1−ドデセンに対して0.05mol%と0.05mol%(合計0.1mol%)となるようにシュレンク管に投入して、混合した後、エバポレータを用いて溶媒を留去した。
次に1−ドデセン(0.111mL,0.5mmol)、トリエトキシシラン(0.548mL,3mmol)を加え、特に不活性ガス置換を行わず、二方コックを閉めてシュレンク管に装着して密閉した。そして、オイルバスで反応溶液を加熱(100℃,24h)して反応させた。
反応終了後、氷浴して、n−ヘキサン(10mL)を加えてクエンチを行い、内部標準としてn−ノナン(30mg)を加えて、メンブレンフィルター(0.2μm)に通した溶液をGCを用いて収率の計算を行った。結果を下記表6に示す。
【0050】
<実施例20>
合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:1となり、後述する1−ドデセンに対して0.05mol%と0.05mol%(合計0.1mol%)となるようにシュレンク管に投入して、混合した後、エバポレータを用いて溶媒を留去した。
次に1−ドデセン(0.111mL,0.5mmol)、トリエトキシシラン(0.548mL,3mmol)及びDMF(0.5mL)を加え、特に不活性ガス置換を行わず、二方コックを閉めてシュレンク管に装着して密閉した。そして、オイルバスで反応溶液を加熱(100℃,24h)して反応させた。
反応終了後、氷浴して、n−ヘキサン(10mL)を加えてクエンチを行い、内部標準としてn−ノナン(30mg)を加えて、メンブレンフィルター(0.2μm)に通した溶液をGCを用いて収率の計算を行った。結果を下記表6に示す。
【0051】
【化17】
【0052】
【表6】
【0053】
<実施例21〜26>
合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比を
図18に示す通り変化させて加え、後述する1−ドデセンに対して0.05mol%と0.05mol%(合計0.1mol%)となるようにシュレンク管に投入して、ロータリーエバポレーター(25hPa,70℃,15min)を用いてDMFを留去し、さらにロータリーポンプ(10
−1Pa,10min)を用いて残存する微量のDMFを取り除いて、撹拌子をシュレンク管に投入した。
次に1−ドデセン(0.111mL,0.5mmol)、トリエトキシシラン(0.548mL,3mmol
図18に記載の量)を加え、特に不活性ガス置換を行わず、二方コックを閉めてシュレンク管に装着して密閉した。そして、オイルバスで反応溶液を加熱(100℃,24h)して反応させた。
反応終了後、氷浴して、n−ヘキサン(10mL)を加えてクエンチを行い、内部標準としてn−ノナン(30mg)を加えて、メンブレンフィルター(0.2μm)に通した溶液をGCを用いて収率の計算を行った。結果を
図18に示す。
【0054】
【化18】
【0055】
<実施例27、比較例1〜2>
合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:1となり、後述する1−ドデセンに対して0.05mol%と0.05mol%(合計0.1mol%)となるようにシュレンク管に投入して、ロータリーエバポレーター(25hPa,70℃,15min)を用いてDMFを留去し、さらにロータリーポンプ(10
−1Pa,10min)を用いて残存する微量のDMFを取り除いて、撹拌子をシュレンク管に投入した。
次に1−ドデセン(0.111mL,0.5mmol)、トリエトキシシラン(0.548mL,3mmol)を加え、酸素で満たした風船を反応容器に取り付け酸素雰囲気のもと反応を行った。そして、オイルバスで反応溶液を加熱(100℃,24h)して反応させた。
反応終了後、氷浴して、n−ヘキサン(10mL)を加えてクエンチを行い、内部標準としてn−ノナン(30mg)を加えて、メンブレンフィルター(0.2μm)に通した溶液をGCを用いて収率の計算を行った。また、比較例として、Speier’s触媒(H
2PtCl
6・H
2O)を同様な条件で用いた反応を行った。Speier’s触媒(H
2PtCl
6・H
2O)を用いた場合には反応終了後白金種の凝集が見られ、触媒の失活が見られるのに対して、本発明の白金と鉄合金では反応終了後も触媒の凝集は見られなかった。
【0056】
【化19】
【0057】
【表7】
【0058】
<実施例28〜29>
合成例1で調製したPtNPsと合成例2で調製したFeNPs−OAcを、白金元素と鉄元素の物質量比が1:4となり、後述する1−ドデセンに対して0.02mol%と0.08mol%(合計0.1mol%)となるようにシュレンク管に投入して、ロータリーエバポレーター(40hPa,70℃)を用いてDMFを留去し、シュレンク管を真空ラインに接続して、壁面についている液体を留去した。
次に、ホットスターラーを100℃に設定し、シュレンク管に撹拌子を投入し、シュレンク管の口に風船が付いている三方コックを取り付けた後、シュレンク管内をアルゴン置換した。シュレンク管内を真空・アルゴン導入を3回繰り返すことによってアルゴン雰囲気とした。
続いて、シリンジを使って1−ドデセン(70.1mg,0.5mmol)とトリエトキシシラン(492.8mg,3.0mmol)を投入して、溶液が壁面に飛び散らない程度にスターラーで強撹拌し、100℃で24時間反応させた。反応終了後、ガスクロマトグラフ(GC)で分析を行い収率を求めた。
得られた、
また、(1)触媒リサイクルの方法としては、反応溶液にヘキサン(8mL)とDMFを加えよく振り、その後ヘキサン層をパスツールピペットを用いて取り出す。そのDMF層に8mLのヘキサンを加えて、ヘキサン層を取り出す操作をさらに繰り返す。その後、残ったDMF層をロータリエバポレーターでDMFを留去し、シリンジを使って1−ドデセン(70.1mg,0.5mmol)とトリエトキシシラン(492.8mg,3.0mmol)を投入して、溶液が壁面に飛び散らない程度にスターラーで強撹拌し、100℃で24時間反応させた。反応終了後、ガスクロマトグラフ(GC)で分析を行い収率を求めた。以降前記(1)からの記載にある触媒リサイクルの操作を2回行って本法は複数回の触媒リサイクルが可能であることを示した。
【0059】
【化20】
【0060】
【表8】