(58)【調査した分野】(Int.Cl.,DB名)
前記検出器は、CCDアレイ、CMOSアレイ、一次元フォトダイオードアレイ、および二次元フォトダイオードアレイの少なくとも1つを備える、請求項1に記載の光学計測ツール。
前記変調可能な励起源からの照明の1つ以上のスペクトル特徴を監視するよう構成され、さらに前記1つ以上のスペクトル特徴を示す信号を前記励起制御システムへ伝送するよう構成されたスペクトル監視システムをさらに備える、請求項1に記載の光学計測ツール。
【発明を実施するための形態】
【0015】
ここで、添付図面に例示する開示の本発明の主題を詳細に参照する。
【0016】
概して
図1〜7Bを参照して、本発明に係る時間変調光源の機能を有する光学計測ツールを説明する。本開示は、1つ以上の時間変調光源を備える光学計測を行うシステムおよび方法に関する。本発明の計測システムの1つ以上の光源から発する照明の時間変調は、改善された精度、正確さ、および計測スループットを提供する。
【0017】
ある意味において、本発明によって実施される照明変調は、限定するものではないが、計測される光信号(例えば、角度分解反射率または偏光解析パラメータ、偏光分解反射率または偏光解析パラメータ、波長分解反射率または偏光解析パラメータ等)における干渉縞、コヒーレントノイズ、およびスペックルなどの、コヒーレントアーチファクトの抑制を支援する。さらに、本発明は、複数の光源出力の時間変調に関し、これによって複数の光源(例えば、レーザーおよび/またはランプ)の照明出力の時系列インターリービングを可能にする。本発明の複数の光源の出力のインターリービングは、複数の波長照明を必要とする計測用途において、改善された波長安定性、ノイズ減少、および強度制御を実現する。さらに、本発明は、光持続のプラズマ源の1つ以上の励起源の照明出力の時間変調に関する。励起源照明出力の変調は、持続プラズマ光源の出力照明におけるノイズレベル減少を実現する。
【0018】
一般的に、本発明の種々の実施形態によって提供される時間変調は、多くの利益を与える。特に、本発明は、レーザー式計測用途におけるコヒーレンスノイズの減少、異なるタイプの光源の時系列インターリービング、およびレーザー励起プラズマ源におけるノイズ減少を実現する。
【0019】
図1は、本発明の一実施形態に係る時間変調された照明能力を備える光学計測ツール100を示すブロック図である。
【0020】
当業者は、コヒーレントアーチファクト制御が光学計測ツールの設計における共通の課題であることを認識するであろう。所与の光学計測ツールが1つ以上のコヒーレント光源(例えば、レーザー)を有する構成において、迷光およびゴーストに関連するコヒーレント効果(例えば、スペックルおよび干渉縞)を制御する能力は、ますます難しくなる。例えば、所与の光学計測ツール(
図2Aおよび2B参照)は、複数の光学面を有する。これらの光学面は、ビームスプリッター、レンズ、光ファイバー、対物レンズ面、アポダイザなどを備えることができるがこれらに限定されない。光学計測ツールにおけるコヒーレント照明はしばしば悪影響のあるスペックル、縞、およびその他のコヒーレントアーチファクトを引き起こす。これらは測定の精度および正確さに悪影響を及ぼす測定ノイズおよび不安定性の一因となり得る。
【0021】
例えば、所与の光学システムにおいて、プライマリーパスを伝播するビームは、光学システムの光学面(例えば、ミラー、ビームスプリッターなど)から反射されたパラスティックビームと干渉し得る。プライマリービームおよびパラスティックビーム干渉の有害な影響を示すために、プライマリービームおよびパラスティックビームは強度I
1およびI
2によって特徴付けられる。これらの2つのビームの重畳は、次の結合ビーム出力を提供する。
【数1】
【0022】
上記式において、θはプライマリービームと光学計測ツールの反射面からのパラスティックビーム間の相対位相を示す。例示を目的として、I
1=1およびI
2=0.0025(反射率0.25%で面反射するパラスティックビームと一致)の場合、プライマリーおよびパラスティック波が建設的に干渉する場合における式1の干渉項は、プライマリービームの10%の大きさを有するであろう。この干渉寄与レベルは、光学計測ツールの大半において容認されない。
【0023】
対照的に、プライマリービームおよびパラスティックビームが互いにコヒーレントでない構成においては、式1の干渉項はゼロとなり、計測ツールのゴースト補正は、プライマリービームの0.25%の大きさを有するであろうが、これは上記で説明した場合よりもはるかに扱いやすい。
【0024】
当業者は、レーザー(例えば、半導体ダイオード技術ベースのレーザー)の標準的なスペクトルが単一の狭いスペクトル線または複数の狭いスペクトル線を含むことを認識するであろう。このようなレーザー源は、共通して長いコヒーレンス長を有する。それらの波長安定性および低ノイズのため、単一波長レーザーが計測用途全体にわたり遍在的に利用される。単一波長レーザーの大きなコヒーレンス長のため、これはしばしば100mを超えるが、本明細書の前出の理由による計測構成において実行中のコヒーレントアーチファクトは抑制される。
【0025】
本発明の一態様において、システム100は、試料台に配置された試料106(例えば、半導体ウェハ)の表面を照らすよう構成された変調光源102、試料106の表面から反射された光を検出するよう構成された検出器110、および変調光源102および検出器110を光学的に接続する役割を果たす光学システムを備える。光学システムは、光源102からの光を試料106に向け、および/または集光させるのに適した照明光学系の組104(例えば、レンズ、ミラー、フィルターなど)を備えることができる。光学システムは、さらにウェハ106の表面から反射または散乱した光を検出器110に向けるのに適した集光光学系の組108(例えば、レンズ、ミラー、フィルターなど)を備えることができる。この方法において、光は光源102から発し、照明アームに沿って(照明系104を介して)試料106の表面へ伝播することができる。試料106から反射または散乱した光は、システム100の集光アームに沿って(集光系108を介して)試料106から検出器110へ伝播することができる。他の態様において、光学計測システム100は、変調可能な光源102(例えば、レーザー)の駆動電流を選択された変調周波数で変調させるよう構成された変調制御システム112を備える。
【0026】
本発明の光学計測システム100は、当技術分野における如何なる形式の光学計測を実行するよう構成されていてもよいことが本明細書において注記される。例えば、光学計測システム100は、次の計測手法の少なくとも1つを実行するよう構成される。これらの手法とは、臨界次元(CD)計測、薄膜(TF)厚および組成物計測、およびオーバーレイ計測である。
【0027】
本発明の光学計測システム100は、特定の光学構成または光学計測機能に限定されるものではないことがさらに注記される。一部の実施形態において、本発明の光学計測システム100は、反射測定計測システムとして構成することができる。例えば、光学計測システム100は、角度分解モードで作動するビームプロファイルレフレクトメータ(例えば、狭帯域のビームプロファイルレフレクトメータ)、分光レフレクトメータなどを備えることができるがこれらに限定されない。スペクトルおよび単一波長のビームプロファイルレフレクトメータの概要は、2001年3月27日に出願された米国特許第6,429,943号に記載されており、その全体が参考として本明細書に組み込まれる。
【0028】
他の実施形態において、本発明の光学計測システム100は、散乱計測式の計測システムとして構成することができる。例えば、光学計測システム100は、広帯域のスキャタロメータ(例えば、広帯域の分光スキャタロメータ)または狭帯域のスキャタロメータを備えることができるがこれに限定されない。
【0029】
追加の実施形態において、本発明の光学計測は、エリプソメトリ計測システムとして構成することができる。例えば、光学計測システム100は、ビームプロファイルエリプソメータまたは分光エリプソメータを備えることができるが、これに限定されない。エリプソメトリの原理のエリプソメトリの概要の概要は、Harland G. TompkinsおよびEugene A. IreneのHandbook of Elipsometry, 1st ed, William Andrew,Inc.,2005に記載されており、その全体が参考として本明細書に組み込まれる。さらに、ミュラー行列エリプソメトリは、P.S. Haugeの、“Mueller Matrix Elipsometry with Imperfect Compensators”, J. of the Optical Soc. of AM. A68(11),1519−1528, 1978; R.M.A Azzamの、A Simple Fourier Photopolarimeter with Rotating Polarizer and Analyzer for Measuring Jones and Mueller Matrices, Opt Comm 25(2), 137−140, 1978に詳細に記載されており、それら全体が参考として本明細書に組み込まれる。さらに、「完全な」エリプソメトリの概念は、M. L. Aleksandrovらの、“Methods and Apparatus for Complete Elipsometry(review)”,J. Appl. Spectroscopy 44(6), 559−578, 1986に記載されており、その全体が参考として本明細書に組み込まれる。分光エリプソメトリの概要は、1995年10月10日に出願された米国特許第5,739,909号に記載されており、その全体が参考として本明細書に組み込まれる。ビームプロファイルエリプソメトリの概要は、2001年3月27日に出願された米国特許第6,429,943号に記載されており、その全体が前述に参考として本明細書に組み込まれる。
【0030】
ここで
図2Aを参照すると、本発明の光学計測システム100は、ツール200などの反射測定計測ツールとして実施することができる。
図2Aは、本発明において実施するのに適した反射測定計測ツールを示す上位概略図である。レフレクトメータ200は光源102と、光学システムと、検出器110とを備えることができる。光学システムは、照明光学系の組104と、ビームスプリッター204と、集光光学系の組108とを備えることができる。この点において、光は光源102から発し、照明光学系104およびビームスプリッター204を介して試料台202に配置された試料106の表面に伝播することができる。本出願人は、
図2Aに示す構成は限定的なものではなく、例示を目的としたものに過ぎない旨を注記する。前述したように、多数のレフレクトメータ式の光学構成は、本発明の範囲内において利用されることが想定される。
【0031】
図2Bを参照すると、本発明の光学計測システム100は、ツール250などの、散乱計測/エリプソメトリ計測ツールとして実施することができる。
図2Bは、本発明において実施するのに適したエリプソメトリ計測ツールを示す上位概略図である。スキャタロメータ/エリプソメータ250は、光源102と、光学システムと、検出器110を備えることができる。光学システムは、照明光学系の組104と、偏光子206と、集光光学系の組108と、検光子208を備えることができる。照明および集光光学系は、ミラー、レンズ、ビームスプリッター、補償器などを備えることができる。この点において、光は光源102から発し、偏光子206および照明光学系104を通り、試料台202に配置された試料106の表面に伝播することができる。試料106から散乱する光は、その後、集光光学系108を介し、検光子208を通し、試料106の表面から検出器110へ伝播することができる。本出願人は、
図2Bに示す構成は限定的なものではなく、例示を目的としたものに過ぎない旨を注記する。前述したように、多数の散乱計測およびエリプソメトリ光学構成は、本発明の範囲内において利用されることが想定される。
【0032】
本発明の一態様において、変調制御システム112は、変調可能な光源102の駆動電流を選択された変調周波数で変調するよう構成される。一態様において、選択された変調周波数は、選択されたコヒーレンス特性を有する照明を生成するのに適したものであってよい。
【0033】
一実施形態において、選択されたコヒーレンス特性は、選択されたフリンジビジビリティカーブ(干渉縞の鮮明度曲線)を有することができるが、これに限定されない。この点において、選択された変調周波数は、フリンジビジビリティカーブ(干渉縞の鮮明度曲線)を有する照明を生成するのに適したものであってよい。さらなる実施形態において、選択された変調周波数は、選択された許容レベル未満のレベル未満の(例えば、コヒーレントアーチファクトが計測ツール100の作動を許可するほど小さい場合のレベル)コヒーレントアーチファクトを実現するフリンジビジビリティカーブ(干渉縞の鮮明度曲線)を有する照明を生成するのに適したものであってよい。他の実施形態において、変調周波数は、選択されたレベルを超える強度(例えば、計測ツール100の作動を許可するほど小さい干渉縞の強度)を有する干渉縞の発生を抑制するよう構成されたフリンジビジビリティカーブ(干渉縞の鮮明度曲線)を生成するのに適する。他の実施形態において、変調周波数は、光学計測ツール100の特徴光路長から異なる距離に位置する強度ピークの組を有するフリンジビジビリティカーブ(干渉縞の鮮明度曲線)を生成するのに適する。光学計測ツール100の特徴光路長は、光学計測ツールの第1の反射面と光学計測ツールの第2の反射面の間の距離を有することができる。さらなる実施形態において、変調周波数は、変調されていない状態の光源のフリンジビジビリティカーブ(干渉縞の鮮明度曲線)とは実質的に異なるフリンジビジビリティカーブ(干渉縞の鮮明度曲線)を有する照明を生成するのに適する。前述したように、光源102によって放出された照明のフリンジビジビリティカーブ(干渉縞の鮮明度曲線)を十分に変化させることによって、コヒーレントアーチファクト(例えば、スペックルおよび干渉縞)の影響を除去または少なくとも軽減することができる。
【0034】
他の実施形態において、選択された変調周波数は、選択された長さ未満の長さ(すなわち、システム100の光学素子間の距離よりも短いコヒーレンス長)コヒーレンス長を有する照明を生成するのに適することができる。例えば、選択された変調周波数は、変調されていない状態の光源102のコヒーレンス長未満のコヒーレンス長(例えば、変調前の光源のコヒーレンス長)を有する照明を生成するのに適することができる。他の例では、選択された変調周波数は、光学計測ツール100の特徴光路長未満のコヒーレンス長を有する照明を生成するのに適することができる。例えば、選択された変調周波数は、光学計測ツール100の第1の反射面と光学計測ツール100の第2の反射面の間の距離よりも小さいコヒーレンス長を有する照明を生成するのに適することができる。本明細書において先述したように、光源102によって放射された照明のコヒーレンス長を計測ツール100内の反射面間の距離を下回るように縮小させることによって、コヒーレントアーチファクト(例えば、スペックルおよび干渉縞)の影響を除去または少なくとも軽減することができる。
【0035】
本発明の一実施形態において、変調制御システム112は、1つ以上のレーザー光源の電流を選択された周波数で駆動する役目ができる。例えば、変調制御システム112は、レーザー光出力において変調されたフリンジビジビリティカーブ(干渉縞の鮮明度曲線)を実現するためにレーザー光源(例えば、多縦モードレーザー光源)の駆動電流を変調する役目ができるので、レーザー光源の変調されたフリンジビジビリティカーブ(干渉縞の鮮明度曲線)は、光学計測ツール100内のコヒーレントアーチファクトを選択された許容レベル未満のよう低減するのに適している。他の例では、変調制御システム112は、選択されたレベル未満のコヒーレンス長を有する照明を生成するためにレーザー光源の駆動電流を変調する役目ができる。
【0036】
図3は、駆動電流変調302を備えていないレーザー源からの強度スペクトルおよび駆動電流変調304を備えたレーザー源からの強度スペクトルを示す概念図である。
図3に示すように、直流電流駆動の場合、レーザー源に関連するスペクトル302は、レーザー空洞の多縦モードを含む。
図3に示すスペクトル304は、曲線302の各々のスペクトルピークの広いエンベロープを示す。この点において、レーザー源の駆動電流の高速変調は、強度スペクトル304の広がりおよび平滑化を与える。フリンジビジビリティカーブ(干渉縞の鮮明度曲線)の変化は、本明細書において先述したコヒーレントアーチファクト(例えば、干渉縞)を抑制する役目をすることができる。さらに、所与の光学計測ツール(例えば、100)の光学面は、光源102が強度スペクトル304に一致する状態のような変調された状態にあるとき、パラスティック干渉の影響を取るに足りないものにする十分な距離で分離されるよう比較的簡単に構成され得るということが本明細書において注記される。本出願人は、フリンジビジビリティカーブ(干渉縞の鮮明度曲線)、コヒーレンス長、および光学素子間の距離に関する上記の説明は、例示目的のために示すに過ぎず、限定するものとして解釈されるべきではない旨を注記する。
【0037】
さらなる実施形態において、変調制御システム112は、変調可能な光源102の駆動電流を高周波(RF)範囲の周波数で変調することができる。制御システム112が変調可能な光源102を駆動する特定の周波数は、トライアルおよびエラーから選択することができるということがさらに本明細書において注記される。例えば、実施される変調周波数は、変調可能な光源102からの照明のコヒーレンス長を光学計測システム100の特徴光路長を下回るよう縮小する役目をする周波数であり得る。例えば、光学計測システム100の特徴光路長は、光学計測ツール100の2つ以上の反射面の間の距離を有することができる。他の例として、コヒーレンス長もフリンジビジビリティカーブ(干渉縞の鮮明度曲線)(上記に示すように)も光源102の変調を行うために測定される必要はないということが認識される。この意味で、制御システム112は、満足な検出器110出力が実現されるまで、制御システム112の変調周波数をスイープすることができる。
【0038】
さらなる本発明の一態様において、光学計測ツール100の変調制御システム112は、通信可能に変調可能な光源102に接続されている1つ以上のプロセッサ(図示せず)を備え、光源102の変調を制御するよう構成することができる。変調制御システム112は、キャリア媒体114(例えば、非一時的なストレージ媒体)にプログラム命令の組116として保存された変調制御アルゴリズム118を実行するよう構成される。プログラム命令116は、制御システム112の1つ以上のプロセッサが本開示に記載の種々のステップの1つ以上を実行するように構成されている。
【0039】
本開示全体にわたり記載の変調制御に関連する種々の制御ステップは、単一コンピューターシステムまたは代替的に複数のコンピューターシステムによって実行され得ることが認識されよう。さらに、システム100の異なるサブシステムは、上記で説明したステップの少なくとも一部を実行するのに適したコンピューターシステムを備えることができる。さらに、1つ以上のコンピューターシステムは、本明細書において記載の実施形態のどの方法の他のステップも実行するよう構成することができる。
【0040】
変調制御システム112は、パーソナルコンピューターシステム、メインフレームコンピューターシステム、ワークステーション、イメージコンピューター、パラレルプロセッサ、または当技術分野において知られているその他の装置を備えることができるが、これらに限定されない。一般に、「コンピューターシステム」、「コンピューティングシステム」または「コンピューター制御システム」という用語は、記憶媒体からの命令を実行する1つ以上のプロセッサを有する如何なる装置も包含するため広義に定義され得る。
【0041】
本明細書に記載されるようなプログラム命令116が実行する方法は、キャリア媒体114を介して伝送または保存され得る。キャリア媒体は、ワイヤー、ケーブル、またはワイヤレス伝送リンクなどの伝送媒体であってよい。キャリア媒体は、読み取り専用メモリ、ランダムアクセスメモリ、磁気または光ディスク、または磁気テープなどの非一時的ストレージ媒体を含むことができる。
【0042】
他の実施形態において、制御システム112は、当該技術分野で公知の如何なる方法において、光源102またはシステム100のその他の如何なるサブシステムにも通信可能に接続することができる。例えば、変調制御システム112は、ワイヤラインまたはワイヤレス接続を介してシステム100の種々のサブシステムに通信可能に接続することができる。
【0043】
本発明の他の実施形態において、変調可能な光源102は、当技術分野において知られている狭帯域の光源を含むことができる。一実施形態において、光源102は、1つ以上のレーザーを含むことができるが、これに限定されない。例えば、レーザー光源は、1つ以上の半導体レーザーを含むことができるが、これに限定されない。別例では、レーザー源は、ダイオード励起固体レーザーを含むことができるが、これに限定されない。別例では、レーザー源は、スーパーコンティニウムレーザーを含むことができるが、これに限定されない。さらに、第1のスペクトル領域に照明を放射する第1の光源は、第2のスペクトル領域に照明を放射する第2の光源と結合させることができる。
【0044】
その他の態様において、検出器110は、レフレクトメータ、スキャタロメータ、分光計、またはエリプソメータ構成において実施するのに最適な当該技術分野で公知の光検出システムを備えることができる。例えば、検出器110は、CCDアレイCMOSアレイ、一次元フォトダイオードアレイ、二次元フォトダイオードアレイなどの少なくとも1つを含むことができるが、これらに限定されない。
【0045】
図4は、本発明の代替実施形態に係るマルチソース光源102を示す図である。一態様において、光学計測ツール100のマルチソース光源102は、2つ以上の単一光源を含み、それぞれの単一ソースが異なる出力波長を有する。一態様において、本発明は、安定強度バランスおよび複数の光源の制御を実現する。当業者は、一般的にレーザーおよびLEDのなどの、光源のON/OFF切替は、安定性の低下を招き、ノイズを増加させるということを認識するであろう。本出願人らは、不安定さおよびノイズ発生は、周期的な波形を満たす構成において制限されるということを理解している。このように、周期的な波形操作は、光源の平均的かつ安定した温度、電気、および光学特性を維持する役目を果たし、その結果、波長安定性およびノイズ低減を向上させる。
【0046】
本発明の一態様において、システム100の変調可能な光源102は、第1の波長(λ
1)の照明を生成するよう構成された第1の光源402a、第2の波長(λ
2)の照明を生成するよう構成された第2の光源402b、…、第Nの波長(λ
N)の照明を生成するよう構成された第Nの光源402cを含むことができる。
【0047】
本発明の追加の態様において、変調制御システム112は、当該技術分野において公知の手段によって(例えば、ワイヤラインまたはワイヤレス接続)、第1の光源402a、第2の光源402b、…、第Nの光源402cに通信可能に接続される。さらなる様態において、変調制御システム112は、光源402a〜402cのそれぞれの照明出力の波形を制御するのに適したマルチソース制御アルゴリズム120を実行するよう構成される。変調制御システム112(制御アルゴリズム120を介して)は、第1の波長の第1の照明波形(例えば、選択された周波数の段階的な波形)を生成するために、第1の光源402aの駆動電流を変調するよう構成される。さらに、変調制御システム112は、第2の波長の第2の照明波形を生成するために、第2の光源402bの駆動電流を変調するよう構成される。この方法において、第1の照明波形のパルスは、第2の照明波形のパルスに合わせてインターリーブし、第1の照明波形および第2の照明波形は選択された波形周波数を有する。結合された波形は、任意の数の成分波形を含むことができることが本明細書においてさらに注記される。このように、第1の照明波形のパルスは、第2の照明波形、…、第Nの波形のパルスに合わせてインターリーブされる。光源402a〜402cからの種々の波形のインターリーブは、多波長での時系列計測測定を可能にする。さらに、光源402a〜402cからの照明の変調が駆動電流変調で達成されるので、本発明は、光シャッター、チョッパーホイールなどの種々の光学機械的部品の必要性をなくす。そのようなものとして、
図4Aに示す実施形態は、光学計測ツール100における多波長強度制御に対し簡素化したアプローチを提供する。
【0048】
他の実施形態において、マルチソース光源102は、光源402a,402b,402cから発するビーム403a,403b,403cをそれぞれ結合させるよう構成された複数の波長結合器404a,404b,404cを含む。この点において、波長結合器404a〜404cは、空間的にビームを結合させる役目をし、変調制御システム112により実行されたアルゴリズム120によって実施されたソース波形の一時的なインターリービングを可能にする。波長のビームへの一時的なインターリービングおよび空間的な結合に次いで、結合された波形出力408は、光学計測ツール100の照明系104へ向けることができる。光源102は、ステアリングミラー406のような追加の光学素子を備えることができることがさらに注記される。本出願人は、
図4Aおよび上記に示す光学構成は限定的なものではなく、例示的なものと解釈される旨を注記する。光源402a,402b,…,402cの波形と空間的に結合および一時的にインターリーブさせるために、複数の同等の光学構成は実施されるということが本明細書において認識される。単一結合ビームへの多数のレーザービームの空間的な結合は概して、2011年5月16日に出願されたHillらの米国特許出願第13/108,892号に記載されており、その全体が本明細書に組み込まれる。
【0049】
一実施形態において、変調制御システム112によって実行される第1、第2、…、第Nの光源の変調は、レーザー式またはLED光源の駆動電流を切替えることを含む。この方法における光源駆動電流の切替は、光源402a〜402cのそれぞれの照明出力に段階的(例えば、ON/OFF)またはほぼ段階的な波形パターンを生成することができる。この点において、
図4Aに示し、使用されるマルチソースは、チャネル選択および相対的強度制御を「色」順次式に可能にする。本開示の目的は、用語「色」が各光源のプライマリー波長(例えば、ピーク波長)を説明するために使用されることである。さらに、用語「色」は、電磁スペクトルの特定の部分に適用すると解釈されるべきではない。所与の光源の波長は、可視スペクトルの外に存在し得ることが想定される。例えば、光源402a〜402cの出力のスペクトル領域は、可視、UV、およびIRスペクトル領域を含むことができる。
【0050】
図4Bは、異なる波長λ
1,λ
2,λ
3の3つの光源からのインターリーブ波形の組のグラフ450の概念図である。
図4Bに示すパルストレイン451は、光源の入力駆動電流またはそれぞれの波長(例えば、λ
1,λ
2,λ
N)の光源の出力強度のいずれかを表す。この点において、パルストレイン451は、波長λ
1のパルスの組452、波長λ
2のパルスの組454、…、波長λ
Nのパルスの組から成る。入力駆動電流(
図4Bに図示せず)、デューティサイクル(すなわち、所与の波長に対する各パルスの幅)、および出力電力(すなわち、
図4Bにおける所与の波長に対する各パルスの高さ)は、一般に各波長波形で異なり、所与の光学計測システムの要項に基づいて選択されるということが本明細書において注記される。さらに、駆動電流は、ゼロおよび公称ピーク電流の間で切替えることができるが、または代替として、さらに複雑な周期的方式(例えば、下限は、非ゼロ電流に選ばれ得る)に従うことが可能であるということが本明細書において認識される。波形の周波数、デューティサイクル、および、ピーク電流および電力レベルは、光源(例えば、レーザー)および計測ツール100の他の素子、これらはビームモニタ、検出器(例えば、1つ以上のCCD)、およびオートフォーカスサブシステムなど、の最適性能のために選択することができる。デューティサイクルおよび出力電力の変更もまた複数の光源402a〜402cの所望の強度レベルおよびバランスを実現することを支援し得ることがさらに注記される。パルストレイン451の波形の繰り返し周波数は約100Hzであってよいことがさらに認識される。そのようなものとして、本発明のマルチソースの繰り返し周波数は、本明細書で上述した光源102の単一ソースの変調周波数(例えば、RF周波数)よりもはるかに遅い。したがって、インターリーブされた色順次の動作(例えば、100Hz周波数範囲)の制御方式およびノイズ/コヒーレンス効果減少(例えば、RF周波数)の制御方式は、同時に実施することができる。この点において、制御システム112は、著しく異なる時間スケールで動作する複数の周期的波形を有する所与の光源(例えば、402a〜402c)を駆動することができる。例えば、光源402a,402b,402cの波形のインターリービングに加え、402a,402b,402cの1つ以上は、所与の単一ソースに対するコヒーレントアーチファクトを軽減するために、高速変調操作(RF周波数に従って)を受けることができる。
【0051】
本発明の他の態様において、光源402a〜402cの1つ以上は、当該技術分野において公知の広帯域光源を有することができる。一実施形態において、光源402a〜402cの1つ以上は、上記のようなHLSを有することができるが、これに限定されない。別例では、光源402a〜402cの1つ以上は、キセノンアーク灯を有することができる。他の例によると、光源402a〜402cの1つ以上は、ジュウテリウムアーク灯を有することができる。他の実施形態において、光源402a〜402cの1つ以上は、当技術分野において知られている如何なる放電プラズマ源も有することができるが、これに限定されない。他の実施形態において、光源402a〜402cの1つ以上は、レーザー駆動プラズマ源を有することができるが、これに限定されない。さらなる実施形態において、1つ以上のスペクトルフィルター(図示せず)は、1つ以上の広帯域光源のスペクトル出力をスペクトル的にフィルターするために、1つ以上の広帯域フィルターの出力と波長結合器404a〜404cの間に配置することができる。
【0052】
本発明の他の態様において、光源402a〜402cの1つ以上は、当技術分野において知られている狭帯域光源を有することができる。一実施形態において、光源402a〜402cの1つ以上は、1つ以上のレーザーを備えることができるが、これに限定されない。例えば、光源402a〜402cの1つ以上は、1つ以上の半導体レーザーを備えることができるが、これに限定されない。別例では、光源402a〜402cの1つ以上は、ダイオード励起固体レーザーを備えることができるが、これに限定されない。別例では、光源402a〜402cの1つ以上は、スーパーコンティニウムレーザーを備えることができるが、これに限定されない。他の実施形態において、光源402a〜402cの1つ以上は、1つ以上の発光ダイオードを備えることができるが、これに限定されない。上述した光源は限定を表すものではなく、例示的なものとして解釈されるに過ぎないことが当業者によって認識されよう。一般的な意味では、可視、赤外線、および紫外線スペクトルの範囲の照明を生成することができる光源は、光源402a〜402cの1つ以上において実施するのに適している。
【0053】
複数の光源の組402a〜402cは、狭帯域および広帯域の結合を含むことができることが本明細書においてさらに認識される。例えば、光源402a〜402cの1つ以上は、レーザー源を含むことができるが、残りの光源の1つ以上は、固定または波長切替可能スペクトルフィルターを備える広帯域灯(例えば、レーザー生成プラズマ源)からなる。
【0054】
図5は、本発明の代替実施形態に係る、強度切替能力を有するマルチソース光源102を示す。一態様において、光学計測ツール100のマルチソース光源102は、2つ以上の単一光源を含むことができ、各単一ソースは異なる出力波長を有する。追加の態様において、
図5のマルチソース光源102は、照明切替装置の組502a,502b,502cを有する。この点において、各光源402a,402b,402cの結合された出力ビーム408に対する強度寄与は、照明切替装置502a,502b,502cをそれぞれ利用することで、制御することができる。さらに、変調制御システム112は、照明切替アルゴリズムを介して照明切替装置502a〜502cを制御するよう構成することができ、それによって結合されたビーム408の各波長成分の強度を制御する。この方法において、変調制御システム112は、各波長λ
1,λ
2,…,λ
Nに関連する波形を制御することができるので、選択された周波数の結合された波形、デューティサイクル、および各波長成分の強度を伝送する。
【0055】
一実施形態において、照明切替装置502a,502b,502cの1つ以上は、第1の偏光子および第2の偏光子の間に配置されたポッケルセルを備えることができるが、これに限定されない。この点において、各波長チャネルλ
1、λ
2、およびλ
Nに関連するポッケルセルは、変調制御信号から伝送された信号に応答するデジタルON/OFF強度切替としての役目ができる。さらなる実施形態において、各ポッケルセルの切替周期は、検出器110の積分時間よりも随分短くてよく、ポッケルセルと所与の光源402a〜402cおよび/または検出器110の間の位相同期の必要を無くす。
【0056】
他の実施形態において、照明切替装置502a,502b,502cの1つ以上は、音弾性光学切替装置を備えることができるが、これに限定されない。一般的な意味では、当技術分野において知られている如何なる高速光学切替装置でもよい。
【0057】
図6は、本発明の一実施形態に係る、変調可能な光源102の1つ以上のスペクトル特徴を監視するよう構成されたスペクトル監視システム602を示す。ノイズおよびコヒーレントアーチファクトが軽減された構成(例えば、照明のコヒーレンスを軽減することによって)において、照明のスペクトル特性の的確な知識が望ましいということが本明細書において認識される。一実施形態において、スペクトル監視システム602は、各光源のピークまたは重心波長を監視するために利用することができる。照明ビームのスペクトル出力の正確な監視は、許容レベル未満のよう所与の照明ビームのコヒーレンス長を確実に軽減することができるので、スペクトル監視システム602は、駆動電流変調ダイオードレーザー式光源(本明細書において前述)において特に役立つ。この点において、スペクトル監視システム602の1つ以上の部分は光学計測ツール100の照明路604に沿って配置することができる。この意味では、スペクトル監視システム602は変調可能な光源102から発する照明の1つ以上のスペクトル特徴を測定することができる。一実施形態において、1つ以上のスペクトル特徴は、選択された波長範囲を超える強度スペクトル、目的とする1つ以上のスペクトルピークの位置(例えば、重心波長の位置)、目的とするスペクトルピークの半値全幅(FWHM)などを有することができるが、これらに限定されない。
【0058】
さらなる実施形態において、スペクトル監視システムは、通信可能に変調制御システム112に接続することができる。この点において、照明路604の照明のスペクトル計測の結果は、制御システム112に伝送することができる。さらなる実施形態において、変調制御システム112は、スペクトル監視プロセスの結果を今後の使用のために記憶媒体に記憶することができる。
【0059】
一実施形態において、スペクトル監視システム602は、光源102からの照明の1つ以上のスペクトル特徴をリアルタイムまたはほぼリアルタイムで監視することができる。例えば、スペクトル監視システム602は、光源102からの照明の1つ以上のスペクトル特徴のリアルタイム測定に適した分光計を有することができる。例えば、スペクトル監視システム602は、回折格子式分光計を有することができるが、これに限定されない。本出願人らは、回折格子式分光計は、本発明の光学計測ツールに使用される光源のスペクトル特徴(例えば、重心波長)の測定において特に役立つ旨を注記する。
【0060】
他の実施形態において、スペクトル監視システム602は、校正目的の光源102からの照明の1つ以上のスペクトル特徴を監視することができる。例えば、スペクトル監視システム602は、ツール設定校正プロセスにおける光源からの照明の1つ以上のスペクトル特徴を監視することができる。例えば、スペクトル監視システム602は、ツール設定校正プロセスにおける光源102からの照明の1つ以上のスペクトル特徴を測定することができるので、光学計測測定が校正対象物に行われる(すなわち、既知のパラメータ(例えば、既知のCD、既知の薄膜厚および/または構成物、既知のオーバーレイなど)を有する対象物)。計測測定(例えば、厚測定)の結果および照明の測定されたスペクトル特徴の結果を利用することで、制御システム112は、キャリア媒体114に保存されたスペクトル監視校正アルゴリズム119を実行する頃ができる。変調制御システム112は、校正試料の測定および測定されたスペクトル特性に基づき、光源102からの照明の1つ以上のスペクトル特性を周期的に校正または「再算出」することができる。さらに、スペクトル校正の周波数は、所与の光源のスペクトル安定性に依存し得る。
【0061】
一実施形態において、校正試料は、既知の薄膜厚を有する試料から成り得る。例えば、校正試料は、既知の酸化物層厚を有する試料(例えば、既知の酸化膜厚を有するシリコンWチップ)を含むことができるが、これに限定されない。この点において、校正試料の厚みを制御システム112によって実行される校正プロセス中に校正することができる。校正試料のスペクトル特徴は、システム100の各データチャネル(例えば、照明の全ての波長、偏光状態など)を使用し、周期的に監視することができる。スペクトル監視システム602による監視を基に、制御システム112は、光源102のスペクトル特性(例えば、スペクトルの各波長値)を算出することができる。
【0062】
追加の態様において、変調制御システム112は、所与の試料の1つ以上のスペクトル特徴測定からの結果を制御システム112の試料モデリングソフトウェアに入力することができる。この点において、制御システム112によって実行される試料モデリングソフトウェアは、試料から測定されたデータを所与の光学モデルと関連付ける役目をする。実施される光学モデルは、スペクトル監視システム602によって取得した所与の被験試料の1つ以上のスペクトル特徴を入力として利用することができる。
【0063】
スペクトル監視システム602は、当該技術分野において公知の如何なるスペクトル監視/測定装置も有することができることが本明細書において注記される。例えば、スペクトル監視装置602は、当該技術分野において公知の如何なる分光計(例えば、回折格子式分光計)も備えることができるが、これに限定されない。
【0064】
図7Aは、本発明の光学計測ツール100において実施するのに適した変調された励起源を備える光駆動プラズマ照明サブシステム700を示すブロック図である。定電流モードで駆動される励起源(例えば、励起レーザー)を備えるプラズマ源の動作は、光学計測用途に望ましいレベルのノイズよりも大きいノイズを引き起こすということが本明細書において注記される。本発明は、プラズマ源の出力照明におけるノイズレベルを減少させるためのプラズマ源の励起レーザーの駆動電流変調に関する。特に、光駆動(例えば、レーザー駆動)照明サブシステム700の励起制御システム701は、励起源702を検出器110の帯域幅よりも大きい周波数で変調することによってノイズレベルを特定の周波数帯域幅内に減少させる役目を果たすことができる。この点において、レーザー変調が、検出された目的の周波数範囲に対してエイリアスを生じないように変調周波数が選択される。
【0065】
一態様において、光学計測ツール100のプラズマ式照明サブシステム700は、照明を生成する(例えば、選択された波長の照明を生成する)よう構成された変調可能な励起源702と、選択されたガス(例えば、アルゴン、キセノン、水銀など)を収容するのに適するプラズマセル706を有することができる。さらに、サブシステム700は、励起源702から発するビームを調整および成形するよう構成され、さらにビームをプラズマセル706のバルブ内に収容されたガスの容量内に集光するよう構成された光学系の組704(例えば、集光光学系、成形光学系、調整光学系など)を備えることができる。サブシステム700のビーム成形および調整素子は、プラズマセル706における励起効果を最大限にするために(または少なくとも励起効果の選択されたレベルを達成するために)励起源702から発するビームの成形を最適化または少なくとも改善する目的で利用され得ることが本明細書において注記される。さらに、ビーム成形光学系はプラズマセル706内のプラズマの成形を最適化するのに使用することができる。励起源702からの光をプラズマセル706内に収容されたガスの容量内に集光することによって、プラズマセル706のバルブ内のガスまたはプラズマによりエネルギーが吸収され、プラズマを生成または維持するためにガス種を「励起」させる。
【0066】
さらなる態様において、プラズマセル706によって放射された広帯域照明は、光学計測ツール100の照明光学系104を介して試料106へと向けられる。次いで、光学計測ツール100の集光光学系108は、試料106から反射または散乱した照明を検出器110へ向ける。
【0067】
不活性ガス種内におけるプラズマの生成は一般的に、2007年4月2日に出願された米国特許出願第11/695,348号;2008年10月14日に発行された米国特許番号第7,435,982に記載されており、それら全体が参考として本明細書に組み込まれる。一般的な意味において、サブシステム700は、当該技術分野において公知の如何なるプラズマ式光源まで拡大解釈されよう。
【0068】
図7Bは、本発明の一実施形態に係る、レーザー駆動式照明サブシステム700を示す概略図である。一実施形態において、サブシステム700の光学系704は、変調された励起源702からのビームを調整/成形するために構成されたビーム調整/成形光学系717を備えることができるが、これに限定されない。さらに、光学系704は、励起源702からの照明をプラズマセル706のバルブ内に収容されたガス707の容量内に集光するのに適した集光光学系の組716を備えることができる。
【0069】
追加の実施形態において、サブシステム700は、種々の追加の光学素子を備えることができる。例えば、サブシステム700は、変調された励起源702らの照明721をプラズマセル706に向けるのに適したステアリングミラー718を備えることができるが、これに限定されない。さらなる例において、サブシステム700は、励起源702からの照明をプラズマセル706に伝送するのに適し、さらにプラズマセル706によって放射された(そして楕円720によって方向付けられた)広帯域照明を光学計測ツール100(本明細書において前述)の照明光学系の組104に向かう出力路724に沿って反射するのに適したスプリッター/ダイクロイックミラー722を備えることができるが、これに限定されない。
【0070】
本出願人は、レーザー駆動照明サブシステム700の上記の説明は、決して限定的なものではなく、例示的なものに過ぎないと解釈されよう旨を注記する。レーザー駆動プラズマ照明サブシステムは、本発明において実施するのに適していることが本明細書において注記される。
【0071】
例えば、楕円720は、励起源702から発する照明のための集光素子として働くよう構成されてもよく、楕円720は、プラズマセル706のガス707の容量内に照明721を集光する役目ができる。この点において、楕円720は、励起源702からのレーザー照明をプラズマセル706内へ集光し、プラズマセル706からの広帯域放射を計測ツール100の下流照明光学系104に向けるよう構成することができる。この実施形態において、サブシステム700は、励起源702から発する照明の視準を合せるよう構成されたコリメータ(図示せず)を含むことができる。
【0072】
他の例によると、システム700は、ビームスプリッター722を必要とすることなく、プラズマセル706によって放射された広帯域放射724から励起源702によって放射された照明721を分離させるよう構成される。この点において、光学計測ツール100の照明光学系104は、プラズマセル706から直接広帯域放射724を受けるよう構成することができる。例えば、励起源NA721は、プラズマ照射NA724から分離することができるため、励起源NA721は、垂直に配向される一方、プラズマ放射は水平路に沿って集光される。
【0073】
追加の態様において、照明サブシステム700は、変調可能な励起源702に通信可能に接続される励起制御システム701を備え、変調制御システム701は、プラズマセル706内に収容されたプラズマ/ガス内に時変性を与えるために変調可能な励起源702からの駆動電流を選択された変調周波数で変調するよう構成される。例えば、時変性は、プラズマセル706内のプラズマ/ガス内への時変性熱分布を含むことができるが、これに限定されない。さらなる態様において、励起制御システム701は、キャリア媒体114内にプログラム命令の組116として保存された励起制御アルゴリズム720を介して、変調可能な励起源702を制御することができる。
【0074】
一実施形態において、照明サブシステム700の変調可能な励起源702は、1つ以上のレーザーを含むことができるが、これに限定されない。本出願人は、明確にするために、照明光学系104から下流に存在する光学計測ツール100の種々の部品は
図7Bに示していないとさらに述べている。しかし本出願人は、本明細書において前述された光学計測ツール100の種々の部品およびサブシステムは、
図7Aおよび7Bに示す光駆動プラズマ源まで拡大解釈されよう旨を注記する。さらに、
図7Aおよび7Bに示す光持続プラズマ源は、本明細書において前述のレフレクトメータ、スキャタロメータ、エリプソメータ、または分光計構成において実施することができる。
【0075】
励起源702の変調の周波数は、検出器110内に生じるエイリアスを最小限に抑えるために光学計測ツール100の検出機器のナイキスト周波数を十分に上回るべきことが本明細書において注記されている。
【0076】
さらに、変調の深さは、プラズマ内の電力密度をプラズマが維持できなくなるレベルまで減少させることなく、大きな特徴変動がプラズマセル706のプラズマ内において達成されるよう選択されなければならない。さらなる態様において、励起制御システム701は、レーザー励起源702の駆動電流を変調する役目ができるので、その結果、励起レーザー強度および波長を変調する。励起源702の光出力における強度および波長の変調は、振動特徴(例えば、温度分布)をプラズマセル706のプラズマ内に生じさせる役目をすることができる。プラズマセル706からのプラズマ放射は、光学システムを介して撮像されたプラズマの空間的な延伸を制限する1つ以上の開口を含む多数の光学部品を概して通過するので、プラズマ源の空間分布の変調は、光源から収集された空間的に一体化した電力の変調と同桁に寄与することができる。本出願人らは、約20kHz〜40kHzの変調周波数の振幅変調の広い範囲にわたって著しいノイズレベルの低下を見出している。本出願人らは、励起源702の矩形波および正弦波変調は、ノイズレベルの低下に効果的であるとも示している。本出願人らは、上記の周波数範囲および波形のタイプは、決して限定的なものではなく、例示目的で提示されたにすぎない旨を注記する。種々の変調波形および周波数範囲は本発明の範囲内であると想定される。
【0077】
上述のプラズマ特徴の制御および各検出器試料の複数の変調周期を積分することによって、照明サブシステム700は、全体的な光学計測ツール100の全体のノイズレベルへのランダムな影響を低減する役目ができると本明細書においてさらに注記される。
【0078】
上述した方法の実施形態はそれぞれ、本明細書に記載の如何なる他の方法の如何なる他のステップをも含み得ることが本明細書においてさらに考察される。さらに、上述した方法のそれぞれは、本明細書に記載の如何なるシステムによっても実行され得る。
【0079】
本明細書に記載の本発明の主題の特定の態様を図示および説明しているが、当業者であれば、本明細書における教示を基に、本明細書に記載の発明の主題およびその広い態様から逸脱することなく変更および修正を行うことができ、したがって、添付の特許請求の範囲はそれらの範囲において包含し、全てのそのような変更および修正は本明細書に記載の発明の主題の真の趣旨および範囲において包含するということが明らかとなるであろう。
【0080】
さらに、本発明は、添付の特許請求の範囲によって定義されることが理解される。本発明の特定の実施形態が示されているが、上記開示の範囲および趣旨ら逸脱することなく本発明の種々の修正および実施形態が当業者によって成されることは明らかである。したがって、本発明の範囲は本明細書に添付の特許請求の範囲によってのみ限定されるべきである。本開示およびその付随する利点の多くは上述の説明によって理解され、開示した本発明の主題から逸脱することなく、またはその要素の利点を全て犠牲にすることなく、構成要素の形式、構成、および配置における種々の変更が成されることが明らかであると考察される。記載された形式は例示的なものに過ぎず、後述の特許請求の範囲がそれらの変形例を包合および有することを意図している。