【実施例1】
【0017】
図1は、実施例1に係る荷電粒子線装置を示す概略断面図である。荷電粒子線装置の例として、ブースティング法が適用されたSEMを示す。SEMカラム1は、試料12に対してプローブ電子線を照射するための機構を備えた電子源2と、プローブ電子線の径を制限するためのアパーチャ5と、コンデンサレンズ3や対物レンズ4などの電子レンズと、プローブ電子線を試料12上で走査するための偏向器7と、試料12から発生する信号電子を検出するための検出器6とを含む。対物レンズ4は例えばコイル等を用いて磁場を発生させ、プローブ電子線を試料12に集束させるための磁場レンズを形成する。なお、SEMカラム1は、上記以外に他の構成要素(レンズ、電極、検出器など)を含んでもよく、上述した構成に限定されるものではない。
【0018】
さらに、SEMは試料室14を備える。試料室14には、試料12を搭載する試料台13が設けられる。試料台13は、試料12を傾斜及び移動させるための機構を備え、この機構により試料12の観察領域を決めることができる。その他、SEMは試料室14およびSEMカラム1を真空排気するための真空排気設備(図示せず)を備える。
【0019】
また、SEMは、SEM全体を制御する制御部16を備える。制御部16は、SEMの各構成要素を制御するとともに、各種情報処理を実行する。制御部16は、画像表示装置(図示せず)を備え、検出器6から得られた情報から生成されたSEM像を画像表示装置に表示する。
【0020】
制御部16は、例えば、汎用のコンピュータを用いて実現されてもよく、コンピュータ上で実行されるプログラムの機能として実現されてもよい。コンピュータは、CPU(Central Processing Unit)などのプロセッサと、メモリなどの記憶部と、ハードディスクなどの記憶装置を少なくとも備える。制御部16の処理は、プログラムコードとしてメモリに格納し、プロセッサが各プログラムコードを実行することによって実現されてもよい。制御部16の一部が、専用の回路基板などのハードウェアによって構成されてもよい。
【0021】
SEMカラム1の対物レンズ4は、試料12に対し漏洩磁界が小さいアウトレンズ型である。また、SEMカラム1は減速光学系としてブースティング手段を備える。具体的には、SEMカラム1において、電子源2から光軸に沿って筒状の第2ビーム管9が、対物レンズ4の対物レンズ磁路の内壁に沿って第1ビーム管8がそれぞれ設置されている。また、第1ビーム管8および第2ビーム管9にブースティング電圧を印加するための電圧源(ブースティング電圧源)15を備える。なお、ブースティング電圧源15からの電圧は、制御部16によって制御される。加えて、対物レンズ先端部には減速電極10が設置される。第1ビーム管8および第2ビーム管9は、ブースティング電圧源15からの電圧印加により、減速電極10よりも高電位に設定される。これにより、第1ビーム管8の試料側端部と減速電極10との間にプローブ電子線に対する減速電界が形成され、プローブ電子線はこの電界を通過する際にレンズ作用を受けて減速する。
【0022】
特にプローブ電子線の照射エネルギーが5keV以下の観察条件において高分解能を得るには、試料12に対して第1ビーム管8を高電位に設定し、減速電界を形成する必要がある。例えば、試料12と第1ビーム管8との電位差を約10kVに設定する。SEMカラム1からの漏洩電界が強いほど、試料12の近傍に焦点距離の短い静電レンズ作用を得ることができる。これにより収差が低減され、分解能の改善効果が大きくなる。
【0023】
また、減速電極10は対物レンズ4の一部を構成していても良い。減速電極10が磁性体で構成され、対物レンズ磁路と磁気的に結合されてもよく、対物レンズ磁路及び減速電極10が一つの磁気回路として機能するように構成することも可能である。
【0024】
SEMにおいて最良の照射系性能を得るためには、プローブ電子線のレンズを通過する経路を適切に調整する軸調整が必要となる。特に、本実施例のように減速光学系を備え磁場レンズと静電レンズを重畳させて用いるSEMにおいて、プローブ電子線が電子レンズのレンズ中心軸から外れた箇所を通過する場合、レンズの軸外収差の影響を受け、照射系性能は悪化する。静電レンズ、磁場レンズのどちらか片方であれ軸外を通過する場合、照射系性能は悪化するため、静電レンズ及び磁場レンズ両者の軸を一致させ、その中心にプローブ電子線を通過させる軸調整が必要となる。
【0025】
本実施例では、静電レンズの光軸を移動させることで重畳レンズの軸調整を行う。静電レンズの光軸の位置は、第1ビーム管8と減速電極10との位置関係によって決まる。従って、第1ビーム管8の位置を移動させることで、静電レンズ軸位置の調整が実現できる。このために、本構成では減速電界を形成する第1ビーム管8の位置を機械的に移動させることが可能な移動機構11を設けている。
【0026】
第1ビーム管8は対物レンズ磁路や減速電極10と電気的な絶縁を維持しつつ、移動機構11により移動可能な構造とされることが必要である。両者の間に隙間を設けて空間で絶縁される構造としても良い。また、両者の間に変形可能な絶縁体を介在させることによって電気的に絶縁される構造としても良い。このような構造とすることで第1ビーム管8に高電圧を印加した状態で、位置移動を行うことが可能となる。
【0027】
比較例として、従来の減速光学系を備えたSEMカラムの概略図を
図2に示す。
図1の構成と比較すると、高電位が印加されるビーム管17は分割されておらず、プローブ電子線に対して、電子源側の端部に加速電界が、試料側の端部に減速電界が形成され、それぞれの電界がレンズ作用を持つ構造となっている。プローブ電子線が加速レンズ31の中心を通過しない場合、軸外収差が発生し照射系に悪影響を与える。そのため、光学系の軸調整を行う際にはまず、プローブ電子線を加速レンズ31の中心を通過させるよう、電子線軌道を誘導する。例えば、電子源2の位置の移動や、電磁偏向器を用いての軌道偏向がよく行われる。
【0028】
一方で、先に述べたように、磁場レンズと重畳する、ビーム管試料側端部にできる減速レンズ32の軸も調整する必要がある。従来のSEMカラムにおいてビーム管17は固定されているが、仮にビーム管17を移動させることが可能であったとして、減速レンズ32の中心位置を調整するためにビーム管17を移動させたとすると、これにより減速レンズ32の中心だけでなく、加速レンズ31の中心も同時に移動する。すなわち、減速レンズ32のみを単独で調整することができず、減速レンズ32の軸調整により加速レンズ31で軸ずれが発生することになる。実際には、プローブ電子線は
図2に示したように電子源2から試料12に向かって鉛直に降ろした線に沿ってまっすぐ進むわけではなく、SEMカラムに設けられた偏向器やレンズにより進行方向を曲げられながら試料に向かって進む。このため、プローブ電子線の加速レンズ31への入射角、減速レンズ32への入射角はそれぞれ異なっているのが通常であり、1つのビーム管17の位置調整により、加速レンズ31と減速レンズ32の軸位置を同時に最適化できることは現実的にはない。
【0029】
図1に示される実施例1の装置では、高電位が印加されるビーム管が試料側の第1ビーム管8と電子源側の第2ビーム管9との2つに分割されて設置されていることが一つの特徴となっている。分割されていることにより、第1ビーム管8を移動させても、第2ビーム管9の位置は変化しない。従って、第2ビーム管9の電子源側端部に形成される加速レンズの位置を変更することなく、第1ビーム管8の試料側端部に形成される減速レンズの位置を調整することが可能である。言い換えれば、減速レンズの位置調整時において加速レンズの軸ずれの発生を防止できる。
【0030】
なお、少なくとも軸調整時には第1ビーム管8と第2ビーム管9とを同電位としておくことが必要である。第1ビーム管8の電位と第2ビーム管9の電位とが異なる場合、両者の間にレンズ作用を持つ電界が発生する。この状況下で第1ビーム管8を移動させることにより、第1ビーム管8と第2ビーム管9との間の静電レンズの軸ずれが発生する。これを避けるため、軸調整時においては第1ビーム管8と第2ビーム管9の電位は同電位とする。同電位のビーム管の間には電界が形成されないためレンズ作用が発生しない。従って、第1ビーム管8と減速電極10との間に形成される減速レンズのみの軸調整が第1ビーム管8を位置移動することにより可能になる。
【0031】
後述するように、第1ビーム管8の位置移動による軸調整は像を視認しながら行うことが望ましい。このため、第1ビーム管8の移動機構11はSEMカラム1の外部から調整可能な機構としておくことが望ましい。これにより、像を視認しながらの軸調整がより容易となる。移動機構11は例えば、第1ビーム管8の外側に位置するカラム外壁に空けた長穴から、ねじ等の棒状の器具を押し込むことで第1ビーム管8を移動させる機構とすることができる。また、ねじのいくつかはバネ性を持つものであっても良いし、専用の冶具を用いて位置調整を行っても良い。
【0032】
本構成では、第1ビーム管8を移動させることにより、静電レンズの軸を磁界レンズの軸に一致させる。このため、加速電圧やプローブ電流の変更等によりプローブ電子線の軌道が変化したとしても、静電レンズと磁場レンズの軸の一致は維持される。従って、偏向器によりプローブ電子線軌道を偏向させて、静電レンズと磁場レンズの一致した軸に誘導することにより、最良の性能を得ることが可能となる。なお、プローブ電子線軌道を変更させる偏向器はコイルを用いた磁場型であっても良いし、対となる電極を用いた静電型であっても良い。
【0033】
本実施例における、軸調整手順について説明する。
【0034】
(1)第1に、対物レンズ4(磁場レンズ)の電流中心軸にプローブ電子線軌道を合わせる。まず、対物レンズ4を駆動させて、試料12上にプローブ電子線を集束させる。対物レンズコイルの励磁電流を周期的に変動させると、励磁電流の変動に同期して像が動く。像の動きが最小になるように、電子源2の位置あるいは偏向器7を調整してプローブ電子線軌道を変化させる。この段階では対物レンズ以外のレンズは動作させず、また、第1ビーム管8及び第2ビーム管9の電位も基準電位(GND)としておく。
【0035】
次に、コンデンサレンズ3を所定の励磁量に設定して、再度対物レンズ4に供給する励磁電流を周期的に変動させて、像の動きが最小になるように、コンデンサレンズ3の位置あるいは偏向器7を調整しプローブ電子線軌道を変化させる。コンデンサレンズ3は所望の照射電流量を得るために絞り量を調整する機能をもつ。このとき設定する励磁量は、例えば、観察対象の材料に応じた適当な光学条件となるように設定すればよい。
【0036】
以上で、プローブ電子線は対物レンズ4の電流中心軸を通るようになっているので、最後に可動アパーチャ5の中心をプローブ電子線が通るように、可動アパーチャ5を挿入する。再度、対物レンズ4に供給する励磁電流を周期的に変動させて、像の動きが最小になるように、可動アパーチャ5の位置を調整する。以上により、対物レンズ4の形成する磁場レンズの電流中心軸をプローブ電子線が通るように調整された。
【0037】
(2)第2に、対物レンズ4(磁場レンズ)の電流中心軸に減速レンズ(静電レンズ)の光軸を合わせる。第1ビーム管8及び第2ビーム管9に所定の電圧を印加する。対物レンズ4、コンデンサレンズ3を駆動し、アパーチャ5を挿入した状態で試料上にプローブ電子線を集束させる。対物レンズ4に供給する励磁電流を周期的に変動させて、像の動きが最小になるように、第1ビーム管8の位置を移動機構11により調整する。これにより、対物レンズ4(磁場レンズ)の電流中心軸と減速レンズ(静電レンズ)の光軸とが一致する。
【0038】
(3)以上の調整に加えて、対物レンズ4(磁場レンズ)の電流中心軸と減速レンズ(静電レンズ)の電圧中心軸を合わせる調整を行うことが望ましい。この場合、
(3−1)第1ビーム管8に印加する電圧を周期的に変動させることによる像の動きが最小になるように、アパーチャ5を移動または偏向器7を調整し、プローブ電子線軌道を変化させる。
(3−2)続いて、対物レンズ4に供給する励磁電流を周期的に変動させることによる像の動きが最小になるように、第1ビーム管8の位置調整を行う。
(3−3)調整(3−1)と調整(3−2)の手順を繰り返し実施する。
【0039】
以上の調整(3)により、磁場レンズの電流中心軸と静電レンズの電圧中心軸とが一致し、一致した磁場レンズの電流中心軸と静電レンズの電圧中心軸とをプローブ電子線が通るように調整される。
【0040】
図3は、本実施例の荷電粒子線装置において、第1ビーム管8および第2ビーム管9がそれぞれ別の電圧源を備える変形例を示す。第1ビーム管8に第1電圧源15aが、第2ビーム管9に第2電圧源15bが接続されている。各電圧源によって印加される電位は制御部16で制御される。制御部16は、第1ビーム管8と第2ビーム管9の電位を同電位とするよう電圧源15a,15bを制御するモードを持つ。
【0041】
本変形例における軸調整手順では、第1ビーム管8と減速電極10との間に形成される減速レンズの軸と対物レンズ(磁場レンズ)の軸とを一致させる調整を行う際に、第1ビーム管8と第2ビーム管9の電位を同電位とするモードに設定する。この同電位モードにおいて、移動機構11を用いて第2ビーム管9を移動させることで、減速レンズ単独での位置調整が行える。
【0042】
本変形例においては、調整時以外には第1ビーム管8と第2ビーム管9の電位は同電位に限られず、それぞれ任意の電位とすることができる。これにより、光学系全体の要請にあわせ、照射系・検出系にとって最適な電位を設定することが可能となる。例えば、走査電子顕微鏡を用いた電子線分析を行う際、電子源輝度を向上させプローブ電流を増加させる目的で、第2ビーム管9を第1ビーム管8よりも高電位とする条件に設定しても良い。なお、第1ビーム管8と第2ビーム管9の電位を異なる電位とする場合には、第1ビーム管8と第2ビーム管9との間で静電レンズが形成されることになるが、これによる影響は例えば、偏向器7を用いて補償することができる。
【0043】
さらに、
図4は、本実施例の荷電粒子線装置においてビーム管が3つ以上に分割されている変形例を示す。例えばビーム管が試料側ビーム管(第1ビーム管)8、中間ビーム管(第3ビーム管)18、電子源側ビーム管(第2ビーム管)9の3つに分割されており、それぞれに対して移動機構11a〜cと電圧源15a〜cが設けられている。
図4の例では、第2ビーム管9にも移動機構11が設けられた例を示しているが、これは
図1等の他の構成例においても適用可能である。
【0044】
本変形例は、照射系や検出系の要請によって、プローブ電子線の経路の電位を複数の段階とすることが必要となる場合に有効である。例えば、中間ビーム管18を接地電位に、試料側ビーム管8と電子源側ビーム管9とを試料12よりも高電位となるようにする構成が考えられる。この場合、ブースティングによる電子源輝度向上効果と収差低減効果を得つつ、接地電位の部分を設けることで、検出系の設計自由度が向上する。接地電位に設ける検出器6’は例えば、偏向場を用いた検出器であっても良い。
【0045】
図4に示した変形例において、静電レンズの軸調整を行う際には、単独の静電レンズ調整が実現されるよう、それぞれのビーム管に与える電位を制御する。例えば、試料側ビーム管8と減速電極10間に形成される静電レンズの軸調整を行う場合は、中間ビーム管18と試料側ビーム管8とを同電位とし、試料側ビーム管8の位置を移動させればよい。同様に例えば、中間ビーム管18と試料側ビーム管8の間に形成される静電レンズの軸調整を行う場合は、電子源側ビーム管9と中間ビーム管18とを同電位とし、中間ビーム管18の位置を移動させればよい。各電圧源によって印加される電位は制御部16で制御される。制御部16は、試料側ビーム管8と中間ビーム管18の電位を同電位とするよう電圧源15a,15cを制御するモード、電子源側ビーム管9と中間ビーム管18の電位を同電位とするよう電圧源15b,15cを制御するモードを持つ。このように、それぞれのビーム管端部に形成される静電レンズの軸を、移動機構11を用いて調整することが可能な構成となっている。
【0046】
なお、ビーム管を分割する位置については、特に照射系や検出系の要請がない限り、制約はない。ただし、ビーム管は元来ビーム管内を安定な電位状態に保持することを目的とするため、分割されたビーム管の隙間から電界が入り込むことはできるだけ抑制する必要がある。このため、本実施例においては、ビーム管同士が接する端部において双方のビーム管にフランジ部を設けている。例えば、
図1の例では第1ビーム管8の端部から張り出した円盤形状のフランジ部と第2ビーム管
9の端部から張り出した円盤形状のフランジ部とを対向させることにより、第1ビーム管8と第2ビーム管9との隙間から意図しない電界が入り込むことを抑制している。
【実施例2】
【0047】
実施例2として、減速光学系としてリターディング法が適用されたSEMについて説明する。対物レンズから電子源側のプローブ電子線の通過領域と試料との間の電位差による減速電界を用いるという点で、ブースティング光学系とリターディング光学系に本質的な違いはない。すなわち、ブースティング光学系で有効である本発明は、リターディング光学系においても同様の効果が得られる。
【0048】
図5は、実施例2に係る荷電粒子線装置を示す概略構成図である。試料台13は、試料12に電圧を印加できるリターディング電圧源21を備える。なお、電圧源21からの電圧は、制御部16によって制御されてもよい。典型的には、SEMカラム1とカラム内の第1ビーム管8および第2ビーム管9は接地電位とし、試料12に負極性の電圧を印加する。これにより、第1ビーム管8の試料側端部と試料12との間に、プローブ電子線に対する減速電界が発生し、SEMの分解能を向上させることができる。分解能向上のために試料12に印加する負電圧は、試料12と第1ビーム管8との電位差が1kV以上となるように設定されることが望ましく、電位差が大きいほど分解能向上効果は増大する。ただし、好適な電圧値は、試料12と対物レンズ4の先端部との間の作動距離(WD:Working Distance)により変わりうるため、これに限定されるものではない。
【0049】
本実施例において、磁場レンズと重畳される減速レンズの位置は、第1ビーム管8と対物レンズ先端部及び試料12との位置関係で決定される。従って、第1ビーム管8の位置を移動させることで減速レンズの軸調整が実現できる。また、実施例1と同様に、調整時には第1ビーム管8と第2ビーム管9を同電位とすることで、減速レンズ単独での軸調整が可能となる。従って、減速レンズ中心軸を磁場レンズ中心軸と一致させ、プローブ電子線を重畳レンズの中心軸へ誘導することで、軸外収差を低減し、照射系性能を最大化することができる。
【0050】
本実施例における軸調整は例えば、実施例1と同様の手順で行うことができる。
【0051】
(1)第1に、対物レンズ4(磁場レンズ)の電流中心軸にプローブ電子線軌道を合わせる。まず、対物レンズ4を駆動させて、試料12上にプローブ電子線を集束させる。この状態で対物レンズコイルの励磁電流を周期的に変動させて、像の動きが最小になるように、電子源2の位置あるいは偏向器7を調整してプローブ電子線軌道を変化させる。
【0052】
次にコンデンサレンズ3を所定の励磁に設定して、再度対物レンズ4に供給する励磁電流を周期的に変動させて、像の動きが最小になるように、コンデンサレンズ3の位置あるいは偏向器7を調整しプローブ電子線軌道を変化させる。最後に、光軸上に可動アパーチャ5を挿入し、再度、対物レンズ4に供給する励磁電流を周期的に変動させて、像の動きが最小になるように、可動アパーチャ5の位置を調整する。
【0053】
(2)第2に、対物レンズ4(磁場レンズ)の電流中心軸に減速レンズ(静電レンズ)の光軸を合わせる。対物レンズ4、コンデンサレンズ3を駆動し、アパーチャ5を挿入した状態で試料12に負電圧を印加し、試料上にプローブ電子線を集束させる。対物レンズ4の励磁電流を周期的に変動させて、像の動きが最小になるように、第1ビーム管8の位置を移動機構11により調整する。これにより、対物レンズ4(磁場レンズ)の電流中心軸と減速レンズ(静電レンズ)の光軸とを一致させることができる。
【0054】
(3)以上の調整に加えて、対物レンズ4(磁場レンズ)の電流中心軸と減速レンズ(静電レンズ)の電圧中心軸を合わせる調整を行うことが望ましい。この場合、
(3−1)リターディング電圧を周期的に変動させることによる像の動きが最小になるように、アパーチャ5を移動または偏向器7を調整し、プローブ電子線軌道を変化させる。
(3−2)続いて、対物レンズ4に供給する励磁電流を周期的に変動させることによる像の動きが最小になるように、第1ビーム管8の位置調整を行う。
(3−3)調整(3−1)と調整(3−2)の手順を繰り返し実施する。
【0055】
以上の調整(3)により、磁場レンズの電流中心軸と静電レンズの電圧中心軸とが一致し、一致した磁場レンズの電流中心軸と静電レンズの電圧中心軸とをプローブ電子線が通るように調整される。
【0056】
本実施例の変形例として、第1ビーム管8および第2ビーム管9に正の電圧を印加しブースティング法とリターディング法とを併用する構成としてもよい。第1ビーム管8にリターディング電圧とは逆極性である正の電圧が印加されることで、試料12との電位差が更に大きくなり、照射系性能の更なる向上が期待できる。この場合においても、磁場レンズと重畳される減速レンズの位置は、第1ビーム管8と対物レンズ先端部及び試料12との位置関係で決定される。従って、第1ビーム管8の位置を移動させることで静電レンズの軸を磁場レンズの軸と一致させる調整が実現できる。
【0057】
一方、一般的なリターディング法を適用し、ビーム管に印加する電圧が接地電圧とされる場合、
図5における第1ビーム管8を、試料との間に減速電界を発生させるための電極と読み替え、第2ビーム管9を除いた構成としてもよい。この場合も、磁場レンズと重畳される減速レンズの位置は、電極8と対物レンズ先端部及び試料12との位置関係で決定される。従って、電極8の位置を移動させることで静電レンズの軸を磁場レンズの軸と一致させる調整が実現できる。電極8はプローブ電子線を通過させる開口を有する筒状電極、あるいは円盤状電極とすることができる。
【0058】
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることもできる。また、ある実施例の構成に他の実施例の構成を加えることもできる。また、各実施例の構成の一部について、他の構成を追加・削除・置換することもできる。例えば、実施例としてSEMについて説明したが、本発明は、他の荷電粒子線装置にも適用可能であるし、複数の荷電粒子線装置を組み合わせた複合荷電粒子線装置にも適用可能である。