(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
以下、本発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置は、技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、一つの実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。
さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
【0011】
[第1実施形態]
図1Aは、第1実施形態の発光装置(発光装置100)の構成を示す概略断面図である。
図1Aに示されるように、本実施形態は、表面に導体配線102が設けられた基体101と、基体101に載置される発光素子105を有する。発光素子105は、基体101の表面に設けられた少なくとも一対の導体配線102に跨がるように、接続部材103を介してフリップチップ実装されている。発光素子105の光取り出し面側(発光素子105の上面)には発光素子105より一回り大きい波長変換部材106が設けられており、その光取り出し面側に光反射膜107が形成されている。具体的には、波長変換部材106の発光素子105に対向する底面の面積は、発光素子105の上面の面積よりも大きくなっており、発光素子105の上面の外周端が波長変換部材106の底面の外周端の内側に位置するように、波長変換部材106が発光素子105上に設けられている。また、光反射膜107は、波長変換部材106の光取り出し面のほぼ全面に設けられている。
また、第1実施形態の発光装置100は、発光素子105および波長変換部材106を覆う透光性の封止部材110を備えている。導体配線102の上には、少なくとも発光素子105が電気的に接続される領域を除いて、絶縁部材104が設けられていてもよい。尚、
図1Aにおいて、112の符号を付して示すものは、必要に応じて設けられる光反射部材であり、後述の第4実施形態で説明するように構成してもよいし、パッケージの側壁により構成されていてもよい。
【0012】
光反射膜107は、例えば、発光素子105から放射される光と、波長変換部材106で波長変換された光とを合わせた全光量の70%以上を反射する。
これにより、発光素子105や波長変換部材106から放射される光の内、基体101の垂直方向(発光素子105の上面)の成分の多くは光反射膜107により反射され、基体101の水平方向の成分が増加する。
この様な構成とすることで、バットウイング配光特性を実現することが出来る。
ここで、バットウイング配光特性とは、配光角が90°以下の第1領域に配光角が90°のときの強度より大きい強度の第1ピークを有し、配光角が90°以上の第2領域に配光角が90°のときの強度より大きい強度の第2ピークを有するような配光特性を言う。
【0013】
また、第1実施形態の発光装置100において、
図1Aに示すように、発光素子105の側面は、白色樹脂等の白色部材108で覆われていることが好ましい。このようにすると、発光素子105から出射する光はほぼ全て波長変換部材106を通過する。
これにより、発光装置100から出射する光はほぼ全て波長変換部材106からの出射となり、配向角による色ムラを抑制することが出来る。発光素子105の側面が白樹脂で覆われていない場合は広配向角から発光装置100を観測すると発光素子105の発光色がダイレクトに見えてしまい、上段の波長変換部材106との色差が目立ってしまう。
発光素子105および波長変換部材106は、透光性の封止部材110により被覆される。封止部材110は、発光素子105等を外部環境から保護するとともに、波長変換部材106等から出力される光を光学的に制御するため、発光素子105および波長変換部材106を被覆するように基体上に配置される部材である。封止部材110は略ドーム状に形成されており、本実施形態においては、波長変換部材106は封止部材110で直接被覆されている。
【0014】
封止部材110は、上面視においてその外形が円形もしくは楕円形となるように形成されることが好ましく、光軸方向の封止部材の高さ(H)が、上面視における封止部材の径(幅:W)の0.5より小さい比率で形成されている。尚、楕円形の場合、幅の長さには長径と短径が存在するが、本明細書では短径を封止径(W)とする。封止部材110の表面は、例えば、凸状の曲面で形成されている。
この様な構成とすることで、波長変換部材106から出た光は、封止部材110と空気の界面で屈折し、より広配光化させることが可能となる。
ここで、封止部材の高さ(H)は、
図1Aに示すように、発光素子105の実装面からの最大の高さを指すものとする。また、封止部材の幅(W)とは、封止部材の底面の形状が円形の場合は上述のように径を指すものとし、その他の形状の場合は、もっとも長さの短いところのことを指すものとする。
図1Aに示す第1実施形態の発光装置100では、封止部材110の表面を凸状の曲面としたが、より広配光とするためには、封止部材110の光軸方向の中央部を平坦又は凹状にするのが望ましい。特に、
図1Bに示すように、封止部材110の光軸方向の中央部を凹形状にすることでレンズ効果により光軸方向への光量を少なくすることが出来、より広配光のバットウイング配向が実現できる。
【0015】
以下、本実施の形態に係る発光装置100の好ましい形態について説明する。
(基体101)
基体101は、発光素子105を載置するための部材である。基体101はその表面に、発光素子105に電力を供給するための導体配線102を有している。
基体101の材料としては、例えば、セラミックス、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等の樹脂が挙げられる。なかでも、低コストと、成型容易性の点から、樹脂を材料として選択することが好ましい。基板の厚みは適宜選択することができ、ロール・ツー・ロール方式で製造可能なフレキシブル基板、あるいはリジット基板のいずれであってもよい。リジット基板は湾曲可能な薄型リジット基板であってもよい。
【0016】
耐熱性及び耐光性に優れた発光装置とするためには、セラミックスを基体101の材料として選択することが好ましい。セラミックスとしては、例えば、アルミナ、ムライト、フォルステライト、ガラスセラミックス、窒化物系(例えば、AlN)、炭化物系(例えば、SiC)等が挙げられる。なかでも、アルミナからなる又はアルミナを主成分とするセラミックスが好ましい。
【0017】
また、基体101を構成する材料に樹脂を用いる場合は、ガラス繊維や、SiO
2、TiO
2、Al
2O
3等の無機フィラーを樹脂に混合し、機械的強度の向上、熱膨張率の低減、光反射率の向上等を図ることもできる。また、基体101としては、一対の導体配線102を絶縁分離できるものであればよく、金属部材に絶縁層を形成している、いわゆる金属基板を用いてもよい。
【0018】
(導体配線102)
導体配線102は、発光素子105の電極と電気的に接続され、外部からの電流(電力)を供給するための部材である。すなわち、外部から通電させるための電極またはその一部としての役割を担うものである。通常、正と負の少なくとも2つに離間して形成される。
【0019】
導体配線102は、発光素子105の載置面となる基体の、少なくとも上面に形成される。導体配線102の材料は、基体101として用いられる材料や製造方法等によって適宜選択することができる。例えば、基体101の材料としてセラミックスを用いる場合は、導体配線102の材料は、セラミックスシートの焼成温度にも耐え得る高融点を有する材料が好ましく、例えば、タングステン、モリブデンのような高融点の金属を用いるのが好ましい。さらに、その上に鍍金やスパッタリング、蒸着などにより、ニッケル、金、銀など他の金属材料にて被覆してもよい。
【0020】
また、基体101の材料としてガラスエポキシ樹脂を用いる場合は、導体配線102の材料は、加工し易い材料が好ましい。また、射出成型されたエポキシ樹脂を用いる場合には、導体配線102の材料は、打ち抜き加工、エッチング加工、屈曲加工などの加工がし易く、かつ、比較的大きい機械的強度を有する部材が好ましい。具体例としては、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル等の金属、または、鉄−ニッケル合金、りん青銅、鉄入り銅、モリブデン等の金属層やリードフレーム等が挙げられる。また、リードフレームの表面を、リードフレーム本体とは異なる他の金属材料で被覆してもよい。この材料は特に限定されないが、例えば、銀のみ、あるいは、銀と、銅、金、アルミニウム、ロジウム等との合金、または、これら、銀や各合金を用いた多層膜とすることができる。また、金属材料の被覆方法は、鍍金法の他にスパッタ法や蒸着法などを用いることができる。
【0021】
(接続部材103)
接続部材103は、発光素子105を基体101または導体配線102に固定するための部材である。本実施形態のようにフリップチップ実装の場合は導電性の部材が用いられる。具体的にはAu含有合金、Ag含有合金、Pd含有合金、In含有合金、Pb−Pd含有合金、Au−Ga含有合金、Au−Sn含有合金、Sn含有合金、Sn−Cu含有合金、Sn−Cu−Ag含有合金、Au−Ge含有合金、Au−Si含有合金、Al含有合金、Cu−In含有合金、金属とフラックスの混合物等を挙げることができる。
【0022】
接続部材103としては、液状、ペースト状、固体状(シート状、ブロック状、粉末状、ワイヤー状)のものを用いることができ、組成や基体の形状等に応じて、適宜選択することができる。また、これらの接続部材103は、単一部材で形成してもよく、あるいは、数種のものを組み合わせて用いてもよい。
【0023】
(絶縁部材104)
導体配線102は、発光素子105や他材料と電気的に接続する部分以外は絶縁部材104で被覆されている事が好ましい。すなわち、各図に示されるように、基体上には、導体配線102を絶縁被覆するためのレジストが配置されていても良く、絶縁部材104はレジストとして機能させることができる。
【0024】
絶縁部材104を配置させる場合には、導体配線102の絶縁を行う目的だけでなく、白色系のフィラーを含有させることにより、光の漏れや吸収を防いで、発光装置100の光取り出し効率を上げることもできる。
絶縁部材104の材料は、発光素子からの光の吸収が少ない材料であり、絶縁性であれば特に限定されない。例えば、エポキシ、シリコーン、変性シリコーン、ウレタン樹脂、オキセタン樹脂、アクリル、ポリカーボネート、ポリイミド等を用いることができる。
【0025】
(発光素子105)
基体に搭載される発光素子105は、公知のものを利用できる。本実施形態においては、発光素子105として発光ダイオードを用いるのが好ましい。
発光素子105は、任意の波長のものを選択することができる。例えば、青色、緑色の発光素子としては、ZnSeや窒化物系半導体(In
xAl
yGa
1−x−yN、0≦X
、0≦Y、X+Y≦1)、GaPを用いたものを用いることができる。成長基板として透光性のサファイア基板等を用いることができる。また、赤色の発光素子としては、GaAlAs、AlInGaPなどを用いることができる。さらに、これ以外の材料からなる半導体発光素子を用いることもできる。用いる発光素子の組成や発光色、大きさや、個数などは目的に応じて適宜選択することができる。
【0026】
半導体層の材料やその混晶度によって発光波長を種々選択することができる。発光素子はフリップチップ実装が可能なように、同一面側に正負の電極を有するものであってもよいし、異なる面に正負の電極を有するものであってもよい。
【0027】
本実施形態の発光素子105は、透光性の基板と、その基板の上に積層された半導体層を有する。この半導体層には、順にn型半導体層、活性層、p型半導体層が形成されており、n型半導体層にn型電極が形成されており、p型半導体層にp型電極が形成されている。
【0028】
発光素子105は、
図1A等に示すように、接続部材103を介して基体101の表面の導体配線102にフリップチップ実装されており、電極の形成された面と対向する面、すなわち透光性基板の主面が光取り出し面となる。しかしながら、本実施形態においてはこの光取り出し面に光反射膜107を形成するため、発光素子105の側面が実質的な光取り出し面となる。つまり、発光素子105から出射して、発光素子105の主面側に向かった光の一部は光反射膜107で発光素子105内に戻されて、発光素子105内部で反射を繰り返して、発光素子105の側面側から出射される。従って、発光装置100としての配光特性(
図4の点線参照)は光反射膜107を透過した光と、発光素子105の側面から出射した光の合成となる。
【0029】
発光素子105は、正と負に絶縁分離された2つの導体配線102に跨るように配置されており、導電性の接続部材103によって電気的に接続され、機械的に固定されている。この発光素子105の実装方法は、半田ペーストを用いた実装方法の他、例えばバンプを用いた実装方法とすることができる。また、発光素子105としては発光素子が樹脂等で封止された小型のパッケージ品を用いることも可能であり、特に形状や構造を限定する物では無い。
【0030】
後述するように、波長変換部材を備えた発光装置とする場合には、その波長変換部材106を効率良く励起できる短波長が発光可能な窒化物半導体(In
xAl
yGa
1−x−yN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。
【0031】
なお、フリップチップ実装の例で説明したが、発光素子の絶縁性基板側を実装面とし、発光素子の上面に形成された電極とワイヤとを接続する実装形態としてもよい。この場合は発光素子の上面は電極形成面側となり、反射膜は電極形成面側に設けられる。
【0032】
(光反射膜107)
光反射膜107は波長変換部材106の主面である光取り出し面側に成膜される。
材料としては、金属や白色フィラー含有樹脂でも良く、少なくとも発光素子105が発光する光(第1の光)と波長変換部材106が発光する光(第2の光)を反射する材料であれば特に材料は規定されない。
また、誘電体多層膜を用いることで、吸収の少ない反射膜を得ることが出来る。
誘電体多層膜の材料としては金属酸化膜材料や金属窒化膜または酸窒化膜等を用いることが出来る。また、シリコーン樹脂やフッ素樹脂等の有機材を使用する事もでき、特に材料を規定する物では無い。
【0033】
また、誘電体多層膜は、反射帯域の光に対して、
図4に示すように、誘電体多層膜に垂直に入射する光に対する反射率が高く、入射角が大きくなると透過率が高くなるような入射角に依存する反射特性を有している。したがって、第1実施形態の発光装置において、光反射膜107として誘電体多層膜を用いると、波長変換部材106の側面から出射される光にさらに光反射膜107の上面から光軸に対して大きな角度で出射される光が加わるので、発光装置100から横方向により強い光を出射することが可能になる。これにより、発光装置100から横方向に出射される光の割合が、垂直方向に出射される光に比べてより高い(より強調された)バットウイング配光特性を実現することが可能になる。ここで、本明細書において、光軸とは、発光素子105の発光面に垂直な軸をいう。また、誘電体多層膜は、反射特性(垂直に入射された光に対する反射率及び反射率の入射角依存性等)を、交互に積層する誘電体膜の材料及び積層数等を変更することにより調整することが可能である。したがって、第1実施形態の発光装置において、光反射膜107として誘電体多層膜を用いると、誘電体多層膜の反射特性を発光装置に求められる配光特性に合わせて設計することが可能になり、容易に所望の配光特性を実現することができる。
【0034】
(波長変換部材106)
波長変換部材106は、発光素子105が発光する第1の光の少なくとも一部を吸収して第1の光より長波長の光を発光する部材であり、例えば、蛍光体と透光性材料とを含む板状又はシート状部材である。
透光性材料としては、透光性樹脂、ガラス等の無機材料が使用できる。透光性樹脂としては、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂、ポリカーボネート樹脂、アクリル樹脂、メチルペンテン樹脂、ポリノルボルネン樹脂などの熱可塑性樹脂を用いることができる。透光性樹脂としては、特に、耐光性、耐熱性に優れるシリコーン樹脂が好適である。無機材料としては、例えば、ホウ珪酸ガラス、石英ガラス、サファイアガラス、フッ化カルシウムガラス、アルミノホウ珪酸ガラス、オキシナイトライドガラス、カルコゲナイドガラス等が挙げられる。
【0035】
蛍光体は、発光素子105からの発光で励起可能なものが使用される。例えば、青色発光素子又は紫外線発光素子で励起可能な蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体(Ce:YAG);セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体(Ce:LAG);ユウロピウムおよび/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体(CaO−Al
2O
3−SiO
2);ユウロピウムで賦活されたシリケート系蛍光体((Sr,Ba)
2SiO
4);βサイアロン蛍光体、CASN系蛍光体、SCASN系蛍光体等の窒化物系蛍光体;KSF系蛍光体(K
2SiF
6:Mn);硫化物系蛍光体、量子ドット蛍光体などが挙げられる。これらの蛍光体と、青色発光素子又は紫外線発光素子と組み合わせることにより、様々な色の発光装置(例えば白色系の発光装置)を製造することができる。
【0036】
波長変換部材106において、上記蛍光体に代えて、量子ドット,有機蛍光材料,有機燐光材料などを用いても良い。
また、その蛍光体材料等は、単独で使用しても良く、組み合わせて使用しても良い。
【0037】
(封止部材110)
封止部材110の材料としては、エポキシ樹脂やシリコーン樹脂あるいはそれらを混合させた樹脂や、ガラスなどの透光性材料を用いることができる。これらのうち、耐光性および成形のしやすさを考慮して、シリコーン樹脂を選択することが好ましい。
【0038】
なお封止部材110には、光拡散材に加え、着色剤を含有させることもできる。
封止部材110にこれらの部材を含有させる場合、配光特性になるべく影響の与えないものを用いることが好ましい。たとえば、含有させる部材の粒径が0.2μm以下のものであれば、配光特性に与える影響が少ないため好ましい。なお、本明細書中において粒径とは平均粒径のことをいうものとし、平均粒径の値は、空気透過法を利用したF.S.S.S.No(Fisher−SubSieve−Sizers−No.)によるものとする。
【0039】
封止部材110は、発光素子105や波長変換部材106を被覆するように圧縮成型や射出成型によって形成することができる。その他、封止部材110の材料の粘度を最適化して、波長変換部材106の上に滴下もしくは描画して、材料自体の表面張力によって、形状を制御することも可能である。
【0040】
後者の形成方法による場合には、金型を必要とすることなく、より簡便な方法で封止部材を形成することができる。また、このような形成方法による封止部材の材料の粘度を調整する手段として、その材料本来の粘度の他、上述したような光拡散材、波長変換部材、着色剤を利用して所望の粘度に調整することもできる。
【0041】
[第2実施形態]
図2は、第2実施形態の発光装置200の断面図である。
第2実施形態の発光装置200は、発光素子105側面に透光性部材109が逆テーパー状に形成されているおり、その外側に白色部材108が形成されている点で第1実施形態とは異なり、その他の構成は第1実施形態と同様である。
以下、第1実施形態と異なる点について説明する。
【0042】
第1実施形態の発光装置に関して記載したように、波長変換部材106の発光素子105に対向する底面の面積は、発光素子105の上面の面積よりも大きくなっており、発光素子105の上面の外周端が波長変換部材106の底面の外周端の内側に位置するように、波長変換部材106が発光素子105上に設けられている。本明細書及び以下の説明において、波長変換部材106の底面において、発光素子105の上面の直上に対向する部分を内側底面といい。内側底面の外側に位置する部分を外周底面という。
【0043】
第2実施形態の発光装置200は、この外周底面の下に前記発光素子の側面を覆う透光性部材109を有している。そして、透光性部材109の表面は、波長変換部材106から離れるにしたがって発光素子105の側面に近づくように傾斜した傾斜面となっている。
【0044】
以上のように構成された透光性部材109を有する第2実施形態の発光装置200は、発光素子105側面より出射した光が、透光性部材109の傾斜面で反射され、効率よく波長変換部材106に入射することが出来、発光効率が向上する。
透光性部材109は発光素子105と波長変換部材106の界面にも形成して接着剤としての機能を果たすようにしても良い。
【0045】
第2実施形態の発光装置200において、透光性部材109の外側には、白色部材108に代えて透光性部材109よりも屈折率の低い部材が形成されていても良いし、白色部材108と透光性部材109の間に、透光性部材109より屈折率の低い部材が形成されていても良い。透光性部材109より屈折率の低い部材には、例えば、透光性部材109より屈折率の低い透光性部材及び透光性部材109よりも屈折率の低い白樹脂等が含まれる。
ここで、透光性部材109は、透光性樹脂、ガラス等の透光性材料から形成することができる。透光性樹脂としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性の透光性樹脂であるのが好ましい。透光性部材109は発光素子105の側面と接触しているので、点灯時に発光素子105で発生する熱の影響を受けやすい。熱硬化性樹脂は、耐熱性に優れているので、透光性部材109に適している。なお、透光性部材109は、光の透過率が高いことが好ましい。そのため、通常は、透光性部材109に、光を反射、吸収又は散乱する添加物は添加されないことが好ましい。しかし、望ましい特性を付与するために、透光性部材109に添加物を添加するのが好ましい場合もある。例えば、透光性部材109の屈折率を調整するため、または硬化前の透光性部材の粘度を調整するために、各種フィラーを添加してもよい。
【0046】
[第3実施形態]
図3は、第3実施形態の発光装置300の断面図である。
第3実施形態の発光装置300は、波長変換部材106の下面の外周底面に撥油材111を形成した点で第2実施形態とは異なり、その他の構成は第2実施形態と同様である。
以下、第2実施形態と異なる点について説明する。
【0047】
第3実施形態の発光装置300において、撥油材111は、波長変換部材106の内側底面から所定の間隔xをおいて外周底面の外周に沿って形成され、外周底面において撥油材111が形成された部分を除く外周底面の下に発光素子105の側面を覆う透光性部材109を有している。そして、透光性部材109の表面は、波長変換部材106から離れるにしたがって発光素子105の側面に近づくように傾斜した傾斜面となっている。以上説明したことから理解されるように、撥油材111の内周端と波長変換部材106の内側底面との間隔xは、所望の断面形状を有する透光性部材109が形成されるように設定される。
【0048】
第3実施形態の発光装置300において、以上のように構成された撥油材111を設けることで、白色部材108の、波長変換部材106側面への這い上がりを防ぐことが出来、配向特性のバラツキを低減することが出来る。
加えて、透光性部材109を発光素子105と波長変換部材106の接着剤として使用するときに、透光性部材109の広がりを抑制し発光素子105を波長変換部材106の中心に位置合わせしやすくなり、さらには透光性部材109の逆テーパー形状の形成時の形状バラツキを抑えることができる。
尚、撥油材としては特に限定する物では無いが、フッ素系材料等が利用可能である。
【0049】
以上の第1〜第3実施形態の発光装置によれば、広配光の発光装置を提供できる。
また、第1〜第3実施形態の発光装置において、発光素子105及び波長変換部材106に含有させる蛍光体を種々組み合わせることにより、各種発光色を発光させることができる発光装置を提供することができる。
したがって、第1〜第3実施形態の発光装置によれば、広配光でかつ各種発光色の発光が可能な発光装置を提供することができる。
【0050】
[第4実施形態]
図5は、第4実施形態の発光モジュール400の断面図である。
第4実施形態の発光モジュール400は、基体401上に第1実施形態と同様に構成された発光装置100が複数設けられ、各発光装置100の間に光反射部材410が配置された集積型発光装置である。また、発光装置100及び光反射部材410の上方には、発光素子105の上面と略平行になるように発光素子105からの光を拡散するための光拡散板411が配置されている。
【0051】
従来の集積型発光装置は、一般的に、基体と光拡散板の距離(以後、光学距離:ODともいう)/発光素子間隔(以後Pitchともいう)が小さくなるに従い、光拡散板411の面上で発光素子105間の光量が少なくなり暗部が発生する。
しかしながら、第4実施形態の発光モジュール400は、バットウイング配光特性を有する複数の発光装置100と、隣接する発光装置100間に配置された光反射部材410を備えることにより、発光素子間の光量を光反射部材410による反射光で補うことができるので、より小さなOD/Pitchであっても光拡散板411の面上での輝度ムラを小さくできる。
【0052】
第4実施形態の発光モジュール400において、光反射部材410の光反射面は、基体401に対して傾斜しており、その傾斜角度θは、各発光装置100の配光特性を考慮して光拡散板411の面上での輝度ムラが小さくなるように設定する。また、複数配置される発光装置100の配光特性は、光拡散板411の面上における輝度むらを抑えかつ薄型の発光モジュール400を実現するために、発光素子の発光面に垂直な方向により規定される光軸とのなす角度が大きい領域での光量が大きくなるような配光特性を有していることが好ましい。
【0053】
例えば、OD/Pitchが0.2以下と小さくなると、発光素子105の発光面を基準にしたときの、光反射部材410へ入射する光は仰角で22゜未満となる。従って低OD/Pitchが0.2以下の場合、光反射部材410による光の反射効率を上げるために、発光装置100の配光特性は、たとえば、基体の上面に対して仰角20゜未満の光量が多くなっていることが好ましい。具体的には、発光強度の第1及び第2ピークが仰角20゜未満の範囲に位置することが好ましい。言い換えると、発光装置100の配光特性は、基体401の垂直方向の配光角を90°としたとき、配光角が90°〜0°の範囲における第1ピークが配光角20゜未満の領域にあり、配光角が90°〜180°の範囲における第2ピークが配光角160°より大きい領域にあることが好ましい。また、配光角20゜未満の光量が全体の光量の30%以上であることが好ましく、より好ましくは40%以上である。
【0054】
(光反射部材410)
光反射部材410は、上述したように、隣接する発光装置100の間に設置される。
材料としては、少なくとも発光装置100からの光を反射する材料であれば特に材料は限定されない。たとえば金属板や白色フィラー含有樹脂を好適に用いることができる。
また、光反射部材の反射面として誘電体多層膜を用いることで、吸収の少ない反射面を得ることも出来る。加えて、膜の設計で反射率を任意に調整出来、また、角度により反射率を制御することも可能となる。
【0055】
光反射部材410の高さおよび基体401の表面に対する光反射面の傾斜角度θについては、任意の値を取ることが可能であり、またその反射面は平面であっても曲面であってもよく、光拡散板411の面上で輝度ムラが小さくなるように最適な傾斜角度θ及び反射面の形状とすることが可能である。光反射部材410の高さは、発光素子間の距離(Pitch)の0.3倍以下、より好ましくは0.2倍以下である事が好ましく、これにより薄型でかつ輝度むらが低減された発光モジュール400を提供することができる。
【0056】
また、使用温度が大きく変わるような環境で使用される発光モジュール400では、光反射部材410と基体401との線膨張係数を近づけることが好ましい。この光反射部材410と基体401間の線膨張係数が大きく違うと、温度変化により発光モジュール400に反りが発生したり、構成部材間、特に発光装置100と光反射部材410間の位置関係がずれたりして所望の光学特性が得られなくなるためである。また、線膨張係数が異なっていても発光モジュール400全体が反らない様に、弾性変形が可能なフィルムを折り曲げたフィルム成形品で光反射部材410を形成してもよい。フィルム成形品で光反射部材410を形成すると、熱膨張係数の違いによる変形を各部分で分散して吸収することができ、発光モジュール400全体が反らないようにできる。
【0057】
また、光反射部材410はそれぞれ個別に成形又は作製するのではなく、
図6(a)及び
図6(b)に示すように、複数の光反射部材410を一体で成形することにより1つの板状部材410’として構成するようにしてもよい。
図6(a)は、板状部材410’の上面図であり、
図6(b)は、
図6(a)のA−A断面図である。この板状部材410’は、例えば、それぞれ発光装置100が設けられる位置に対応した複数の貫通孔413を有し、各貫通孔413の周りには、光反射部材410が配置される。これにより、板状部材410’が基体401上に載置されたときにその貫通孔413の周りに、基体401の表面に対する傾斜角度がθである光反射面が形成される。発光装置100は、板状部材410’を基体401上に接合した後に、貫通孔413内に実装してもよいし、発光装置100を、基体401上の所定の位置に実装した後に、各発光装置100がそれぞれ対応する貫通孔413内に位置するように、板状部材410’を基体401上に接合するようにしてもよい。
【0058】
この板状部材410’は、金型成形、真空成形、圧空成形、プレス成形等で形成することができる。また、光反射部材410は、板状部材410’に代えて、基体401上に直接光反射性樹脂を描画する等の方法で形成してもよい。光反射部材410の高さは、発光素子間の距離の0.3倍以下であることが好ましく、たとえば、発光素子間の距離の0.2倍以下であることがより好ましい。
【0059】
以上のように構成された第4実施形態の発光モジュール400は、広配光のバットウィング配光特性を有する複数の発光装置100と隣接する発光装置100間にそれぞれ設けられた光反射部材410を備えているので、薄型のバックライト用の光モジュールを提供できる。
【0060】
以上のように構成された第4実施形態の発光モジュール400は、個々の発光装置100がそれぞれ波長変換部材106を備えているので、従来の発光モジュールにおいて光拡散板411の上面又は下面に設けられた蛍光体シートを設けることなく、白色のバックライト用の光モジュールを実現できる。これにより、高価な蛍光体の使用量を少なくできるので、バックライト用の発光モジュールを安価に提供できる。
【0061】
以上の第4実施形態の発光モジュール400の説明では、第1実施形態の発光装置100を用いた例により説明したが、第2実施形態の発光装置200、第3実施形態の発光装置300を含む他の広配光の発光装置を用いて構成してもよい。