特許第6988761号(P6988761)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越半導体株式会社の特許一覧

特許6988761半導体シリコンウェーハの洗浄処理装置および洗浄方法
<>
  • 特許6988761-半導体シリコンウェーハの洗浄処理装置および洗浄方法 図000002
  • 特許6988761-半導体シリコンウェーハの洗浄処理装置および洗浄方法 図000003
  • 特許6988761-半導体シリコンウェーハの洗浄処理装置および洗浄方法 図000004
  • 特許6988761-半導体シリコンウェーハの洗浄処理装置および洗浄方法 図000005
  • 特許6988761-半導体シリコンウェーハの洗浄処理装置および洗浄方法 図000006
  • 特許6988761-半導体シリコンウェーハの洗浄処理装置および洗浄方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6988761
(24)【登録日】2021年12月6日
(45)【発行日】2022年1月5日
(54)【発明の名称】半導体シリコンウェーハの洗浄処理装置および洗浄方法
(51)【国際特許分類】
   H01L 21/304 20060101AFI20211220BHJP
【FI】
   H01L21/304 647Z
   H01L21/304 642E
   H01L21/304 642D
   H01L21/304 642B
   H01L21/304 622Q
   H01L21/304 622D
【請求項の数】9
【全頁数】11
(21)【出願番号】特願2018-192672(P2018-192672)
(22)【出願日】2018年10月11日
(65)【公開番号】特開2020-61483(P2020-61483A)
(43)【公開日】2020年4月16日
【審査請求日】2020年9月14日
(73)【特許権者】
【識別番号】000190149
【氏名又は名称】信越半導体株式会社
(74)【代理人】
【識別番号】100102532
【弁理士】
【氏名又は名称】好宮 幹夫
(74)【代理人】
【識別番号】100194881
【弁理士】
【氏名又は名称】小林 俊弘
(72)【発明者】
【氏名】五十嵐 健作
【審査官】 山口 祐一郎
(56)【参考文献】
【文献】 特開2001−102343(JP,A)
【文献】 特開2017−219409(JP,A)
【文献】 特開2007−273911(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/304
(57)【特許請求の範囲】
【請求項1】
研磨後の半導体シリコンウェーハを洗浄する半導体シリコンウェーハの洗浄方法であって、
前記研磨後の半導体シリコンウェーハをオゾン水に浸漬する研磨後のオゾン水処理工程と、
前記半導体シリコンウェーハを、オゾン水に浸漬するとともに、超音波を印加しながら常温で洗浄する第一の超音波オゾン水処理を行う工程と、
該第一の超音波オゾン水処理を行う工程後、前記半導体シリコンウェーハを前記オゾン水から引き出し、回転させるウェーハ回転処理を行い、該ウェーハ回転処理後の前記半導体シリコンウェーハを、再び、オゾン水に浸漬するとともに、超音波を印加しながら常温で洗浄する第二の超音波オゾン水処理を行う工程と
を有し、前記第二の超音波オゾン水処理を行う工程を1回以上行い、その後、前記半導体シリコンウェーハをフッ酸に浸漬するフッ酸処理工程と、該フッ酸処理工程後の半導体シリコンウェーハを、オゾン水に浸漬するオゾン水処理工程とを行うことを特徴とする半導体シリコンウェーハの洗浄方法。
【請求項2】
前記第二の超音波オゾン水処理を行う工程をn回行うとしたときに、前記ウェーハ回転処理における前記半導体シリコンウェーハの回転角度を、360°/(1+n)とすることを特徴とする請求項1に記載の半導体シリコンウェーハの洗浄方法。
【請求項3】
前記第二の超音波オゾン水処理を行う工程を2回行うことを特徴とする請求項1又は請求項2に記載の半導体シリコンウェーハの洗浄方法。
【請求項4】
前記半導体シリコンウェーハを純水に浸漬する純水処理工程を有し、該純水処理工程を少なくとも前記フッ酸処理工程の前に行うことを特徴とする請求項1から請求項3のいずれか一項に記載の半導体シリコンウェーハの洗浄方法。
【請求項5】
前記各工程で出た廃液のうちオゾン水及び純水の廃液を回収し、再利用することを特徴とする請求項4に記載の半導体シリコンウェーハの洗浄方法。
【請求項6】
前記各工程のうちオゾン水を用いる工程のオゾン水濃度を10ppm以上とすることを特徴とする請求項1から請求項5のいずれか一項に記載の半導体シリコンウェーハの洗浄方法。
【請求項7】
前記研磨後の半導体シリコンウェーハを、研磨剤としてシリカを用いて研磨された半導体シリコンウェーハとすることを特徴とする請求項1から請求項6のいずれか一項に記載の半導体シリコンウェーハの洗浄方法。
【請求項8】
研磨後の半導体シリコンウェーハを洗浄するための半導体シリコンウェーハの洗浄処理装置であって、
前記研磨後の半導体シリコンウェーハをオゾン水に浸漬するための、オゾン水を充填した第一のオゾン水槽と、
前記半導体シリコンウェーハをフッ酸に浸漬するための、フッ酸を充填したフッ酸槽と、
前記フッ酸に浸漬した後の前記半導体シリコンウェーハをオゾン水に浸漬するための、オゾン水を充填した第二のオゾン水槽と、
前記半導体シリコンウェーハをオゾン水に浸漬して、超音波を印加しながら洗浄するための、超音波印加手段を有するオゾン水槽と、
前記半導体シリコンウェーハを、前記超音波印加手段を有するオゾン水槽から取り出し、回転させるためのウェーハ回転処理手段と
を有するものであることを特徴とする半導体シリコンウェーハの洗浄処理装置。
【請求項9】
前記オゾン水槽に充填するオゾン水が、濃度10ppm以上のものであることを特徴とする請求項8に記載の半導体シリコンウェーハの洗浄処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体シリコンウェーハの洗浄処理装置および洗浄方法に関する。
【背景技術】
【0002】
従来、研磨直後のウェーハ面に研磨剤が付着しているウェーハをバッチ式洗浄(ディップ式洗浄)で洗浄する場合、研磨剤等に含まれる有機物やシリカ粒子を落とすためにSC1(アンモニア水と過酸化水素水の混合溶液)を用いた洗浄を行うことが一般的であり必須であった。
【0003】
図2は、従来の研磨後の半導体シリコンウェーハの洗浄フローの一例を示す図である。
【0004】
従来の洗浄フローは、図2に示すように研磨後のウェーハをSC1と超音波によって研磨剤を除去した後、純水処理、フッ酸による酸化膜除去によるパーティクルと金属汚染の除去が行われ、オゾン水による再酸化による酸化膜形成後、純水処理を行った後、乾燥処理が行われる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特願2015−023069号
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところが、SC1は異方性エッチングを伴う薬液であり、ウェーハ面上に突起状の欠陥が発生するという問題や表面粗さが悪化するという問題があった。
【0007】
また、SC1のような薬品は環境負荷が高く廃水処理が必要であることや、温調機構が必要であることのために、非常にコストが高いという問題がある。
【0008】
一方、スピン洗浄方法において、分子量10,000以下である高分子の中性水溶液を基板に供給し、高分子を基板から脱離させ、オゾンを溶解した溶液で洗浄することが開示されている(特許文献1)。
【0009】
しかしながら、バッチ式洗浄方法において、上記問題を解決する方法は提案されていない。
【0010】
本発明は、上記問題を解決するためになされたもので、従来の半導体シリコンウェーハの洗浄方法におけるウェーハ面上の突起状の欠陥の発生や表面粗さの悪化を抑制してウェーハ品質を向上させることができる半導体シリコンウェーハの洗浄方法及び洗浄処理装置を提供することを目的とする。
また、従来よりも、コストを削減することができる半導体シリコンウェーハの洗浄方法及び洗浄処理装置を提供することも目的とする。
【課題を解決するための手段】
【0011】
上記課題を解決するため、本発明は、
研磨後の半導体シリコンウェーハを洗浄する半導体シリコンウェーハの洗浄方法であって、
前記研磨後の半導体シリコンウェーハをオゾン水に浸漬する研磨後のオゾン水処理工程と、
前記半導体シリコンウェーハを、オゾン水に浸漬するとともに、超音波を印加しながら常温で洗浄する第一の超音波オゾン水処理を行う工程と、
該第一の超音波オゾン水処理を行う工程後、前記半導体シリコンウェーハを前記オゾン水から引き出し、回転させるウェーハ回転処理を行い、該ウェーハ回転処理後の前記半導体シリコンウェーハを、再び、オゾン水に浸漬するとともに、超音波を印加しながら常温で洗浄する第二の超音波オゾン水処理を行う工程と
を有し、前記第二の超音波オゾン水処理を行う工程を1回以上行い、その後、前記半導体シリコンウェーハをフッ酸に浸漬するフッ酸処理工程と、該フッ酸処理工程後の半導体シリコンウェーハを、オゾン水に浸漬するオゾン水処理工程とを行うことを特徴とする半導体シリコンウェーハの洗浄方法を提供する。
【0012】
このような半導体シリコンウェーハの洗浄方法であれば、ウェーハを回転させることによって、ウェーハ面内だけでなくエッジ部分に付着する研磨剤を効率よく除去することができ、ウェーハ品質を向上させることが可能である。
また、ウェーハのエッチングを伴わない洗浄なので、表面粗さと突起状欠陥を改善することができる。
さらに、オゾン水を使用することで常温処理が可能であるため、コストを削減することができる。
【0013】
またこの場合、前記第二の超音波オゾン水処理を行う工程をn回行うとしたときに、前記ウェーハ回転処理における前記半導体シリコンウェーハの回転角度を、360°/(1+n)とすることが好ましい。
【0014】
このような洗浄方法であれば、ウェーハの面内だけでなくエッジ部分も超音波を均等に当てることが可能であり、ウェーハ品質をさらに向上させることができる。
【0015】
またこの場合、前記第二の超音波オゾン水処理を行う工程を2回行うことが好ましい。
【0016】
このような洗浄方法であれば、実際の製造工程においてスループットの低下が発生することがない。
【0017】
またこの場合、前記半導体シリコンウェーハを純水に浸漬する純水処理工程を有し、該純水処理工程を少なくとも前記フッ酸処理工程の前に行うことが好ましい。
【0018】
このような洗浄方法であれば、ウェーハ品質をより確実に向上させることができる。
【0019】
またこの場合、前記各工程で出た廃液のうちオゾン水及び純水の廃液を回収し、再利用することが好ましい。
【0020】
このような洗浄方法であれば、廃液の再利用ができるので、コスト削減に繋げることができる。
【0021】
またこの場合、前記各工程のうちオゾン水を用いる工程のオゾン水濃度を10ppm以上とすることが好ましい。
【0022】
このような洗浄方法であれば、ウェーハ品質をより確実に向上させることができる。
【0023】
またこの場合、前記研磨後の半導体シリコンウェーハを、研磨剤としてシリカを用いて研磨された半導体シリコンウェーハとすることが好ましい。
【0024】
このような洗浄方法であれば、第一及び第二の超音波オゾン水処理を行う工程によって、有機物だけでなくシリカも除去され、その後、フッ酸処理によって自然酸化膜を除去することで、シリカと金属汚染を取り除くことができるため、ウェーハ品質をより確実に向上させることができる。
【0025】
さらに、本発明は、
研磨後の半導体シリコンウェーハを洗浄するための半導体シリコンウェーハの洗浄処理装置であって、
前記研磨後の半導体シリコンウェーハをオゾン水に浸漬するための、オゾン水を充填した第一のオゾン水槽と、
前記半導体シリコンウェーハをフッ酸に浸漬するための、フッ酸を充填したフッ酸槽と、
前記フッ酸に浸漬した後の前記半導体シリコンウェーハをオゾン水に浸漬するための、オゾン水を充填した第二のオゾン水槽と、
前記半導体シリコンウェーハをオゾン水に浸漬して、超音波を印加しながら洗浄するための、超音波印加手段を有するオゾン水槽と、
前記半導体シリコンウェーハを、前記超音波印加手段を有するオゾン水槽から取り出し、回転させるためのウェーハ回転処理手段と
を有するものであることを特徴とする半導体シリコンウェーハの洗浄処理装置を提供する。
【0026】
このような半導体シリコンウェーハの洗浄処理装置であれば、ウェーハを回転させることによって、ウェーハ面内だけでなくエッジ部分に付着する研磨剤を効率よく除去することができ、ウェーハ品質を向上させることが可能となる。
また、ウェーハのエッチングを伴わない洗浄が可能となり、表面粗さと突起状欠陥を改善することができる。
さらに、オゾン水を使用することで常温処理が可能となるため、コストを削減することができる装置となる。
【0027】
またこの場合、前記オゾン水槽に充填するオゾン水が、濃度10ppm以上のものであることが好ましい。
【0028】
このような半導体シリコンウェーハの洗浄処理装置であれば、ウェーハ品質をより確実に向上させることができる。
【発明の効果】
【0029】
本発明の半導体シリコンウェーハの洗浄方法及び洗浄処理装置であれば、ウェーハを回転させることによって、ウェーハ面内だけでなくエッジ部分に付着する研磨剤を効率よく除去することができ、ウェーハ品質を向上させることが可能となる。
また、ウェーハのエッチングを伴わない洗浄が可能となり、表面粗さと突起状欠陥を改善することができる。
さらに、オゾン水を使用することで常温処理が可能となるため、コストを削減することができる。
【図面の簡単な説明】
【0030】
図1】本発明の研磨後の半導体シリコンウェーハの洗浄フローの一例を示す図である。
図2】従来の研磨後の半導体シリコンウェーハの洗浄フローの一例を示す図である。
図3】本発明の第二の超音波オゾン水処理を行う工程を2回繰り返した場合を示すフロー図である。
図4】本発明の第二の超音波オゾン水処理を行う工程を2回繰り返した場合の半導体シリコンウェーハの回転角度を示した図である。
図5】比較例及び実施例における洗浄後の半導体シリコンウェーハのヘイズ及び突起状欠陥の数を示す図である。
図6】本発明の半導体シリコンウェーハの洗浄処理装置の一例を示す図である。
【発明を実施するための形態】
【0031】
本発明者は、上記の問題を解決するために鋭意検討を重ねた結果、SC1の様なアルカリ性の薬液を使用せずに、研磨直後の研磨剤が全面に付着しているウェーハをシリコンのエッチングの伴わない薬液で、常温かつpH=7.0以下の状態で洗浄を行うことによってウェーハ上の欠陥を低減し、表面粗さの悪化を防止することができることを見出した。
【0032】
また、SC1の代替として、研磨剤を除去する方法としてオゾン水と超音波を併用した洗浄方法(超音波オゾン水処理)を使用し、かつ、ウェーハの回転角度を変えて超音波を印加したオゾン水処理を複数回行うことによって従来以上の表面品質にすることができることを見出した。
【0033】
さらに、超音波オゾン水処理では常温処理や廃水の再利用ができるので、コスト削減に繋がることを見出し、本発明を完成させた。
【0034】
以下、本発明について具体的に説明するが、本発明はこれに限定されるものではない。
【0035】
まず、本発明の半導体シリコンウェーハの洗浄処理装置について説明する。
【0036】
本発明の半導体シリコンウェーハの洗浄処理装置は、研磨後の半導体シリコンウェーハを洗浄するための半導体シリコンウェーハの洗浄処理装置であって、前記研磨後の半導体シリコンウェーハをオゾン水に浸漬するための、オゾン水を充填した第一のオゾン水槽と、前記半導体シリコンウェーハをフッ酸に浸漬するための、フッ酸を充填したフッ酸槽と、前記フッ酸に浸漬した後の前記半導体シリコンウェーハをオゾン水に浸漬するための、オゾン水を充填した第二のオゾン水槽と、前記半導体シリコンウェーハをオゾン水に浸漬して、超音波を印加しながら洗浄するための、超音波印加手段を有するオゾン水槽と、前記半導体シリコンウェーハを、前記超音波印加手段を有するオゾン水槽から取り出し、回転させるためのウェーハ回転処理手段とを有するものであることを特徴とする半導体シリコンウェーハの洗浄処理装置である。
【0037】
図6は、本発明の半導体シリコンウェーハの洗浄処理装置の一例を示す図である。
【0038】
半導体シリコンウェーハの洗浄処理装置1において、第一のオゾン水槽2は、オゾン水が充填されており、研磨直後の研磨剤が全面に付着している半導体シリコンウェーハWを浸漬することで、オゾン水処理で研磨剤を除去するとともに、半導体シリコンウェーハの表面に酸化膜を形成させる。
【0039】
超音波印加手段を有するオゾン水槽3は、縦に置かれた半導体シリコンウェーハWをオゾン水に浸漬することができる。また、オゾン水槽に超音波を印加する超音波印加手段を有しているため、超音波を印加しながらオゾン水に半導体シリコンウェーハを浸漬することができる。
【0040】
超音波を印加しながらオゾン水に浸漬した半導体シリコンウェーハWは、ウェーハ回転処理手段4により、超音波印加手段を有するオゾン水槽3から取り出され、回転させた後、次の槽へ搬送される。尚、ここでは、超音波印加手段を有するオゾン水槽3は複数あり、半導体シリコンウェーハWを回転する毎に浸漬する槽を変えたが、同じ槽に浸漬するようにしてもよい。
【0041】
ウェーハ回転処理手段4は、半導体シリコンウェーハWのウェーハ面の中心を回転中心として、所定の回転角度分だけ回転させることができる。
【0042】
フッ酸槽5は、フッ酸が充填されており、半導体シリコンウェーハWを浸漬させ、フッ酸による酸化膜除去によるパーティクルと金属汚染の除去を行う。
【0043】
第二のオゾン水槽6は、オゾン水が充填されており、フッ酸に浸漬した後の半導体シリコンウェーハWをオゾン水に浸漬し、オゾン水によって自然酸化膜を形成し、面状態を仕上げる。
【0044】
このような半導体シリコンウェーハの洗浄処理装置であれば、ウェーハを回転させることによって、ウェーハ面内だけでなくエッジ部分に付着する研磨剤を効率よく除去することができ、ウェーハ品質を向上させることが可能となる。
また、半導体シリコンウェーハのエッチングを伴わない洗浄を行うことができ、表面粗さと突起状欠陥を改善することができる。
さらに、オゾン水を使用することで常温処理が可能となるため、コストを削減することができる。
【0045】
また、半導体洗浄処理装置のオゾン水槽に充填するオゾン水が、濃度10ppm以上のものであることが好ましい。
【0046】
このような半導体シリコンウェーハの洗浄処理装置であれば、ウェーハ品質をより確実に向上させることができる。
【0047】
次に、本発明の半導体シリコンウェーハの洗浄方法を説明する。
【0048】
本発明の半導体シリコンウェーハの洗浄方法は、研磨後の半導体シリコンウェーハを洗浄する半導体シリコンウェーハの洗浄方法であって、前記研磨後の半導体シリコンウェーハをオゾン水に浸漬する研磨後のオゾン水処理工程と、前記半導体シリコンウェーハを、オゾン水に浸漬するとともに、超音波を印加しながら常温で洗浄する第一の超音波オゾン水処理を行う工程と、該第一の超音波オゾン水処理を行う工程後、前記半導体シリコンウェーハを前記オゾン水から引き出し、回転させるウェーハ回転処理を行い、該ウェーハ回転処理後の前記半導体シリコンウェーハを、再び、オゾン水に浸漬するとともに、超音波を印加しながら常温で洗浄する第二の超音波オゾン水処理を行う工程とを有し、前記第二の超音波オゾン水処理を行う工程を1回以上行い、その後、前記半導体シリコンウェーハをフッ酸に浸漬するフッ酸処理工程と、該フッ酸処理工程後の半導体シリコンウェーハを、オゾン水に浸漬するオゾン水処理工程とを行うことを特徴とする半導体シリコンウェーハの洗浄方法である。
【0049】
このような半導体シリコンウェーハの洗浄方法であれば、ウェーハを回転させることによって、ウェーハ面内だけでなくエッジ部分に付着する研磨剤を効率よく除去することができ、ウェーハ品質を向上させることが可能である。
また、ウェーハのエッチングを伴わない洗浄なので、表面粗さと突起状欠陥を改善することができる。
さらに、オゾン水を使用することで常温処理が可能であるため、コストを削減することができる。
【0050】
図1は、本発明の研磨後の半導体シリコンウェーハの洗浄フローの一例を示す図である。
【0051】
図1に示すように、研磨直後の研磨剤が全面に付着している半導体シリコンウェーハを、オゾン水に浸漬させるオゾン水処理で酸化膜を形成後(研磨後のオゾン水処理工程)、常温で、超音波を印加したオゾン水処理(超音波オゾン水処理)を行い(第一の超音波オゾン水処理を行う工程)、[ウェーハ回転処理→超音波オゾン水処理](第二の超音波オゾン水処理を行う工程)を1回以上行って洗浄を行う。その後、フッ酸処理工程、オゾン水処理工程を行う。また、フッ酸処理工程前の純水処理工程、オゾン水処理工程後の純水処理工程、乾燥処理を行うことができる。
【0052】
ウェーハ回転処理は、半導体シリコンウェーハを、一度、超音波印加手段を有するオゾン水槽から取り出し、規定の回転角度まで回転させた後、次の槽へ搬送する。
【0053】
第二の超音波オゾン水処理を行う工程の繰り返し回数は増やすほどウェーハ品質は向上するが、2回であれば、実際の製造工程においてスループットの低下が発生しないので、第二の超音波オゾン水処理を行う工程は2回行うことが望ましい。
【0054】
ウェーハの回転角度は超音波印加手段を有するオゾン水槽内に縦に置かれたウェーハの6時方向を0°とした時に、所定の回転角度分だけ回転させることができる。
【0055】
また、第二の超音波オゾン水処理を行う工程をn回行うとすると、ウェーハの1回の回転角度は360°/(1+n)で表される角度であることが望ましい。
【0056】
図3は、本発明の第二の超音波オゾン水処理を行う工程を2回繰り返すことを示すフロー図である。図4は本発明の第二の超音波オゾン水処理を行う工程を2回繰り返した場合の半導体シリコンウェーハの回転角度を示した図である。
【0057】
図3に示すように、超音波オゾン水処理を行った後(第一の超音波オゾン水処理を行う工程)、ウェーハ回転処理を行い、次の超音波印加手段を有するオゾン水槽へ搬送し、再度、超音波オゾン水処理を行う(第二の超音波オゾン水処理を行う工程)。その後、ウェーハ回転処理を行い、さらに次の超音波印加手段を有するオゾン水槽へ搬送し、超音波オゾン水処理を行う(2回目の第二の超音波オゾン水処理を行う工程)。
【0058】
また、第二の超音波オゾン水処理を行う工程を2回繰り返した場合、図3、4に示すようにウェーハ回転処理の1回の回転角度は360°/(1+2)=120°とすることができる。
【0059】
このような第二の超音波オゾン水処理を行う工程を繰り返し行うことによってウェーハの面内だけでなくエッジ部分も超音波を均等に当てることが可能であり、ウェーハ品質をさらに向上させることができる。
【0060】
また、研磨後の半導体シリコンウェーハを、研磨剤としてシリカを用いて研磨された半導体シリコンウェーハとすることが好ましい。このようにすれば、超音波オゾン水処理によって有機物を完全に分解除去し、シリカもある程度除去することができる。その後フッ酸処理によって自然酸化膜を除去することでシリカと金属汚染を取り除き、最後にオゾン水によって自然酸化膜を形成し面状態を仕上げることができる。
【0061】
また、半導体シリコンウェーハを純水に浸漬する純水処理工程を有し、該純水処理工程を少なくとも前記フッ酸処理工程の前に行うことが好ましい。このようにすれば、ウェーハ品質をより確実に向上させることができる。もちろん、純水処理は、これに限らず各工程間や各工程前後に行ってもよい。
【0062】
また、上記各工程で出た廃液のうちオゾン水及び純水の廃液を回収し、再利用することが好ましい。このようにすれば、廃液の再利用ができるので、コスト削減に繋げることができる。
【0063】
また、上記各工程のうちオゾン水を用いる工程のオゾン水濃度を10ppm以上とすることが好ましい。このようなオゾン水濃度であれば、確実に自然酸化膜を形成することができ、ウェーハ品質をより確実に向上させることができる。
【実施例】
【0064】
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0065】
下記の比較例及び実施例における、半導体シリコンウェーハの評価は、洗浄後の半導体シリコンウェーハをKLA−Tencor社製のウェーハ検査装置SP5を用いて直径19nm以上のパーティクルについて、パーティクル測定することで行った。
【0066】
(実施例)
図1に示すような洗浄フローで、研磨後の研磨剤が付着している半導体シリコンウェーハを180秒間のオゾン水処理で酸化膜を形成後(オゾン水処理工程)、超音波を印加した超音波オゾン水処理を180秒間行い(第一の超音波オゾン水処理を行う工程)、[ウェーハ回転処理→180秒間の超音波オゾン水処理](第二の超音波オゾン水処理を行う工程)は2回繰り返し洗浄を行った。その後、純水処理、180秒間のフッ酸処理工程、180秒間のオゾン水処理工程、純水処理、乾燥処理をこの順で行った。また、実施例におけるすべての工程は常温で行った。
【0067】
第二の超音波オゾン水処理を行う工程の繰り返し回数が2回であるので、半導体シリコンウェーハの1回の回転角度は360/(1+2)=120°とした。
【0068】
また、実施例において、各工程で出た廃液のうちオゾン水及び純水の廃液は回収し再利用ができる。
【0069】
実施例における各工程のうちオゾン水を用いる工程のオゾン水濃度は10ppmとした。また、フッ酸処理工程のフッ酸洗浄液のフッ酸濃度は1.0質量%とした。
【0070】
(比較例)
図2に示すような洗浄フローで、研磨後の研磨剤の付着しているウェーハを純水処理した後、超音波を印加したSC1処理を180秒間行い、その後、純水処理、180秒間のフッ酸処理、180秒間のオゾン水処理、純水処理、乾燥処理を行った。SC1処理において使用したSC1洗浄液はアンモニア、過酸化水素水、超純水の混合比を1:1:10、SC1洗浄液の温度を80℃とした。また、フッ酸処理、オゾン水処理におけるオゾン水及びフッ酸の濃度は実施例と同様とした。
【0071】
図5は、比較例及び実施例における洗浄後の半導体シリコンウェーハのヘイズ及び突起状欠陥の数を示す図である。
【0072】
図5に示すように、SC1を使用した通常の洗浄条件で洗浄を行ったもの(比較例)とオゾン水と超音波を用いて洗浄を行ったもの(実施例)では、実施例のほうがヘイズ、突起状欠陥の数が共に減少し、改善した。
【0073】
また、LLS(Localized Light Scatterers:局所的な光散乱体)についても、実施例の方が、比較例よりも減少し、改善した。
【0074】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【符号の説明】
【0075】
1…半導体シリコンウェーハの洗浄処理装置、 2…第一のオゾン水槽、
3…超音波印加手段を有するオゾン水槽、 4…ウェーハ回転処理手段、
5…フッ酸槽、 6…第二のオゾン水槽、
W…半導体シリコンウェーハ。
図1
図2
図3
図4
図5
図6