【課題を解決するための手段】
【0015】
[合成樹脂微多孔フィルム]
本発明の合成樹脂微多孔フィルムは、
合成樹脂及び微小孔部を含有し、空孔率が40%以上、70%以下且つ透気抵抗が30sec/100mL/16μm以上、300sec/100mL/16μm以下であり、
空孔率をε(%)とし、透気抵抗をG(sec/100mL/16μm)としたとき、空孔率ε及び透気抵抗Gが式(1)を満たす。
100×Exp(−0.0075G)
≧ε ・・・式(1)
【0016】
合成樹脂微多孔フィルムは合成樹脂を含んでいる。合成樹脂としては、オレフィン系樹脂が好ましく、エチレン系樹脂及びプロピレン系樹脂が好ましく、プロピレン系樹脂がより好ましい。
【0017】
合成樹脂中におけるオレフィン系樹脂の含有量は、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が特に好ましく、100質量%が最も好ましい。
【0018】
プロピレン系樹脂としては、例えば、ホモポリプロピレン、プロピレンと他のオレフィンとの共重合体などが挙げられる。延伸法によって合成樹脂微多孔フィルムが製造される場合には、ホモポリプロピレンが好ましい。プロピレン系樹脂は、単独で用いられても二種以上が併用されてもよい。又、プロピレンと他のオレフィンとの共重合体は、ブロック共重合体、ランダム共重合体の何れであってもよい。プロピレン系樹脂中におけるプロピレン成分の含有量は、50質量%以上が好ましく、80質量%以上がより好ましい。
【0019】
なお、プロピレンと共重合されるオレフィンとしては、例えば、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセンなどのα−オレフィンなどが挙げられ、エチレンが好ましい。
【0020】
エチレン系樹脂としては、超低密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高密度ポリエチレン、及びエチレン−プロピレン共重合体などが挙げられる。また、エチレン系樹脂微多孔フィルムは、エチレン系樹脂を含んでいれば、他のオレフィン系樹脂を含んでいてもよい。エチレン系樹脂中におけるエチレン成分の含有量は、好ましくは50質量%を超え、より好ましくは80質量%以上である。
【0021】
オレフィン系樹脂の重量平均分子量は、特に限定されないが、3万〜50万が好ましく、5万〜48万がより好ましい。プロピレン系樹脂の重量平均分子量は、特に限定されないが、25万〜50万が好ましく、28万〜48万がより好ましい。エチレン系樹脂の重量平均分子量は、特に限定されないが、3万〜25万が好ましく、5万〜20万がより好ましい。重量平均分子量が上記範囲内であるオレフィン系樹脂によれば、透気性に優れ且つ張力が加えられた状態で切断された後の収縮が概ね抑えられた合成樹脂微多孔フィルムを提供することができる。
【0022】
オレフィン系樹脂の分子量分布(重量平均分子量Mw/数平均分子量Mn)は、特に限定されないが、5〜30が好ましく、7.5〜25がより好ましい。プロピレン系樹脂の分子量分布は、特に限定されないが、7.5〜12が好ましく、8〜11がより好ましい。エチレン系樹脂の分子量分布は、特に限定されないが、5.0〜30が好ましく、8.0〜25がより好ましい。分子量分布が上記範囲内であるオレフィン系樹脂によれば、透気性に優れ且つ張力が加えられた状態で切断された後の収縮が概ね抑えられた合成樹脂微多孔フィルムを提供することができる。
【0023】
ここで、オレフィン系樹脂の重量平均分子量及び数平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)法によって測定されたポリスチレン換算した値である。具体的には、オレフィン系樹脂6〜7mgを採取し、採取したオレフィン系樹脂を試験管に供給した上で、試験管に0.05質量%のBHT(ジブチルヒドロキシトルエン)を含んでいるo−DCB(オルトジクロロベンゼン)溶液を加えてオレフィン系樹脂濃度が1mg/mLとなるように希釈して希釈液を作製する。
【0024】
溶解濾過装置を用いて145℃にて回転数25rpmにて1時間に亘って上記希釈液を振とうさせてオレフィン系樹脂をo−DCB溶液に溶解させて測定試料とする。この測定試料を用いてGPC法によってオレフィン系樹脂の重量平均分子量及び数平均分子量を測定することができる。
【0025】
オレフィン系樹脂における重量平均分子量及び数平均分子量は、例えば、下記測定装置及び測定条件にて測定することができる。
測定装置 TOSOH社製 商品名「HLC-8121GPC/HT」
測定条件 カラム:TSKgelGMHHR-H(20)HT×3本
TSKguardcolumn-HHR(30)HT×1本
移動相:o−DCB 1.0mL/分
サンプル濃度:1mg/mL
検出器:ブライス型屈折計
標準物質:ポリスチレン(TOSOH社製 分子量:500〜8420000)
溶出条件:145℃
SEC温度:145℃
【0026】
オレフィン系樹脂の融点は、特に限定されないが、130〜170℃が好ましく、133〜165℃がより好ましい。プロピレン系樹脂の融点は、特に限定されないが、160〜170℃が好ましく、160〜165℃がより好ましい。エチレン系樹脂の融点は、特に限定されないが、130〜140℃が好ましく、133〜139℃がより好ましい。融点が上記範囲内であるオレフィン系樹脂によれば、透気性に優れ且つ張力が加えられた状態で切断された後の収縮が概ね抑えられた合成樹脂微多孔フィルムを提供することができる。
【0027】
なお、本発明において、オレフィン系樹脂の融点は、示差走査熱量計(例えば、セイコーインスツル社 装置名「DSC220C」など)を用い、下記手順に従って測定することができる。先ず、オレフィン系樹脂10mgを25℃から昇温速度10℃/分にて250℃まで加熱し、250℃にて3分間に亘って保持する。次に、オレフィン系樹脂を250℃から降温速度10℃/分にて25℃まで冷却して25℃にて3分間に亘って保持する。続いて、オレフィン系樹脂を25℃から昇温速度10℃/分にて250℃まで再加熱し、この再加熱工程における吸熱ピークの頂点の温度を、オレフィン系樹脂の融点とする。
【0028】
合成樹脂微多孔フィルムは、微小孔部を含んでいる。微小孔部は、フィルムの厚み方向に貫通していることが好ましく、これにより合成樹脂微多孔フィルムに優れた透気性を付与することができる。このような合成樹脂微多孔フィルムはその厚み方向にリチウムイオンなどのイオンを透過させることが可能となる。なお、合成樹脂微多孔フィルムの厚み方向とは、合成樹脂微多孔フィルムの主面に対して直交する方向をいう。合成樹脂微多孔フィルムの主面とは、合成樹脂微多孔フィルムの表面のうち、最も面積の大きい面をいう。
【0029】
合成樹脂微多孔フィルムは、好ましくは延伸によって微小孔部が形成されている。合成樹脂微多孔フィルムの厚み方向に沿った断面において、微小孔部の平均孔径が20〜100nmが好ましく、20〜70nmがより好ましく、30〜50nmが特に好ましい。
【0030】
微小孔部の平均孔径は下記の要領で測定された値をいう。先ず、合成樹脂微多孔フィルムをその厚み方向及び延伸方向に沿って(合成樹脂微多孔フィルムの主面に対して直交し且つ延伸方向に沿った面に沿って)切断し、走査電子顕微鏡(SEM)を用いて拡大倍率1万倍で切断面の拡大写真を撮影する。なお、拡大写真の縦方向が厚み方向となるように調整し、厚み方向の中心部を撮影箇所とする。得られた拡大写真の全範囲を測定区画と定める。
【0031】
合成樹脂微多孔フィルムの切断面のSEM写真は以下の要領で撮影される。先ず、合成樹脂微多孔フィルムを銅テープなどで切断しやすいように補強した後、クロスセクションポリッシャー(例えば、日本電子社から商品名「IB−19500CP」にて市販されているクロスセクションポリッシャー)を用いて切断する。次に、チャージアップによる画像の乱れを防ぐため、切断面に金属膜(例えば、金、白金、オスミウム、カーボンなどの金属膜)を蒸着させた後、SEM(例えば、日立社から商品名「S−4800S」にて市販されているSEM)を用いて、加速電圧1.0kVの条件で切断面を撮影する。上記要領にて測定することで、鮮明な拡大写真を撮影することが可能となるが、鮮明な拡大写真を得ることができれば、上述した方法に限定されるものではない。
【0032】
次に、拡大写真中にあらわれた微小孔部を包囲し且つ長軸及び短軸が共に最短となる楕円を微小孔部ごとに描く。この楕円の長軸の長さと短軸の長さの相加平均値を微小孔部の孔径とする。測定区画内にある微小孔部の孔径の相加平均値を微小孔部の平均孔径とする。なお、測定区画内に全てが入っている微小孔部のみを測定対象とする。
【0033】
合成樹脂微多孔フィルムの空孔率εは、40〜70%であり、50〜67%が好ましく、53〜60%がより好ましい。空孔率εが上記範囲内である合成樹脂微多孔フィルムは、透気性に優れ且つ張力が加えられた状態で切断された後の収縮が概ね抑えられた合成樹脂微多孔フィルムを提供することができる。
【0034】
なお、合成樹脂微多孔フィルムの空孔率εは下記の要領で測定することができる。先ず、合成樹脂微多孔フィルムを切断することにより縦10cm×横10cmの平面正方形状(面積100cm
2)の試験片を得る。次に、試験片の重量W(g)を及び厚みT(cm)を測定し、下記により見掛け密度ρ(g/cm
3)を算出する。なお、試験片の厚みは、ダイヤルゲージ(例えば、株式会社ミツトヨ製 シグナルABSデジマチックインジケータ)を用いて、試験片の厚みを15箇所測定し、その相加平均値とする。そして、この見掛け密度ρ(g/cm
3)及び合成樹脂微多孔フィルムを構成している合成樹脂自体の密度ρ
0(g/cm
3)を用いて下記に基づいて合成樹脂微多孔フィルムの空孔率ε(%)を算出することができる。
見掛け密度ρ(g/cm
3)=W/(100×T)
空孔率ε[%]=100×[(ρ
0−ρ)/ρ
0]
【0035】
合成樹脂微多孔フィルムの厚みは、5〜100μmが好ましく、10〜50μmがより好ましく、13〜25μmが特に好ましい。
【0036】
なお、本発明において、合成樹脂微多孔フィルムの厚みの測定は、次の要領に従って行うことができる。すなわち、合成樹脂微多孔フィルムの任意の10箇所をダイヤルゲージを用いて測定し、その相加平均値を合成樹脂微多孔フィルムの厚みとする。
【0037】
合成樹脂微多孔フィルムの透気抵抗Gは、30〜300sec/100mL/16μmであり、30〜120sec/100mL/16μmが好ましく、35〜95sec/100mL/16μmがより好ましく、37〜90sec/100mL/16μmが最も好ましい。透気抵抗Gが上記範囲内である合成樹脂微多孔フィルムによれば、機械的強度とイオン透過性の双方に優れている合成樹脂微多孔フィルムを提供することができる。
【0038】
なお、合成樹脂微多孔フィルムの透気抵抗Gは下記の要領で測定された値をいう。温度23℃、相対湿度65%の雰囲気下でJIS P8117に準拠して、合成樹脂微多孔フィルムの任意の10箇所における透気度を測定し、その相加平均値を算出する。透気度の相加平均値を合成樹脂微多孔フィルムの厚みで除した値を合成樹脂微多孔フィルムの透気抵抗Gとする。このとき、透気抵抗Gは、厚み16μmを基準とした値とされ、その単位系は、透気抵抗G(sec/100mL/16μm)とする 。
【0039】
発明者は、合成樹脂微多孔フィルムの空孔率ε(%)と透気抵抗G(sec/100mL/16μm)との関係を鋭意検討したところ、空孔率εと透気抵抗Gが下記式(1)の関係を満たしているとき、合成樹脂微多孔フィルムに含有される合成樹脂の量をできるだけ多く確保し、合成樹脂微多孔フィルムの収縮を効果的に低下させながら、合成樹脂微多孔フィルムに優れた透気性を付与することができることを見出した。
【0040】
即ち、合成樹脂微多孔フィルムは、空孔率をε(%)とし、透気抵抗をG(sec/100mL/16μm)としたとき、下記式(1)を満たしている。なお、Exp Xとは、e
x(eのX乗)を意味する。
100×Exp(−0.0075G)
≧ε ・・・式(1)
【0041】
合成樹脂微多孔フィルムは、下記式(2)を満たしていることが好ましい。
100×Exp(−0.0080G)
≧ε・・・式(2)
【0042】
合成樹脂微多孔フィルムは、下記式(3)を満たしていることが好ましい。
100×Exp(−0.0090G)
≧ε・・・式(3)
【0043】
100×Exp(−0.0075G)を空孔率ε
以上とすることによって、合成樹脂微多孔フィルムに含有される合成樹脂の量を多くしながら、合成樹脂微多孔フィルムの透気性を向上させることができる。
【0044】
そして、合成樹脂微多孔フィルムの微小孔部を略均一に形成することができるので、リチウムイオンの透過性を均一にすることができ、デンドライトの発生を概ね抑制し、合成樹脂微多孔フィルムをセパレータとして用いた蓄電デバイスの長寿命及び長期安全性の向上を図ることができる。
【0045】
更に、合成樹脂微多孔フィルム中に含有されている合成樹脂の量を多くすることによって、合成樹脂微多孔フィルムにおいて、破断強度などの機械的強度を向上させることができる。
【0046】
従って、合成樹脂微多孔フィルムを巻き出しながら加工する場合、合成樹脂微多孔フィルムに巻き出しに伴う張力が長さ方向に加わったときにあっても、合成樹脂微多孔フィルムに破断が生じる虞れはなく、合成樹脂微多孔フィルムを円滑に加工することができる。
【0047】
そして、合成樹脂微多孔フィルムを巻き出しながら切断加工した場合、合成樹脂微多孔フィルムの切断時には長さ方向に張力が加わった状態で切断され、その後、張力が除去されるが、切断後の合成樹脂微多孔フィルムは、優れた寸法安定性を有しているので、長さ方向に殆ど収縮することがない。
【0048】
例えば、合成樹脂微多孔フィルムをセパレータとして用いて蓄電デバイスを製造する場合、長尺状の正極となる金属シートと、長尺状の負極となる金属シートとを巻き出しながらセパレータを介して積層させて電極積層体を連続的に製造し、電極積層体を長さ方向に所定長さとなるように切断される。
【0049】
上記切断工程において、電極積層体の切断時には合成樹脂微多孔フィルムにその長さ方向に張力が加えられている一方、電極積層体の切断後は合成樹脂微多孔フィルムに加えられている張力が除去される。
【0050】
上記のような切断加工が合成樹脂微多孔フィルムに施された場合にあっても、合成樹脂微多孔フィルムは優れた寸法安定性を有していることから、切断前後において、合成樹脂微多孔フィルムはその長さ方向への収縮が生じ難く、正極と負極とを合成樹脂微多孔フィルム(セパレータ)によって確実に隔離することができ、正極と負極との短絡を確実に防止することができる。
【0051】
合成樹脂微多孔フィルムにおける長さ方向の破断強度は、1.3〜2.5N/mmが好ましく、1.5〜2.0N/mmがより好ましく、1.5〜1.7N/mmが特に好ましい。合成樹脂微多孔フィルムにおける長さ方向の破断強度が1.3N/mm以上であると、合成樹脂微多孔フィルムを巻き出しながら破断させることなく連続的に且つ安定的に加工処理を施すことができる。合成樹脂微多孔フィルムにおける長さ方向の破断強度が2.5N/mm以下であると、切断工程において、正極又は負極となる金属シートと積層されている合成樹脂微多孔フィルムからその長さ方向における張力が除去されたときに、切断部近傍における金属シート上の電極活物質が金属シートから剥離することを防止することができる。
【0052】
なお、合成樹脂微多孔フィルムにおける長さ方向の破断強度は、下記式に基づいて算出された値をいう。引張強さ(MPa)は、JIS K7161に準拠して測定された値をいう。合成樹脂微多孔フィルムの厚みは、ダイヤルゲージ(例えば、株式会社ミツトヨ製 シグナルABSデジマチックインジケータ)を用いて、合成樹脂微多孔フィルムの厚みを15箇所測定し、その相加平均値とする。
破断強度(N/mm)=1000×引張強さ(MPa)
/合成樹脂微多孔フィルムの厚み(μm)
【0053】
合成樹脂微多孔フィルムは、上述の通り、優れた透気性を有しておりデンドライトの生成を概ね抑制することができると共に、切断加工前後において寸法安定性に優れており、機械的強度にも優れている。従って、合成樹脂微多孔フィルムは、高出力を必要とする蓄電デバイス〔リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池、ニッケル亜鉛電池、銀亜鉛電池、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)、コンデンサなど〕のセパレータとして好適に用いることができる。
【0054】
[合成樹脂微多孔フィルムの製造方法]
合成樹脂微多孔フィルムの製造方法を説明する。
合成樹脂微多孔フィルムは、下記工程、
合成樹脂を押出機に供給して溶融混練し、上記押出機の先端に取り付けたTダイから押出すことにより合成樹脂フィルムを得る押出工程と、
上記押出工程で得られた上記合成樹脂フィルムをその表面温度が(合成樹脂の融点−30℃)〜(合成樹脂樹脂の融点−1℃)となるようにして1分以上養生する養生工程と、
上記養生工程後の上記合成樹脂フィルムを歪み速度10〜250%/分且つ延伸倍率1.5〜2.8倍にて一軸延伸する延伸工程と、
上記延伸工程後の上記合成樹脂フィルムをアニールするアニーリング工程と、を含む方法によって製造することができる。以下、合成樹脂微多孔フィルムの製造方法について、順を追って説明する。
【0055】
(押出工程)
先ず、合成樹脂を押出機に供給して溶融混練し、押出機の先端に取り付けたTダイから押出すことにより合成樹脂フィルムを得る押出工程を行う。
【0056】
合成樹脂を押出機にて溶融混練する際の合成樹脂の温度は、(合成樹脂の融点+20℃)〜(合成樹脂の融点+100℃)が好ましく、(合成樹脂の融点+25℃)〜(合成樹脂の融点+80℃)がより好ましい。合成樹脂の温度が上記範囲内であると、合成樹脂の配向性が向上し、合成樹脂のラメラを高度に形成することができる。
【0057】
合成樹脂を押出機からフィルム状に押出す際におけるドロー比は、50〜300が好ましく、55〜280がより好ましく、65〜250が特に好ましく、68〜250が最も好ましい。ドロー比が50以上であると、合成樹脂を充分に分子配向させて、合成樹脂のラメラを充分に生成させることができる。ドロー比が、300以下であると、合成樹脂フィルムの製膜安定性が向上し、合成樹脂フィルムの厚み精度及び幅精度を向上させることができる。
【0058】
なお、ドロー比とは、TダイのリップのクリアランスをTダイから押出された合成樹脂フィルムの厚みで除した値をいう。Tダイのリップのクリアランスの測定は、JIS B7524に準拠したすきまゲージ(例えば、株式会社永井ゲージ製作所製 JISすきまゲージ)を用いてTダイのリップのクリアランスを10箇所以上測定し、その相加平均値を求めることにより行うことができる。また、Tダイから押出された合成樹脂フィルムの厚みは、ダイヤルゲージ(例えば、株式会社ミツトヨ製 シグナルABSデジマチックインジケータ)を用いてTダイから押出された合成樹脂フィルムの厚みを10箇所以上測定し、その相加平均値を求めることにより行うことができる。
【0059】
合成樹脂フィルムの製膜速度は、10〜300m/分が好ましく、15〜250m/分がより好ましく、15〜30m/分が特に好ましい。合成樹脂フィルムの製膜速度が10m/分以上であると、合成樹脂を充分に分子配向させて、合成樹脂のラメラを充分に生成させることができる。また、合成樹脂フィルムの製膜速度が300m/分以下であると、合成樹脂フィルムの製膜安定性が向上し、合成樹脂フィルムの厚み精度及び幅精度を向上させることができる。
【0060】
Tダイから押出された合成樹脂フィルムをその表面温度が(合成樹脂の融点−100℃)以下となるまで冷却することが好ましい。これにより、合成樹脂が結晶化してラメラを生成することを促進させることができる。溶融混練した合成樹脂を押出すことにより、合成樹脂フィルムを構成している合成樹脂分子を予め配向させた上で、合成樹脂フィルムを冷却することにより、合成樹脂が配向している部分においてラメラの生成を促進させることができる。
【0061】
冷却された合成樹脂フィルムの表面温度は、合成樹脂の融点よりも100℃低い温度以下が好ましく、合成樹脂の融点よりも140〜110℃低い温度がより好ましく、合成樹脂の融点よりも135〜120℃低い温度が特に好ましい。冷却された合成樹脂フィルムの表面温度が合成樹脂の融点よりも100℃低い温度以下であると、合成樹脂フィルムを構成している合成樹脂のラメラを十分に生成することができる。
【0062】
(養生工程)
次に、上述した押出工程により得られた合成樹脂フィルムを養生する。この合成樹脂フィルムの養生工程は、押出工程において合成樹脂フィルム中に生成させたラメラを成長させるために行う。このことにより、合成樹脂フィルムの押出方向に結晶化部分(ラメラ)と非結晶部分とが交互に配列してなる積層ラメラ構造を形成させることができ、後述する合成樹脂フィルムの延伸工程において、ラメラ内ではなく、ラメラ間において亀裂を発生させ、この亀裂を起点として微小な貫通孔(微小孔部)を形成することができる。
【0063】
合成樹脂フィルムの養生温度は、(合成樹脂の融点−30℃)〜(合成樹脂の融点−1℃)が好ましく、(合成樹脂の融点−25℃)〜(合成樹脂の融点−5℃)がより好ましい。合成樹脂フィルムの養生温度が(合成樹脂の融点−30℃)以上であると、合成樹脂の分子を十分に配向させてラメラを十分に成長させることができる。また、合成樹脂フィルムの養生温度が(合成樹脂の融点−1℃)以下であると、合成樹脂の分子を十分に配向させてラメラを十分に成長させることができる。なお、合成樹脂フィルムの養生温度とは、合成樹脂フィルムの表面温度をいう。
【0064】
合成樹脂フィルムの養生時間は、1分以上が好ましく、3分以上がより好ましく、5分以上が特に好ましく、10分以上が最も好ましい。合成樹脂フィルムを1分以上養生させることにより、合成樹脂フィルムのラメラを十分に且つ均一に成長させることができる。また、養生時間が長すぎると、合成樹脂フィルムが熱劣化する虞れがある。したがって、養生時間は、30分以下が好ましく、20分以下がより好ましい。
【0065】
(延伸工程)
次に、養生工程後の合成樹脂フィルムを一軸延伸する延伸工程を行う。延伸工程では、合成樹脂フィルムを好ましくは押出方向にのみ一軸延伸する。
【0066】
延伸工程における合成樹脂フィルムの延伸方法としては、合成樹脂フィルムを一軸延伸することができれば、特に限定されず、例えば、合成樹脂フィルムを一軸延伸装置を用いて所定温度にて一軸延伸する方法などが挙げられる。合成樹脂フィルムの延伸は、複数回分割して行う逐次延伸が好ましい。逐次延伸をすることによって、得られる合成樹脂微多孔フィルムの空孔率を低く抑えながら透気抵抗を向上させることができる。
【0067】
合成樹脂フィルムの延伸時における歪み速度は、10〜250%/分が好ましく、30〜245%/分がより好ましく、35〜240%/分が特に好ましい。合成樹脂フィルムの延伸時における歪み速度を上記範囲内に調整することによって、ラメラ間において不規則に亀裂が発生するのではなく、合成樹脂フィルムの延伸方向に所定間隔毎に配列し且つ合成樹脂フィルムの厚み方向に延びる仮想直線上にあるラメラ間において規則的に亀裂が発生する。従って、合成樹脂微多孔フィルムには、概ね厚み方向に延びる支持部が形成されると共に微小孔部ができるだけ厚み方向に連続した直線状に形成される。合成樹脂フィルムの延伸時における歪み速度とは、下記式に基づいて算出された値をいう。なお、延伸倍率λ[%]、ライン搬送速度V[m/分]及び延伸区間路長F[m]に基づいて算出される、単位時間当たりの変形歪みε[%/分]をいう。ライン搬送速度Vとは、延伸区間の入口での合成樹脂フィルムの搬送速度をいう。延伸区間路長Fとは、延伸区間の入口から出口までの搬送距離をいう。
歪み速度ε=λ×V/F
【0068】
延伸工程において、合成樹脂フィルムの表面温度は、(合成樹脂の融点−100℃)〜(合成樹脂の融点−5℃)が好ましく、(合成樹脂の融点−30℃)〜(合成樹脂の融点−10℃)がより好ましい。上記表面温度が上記範囲内にあると、合成樹脂フィルムを破断させることなく、ラメラ間の非結晶部において円滑に亀裂を発生させて微小孔部を生成することができる。
【0069】
延伸工程において、合成樹脂フィルムの延伸倍率は、1.5〜3.0倍が好ましく、2.0〜2.9倍がより好ましく、2.3〜2.8倍が特に好ましい。上記延伸倍率が上記範囲内であると、合成樹脂フィルムに微小孔部を均一に形成することができる。
【0070】
なお、合成樹脂フィルムの延伸倍率とは、延伸後の合成樹脂フィルムの長さを延伸前の合成樹脂フィルムの長さで除した値をいう。
【0071】
(アニーリング工程)
次に、延伸工程後の合成樹脂フィルムにアニール処理を施すアニーリング工程を行う。このアニーリング工程は、上述した延伸工程において加えられた延伸によって合成樹脂フィルムに生じた残存歪みを緩和して、得られる合成樹脂微多孔フィルムに加熱による熱収縮が生じることを抑えるために行われる。
【0072】
アニーリング工程における合成樹脂フィルムの表面温度は、(合成樹脂フィルムの融点−40℃)〜(合成樹脂の融点−5℃)が好ましい。上記表面温度が(合成樹脂フィルムの融点−40℃)以上であると、合成樹脂フィルム中に残存した歪みの緩和を十分なものとし、得られる合成樹脂微多孔フィルムの張力を加えて切断した前後における寸法安定性が向上する。また、上記表面温度が(合成樹脂の融点−5℃)以下であると、延伸工程で形成された微小孔部の閉塞を防止することができる。
【0073】
アニーリング工程における合成樹脂フィルムの収縮率は、30%以下が好ましい。上記収縮率が30%以下であると、合成樹脂フィルムにたるみが生じるのを防止して均一にアニールをすることができ、又は、微小孔部の形状を保持することができる。
【0074】
なお、合成樹脂フィルムの収縮率とは、アニーリング工程時における延伸方向における合成樹脂フィルムの収縮長さを、延伸工程後の延伸方向における合成樹脂フィルムの長さで除して100を乗じた値をいう。