IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケーエルエー−テンカー コーポレイションの特許一覧

特開2022-119894半導体試料内の瑕疵を検出又は精査するシステム
<>
  • 特開-半導体試料内の瑕疵を検出又は精査するシステム 図1A
  • 特開-半導体試料内の瑕疵を検出又は精査するシステム 図1B
  • 特開-半導体試料内の瑕疵を検出又は精査するシステム 図2
  • 特開-半導体試料内の瑕疵を検出又は精査するシステム 図3
  • 特開-半導体試料内の瑕疵を検出又は精査するシステム 図4
  • 特開-半導体試料内の瑕疵を検出又は精査するシステム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022119894
(43)【公開日】2022-08-17
(54)【発明の名称】半導体試料内の瑕疵を検出又は精査するシステム
(51)【国際特許分類】
   G01N 21/956 20060101AFI20220809BHJP
   G01N 25/72 20060101ALI20220809BHJP
【FI】
G01N21/956 A
G01N25/72 G
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022085749
(22)【出願日】2022-05-26
(62)【分割の表示】P 2019124766の分割
【原出願日】2015-02-11
(31)【優先権主張番号】61/939,135
(32)【優先日】2014-02-12
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】14/618,586
(32)【優先日】2015-02-10
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】ニコライデス レナ
(72)【発明者】
【氏名】マハーデーヴァン モハン
(72)【発明者】
【氏名】サルニク アレックス
(72)【発明者】
【氏名】ヤング スコット エイ
(57)【要約】
【課題】半導体試料において瑕疵を検出する、又は瑕疵を精査する方法及び装置を提供する。
【解決手段】システム200は、明視野(BF)モジュールを有し、BFモジュールは、試料216上にBF照明ビームを送り、BF照明ビームに反応して試料216から反射された出力ビームを検出する。また、システム200は、変調光反射率(MOR)モジュールを有し、MORモジュールは、試料216にポンプビーム及びプローブビームを送り、ポンプビーム及びプローブビームに対応するプローブスポットからのMOR出力ビームを検出する。システムは制御装置290を含み、複数のBFスポットからのBF出力ビームを分析して、試料216の表面又は近表面の瑕疵を検出し、複数のプローブスポットからのMOR出力ビームを分析して、試料216の表面より下に存在する瑕疵を検出する。
【選択図】図2
【特許請求の範囲】
【請求項1】
半導体試料内の瑕疵を検出又は精査するシステムであって、
試料上の明視野(BF)スポットにBF光源からBF照明ビームを送出し、前記BFスポット上に送出された前記BF照明ビームに応答して前記試料上の前記BFスポットから反射した出力ビームを検出するBFモジュールと、
前記試料上にポンプ光源から変調ポンプビーム及びプローブ光源からプローブビームを送出し、前記試料上に送出された前記プローブビームに応答して前記試料から反射した出力ビームを検出するMORモジュールと、
下記の動作を実行する、又は引き起こすように動作可能なプロセッサと、を含み、
前記BFモジュール及び前記MORモジュールは単一の装置内に組み込まれ、かつ、前記BF光源からの前記BF照明ビーム、前記ポンプ光源からの前記変調ポンプビーム、及び前記プローブ光源からの前記プローブビームは、前記単一の装置内の同一の対物レンズによって前記試料に誘導され、
前記動作が、
前記BFモジュールに、前記試料上の複数のBFスポットにおいて前記BF照明ビームを走査させ、前記複数のBFスポットからの出力ビームを検出させることと、
前記検出したBF出力ビームに基づいて、前記試料部分の表面特性又は近表面特性を特定することと、
前記検出したBF出力ビームに基づいて特定された、前記試料部分の特定済みの表面特性又は近表面特性に基づいて、前記試料の表面より下にさらなる瑕疵を有する可能性のある前記試料部分内の第1の候補位置を検知することと、
前記MORモジュールに、各候補位置に変調ポンプビーム及びプローブビームを送り、各候補位置に送られた各プローブビームに応答して、各候補位置からの変調光反射信号を検出させることと、
各候補位置における前記表面より下に存在する、空洞、粒子、材料の欠損、追加された材料、側壁角度の変化、垂直方向に対する側壁の変位、材料の密度変化の少なくともいずれかを含むフィーチャ特性を、当該候補位置から検出した前記変調光反射信号に基づいて特定すること、であり、
前記第1の候補位置は、銅充填貫通シリコンビア(TSV)を含む特定のTSV構造体に特有の表面特性又は近表面特性に基づいて検知される、システム。
【請求項2】
前記試料上の暗視野(DF)スポットにDF照明ビームを送出し、前記DFスポット上に送出された前記DF照明ビームに応答して前記試料上の前記DFスポットから反射したDF出力ビームを検出するDFモジュールをさらに備え、
前記プロセッサが、以下の動作を実行する、または引き起こすように動作可能であって、
前記動作が、
前記BF照明ビームが前記試料部分を走査するときに、又は、前記試料部分について前記暗視野(DF)ビームを走査することに応答して、前記試料部分から散乱された前記暗視野(DF)出力ビームを検出することと、
前記検出したDF出力ビームに基づいて、前記試料部分の表面特性又は近表面特性を特定することと、
前記検出したDF出力ビームに基づく前記試料部分の前記表面特性又は近表面特性に基づいて、第2の複数の候補位置を検知することと、
前記第2の候補位置にそれぞれ送られた各プローブビームに応答して第2の各候補位置からの変調光反射信号を検出することと、
第2の各候補位置において前記表面より下に存在するフィーチャ特性を、当該第2の候補位置から検出された前記変調光反射信号に基づいて特定すること、
である、請求項1に記載のシステム。
【請求項3】
前記第1の候補位置及び前記第2の候補位置は、表面特性又は近表面特性を表面下の瑕疵の存在と関連付けることによって検知される、請求項2に記載のシステム。
【請求項4】
前記第1の候補位置及び前記第2の候補位置は、前記試料部分の平面構造のサイズ平均から所定量変位している前記試料部分のサブエリアとそれぞれ対応付けられる、請求項3に記載のシステム。
【請求項5】
前記第2の候補位置は貫通シリコンビア(TSV)を有する、請求項4に記載のシステム。
【請求項6】
前記第1の候補位置及び前記第2の候補位置は、対応するサブエリア全体に分散するように選択される、請求項4に記載のシステム。
【請求項7】
前記プロセッサの前記動作は、
前記検出したBF出力ビームに基づいて、前記試料部分の表面に酸化物が存在するかどうかを判定すること
を含み、
前記酸化物が存在する場合に、前記変調ポンプビーム及び前記プローブビームを各候補位置に送出する前に、前記酸化物が除去される、
請求項1に記載のシステム。
【請求項8】
前記候補位置の少なくともいくつかは、構造体上で中央に位置するように、前記BF出力ビームに基づいて生成された前記構造体の像に基づいてそれぞれ選択される、請求項1に記載のシステム。
【請求項9】
前記候補位置の少なくともいくつかは、構造体全体に分散するように、前記BF出力ビームに基づいて生成された前記構造体の像に基づいて更に選択される、請求項1に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、2014年2月12日に出願された米国仮特許出願第61/939,135号明細書からの優先権を主張するものであり、前記米国仮特許出願は、その開示内容全体を本願明細書の一部として援用する。
【0002】
本発明は、概してウエハ及びレチクルの検査システムの分野に関する。より具体的には、本発明は、表面及び表面下の構造体又は瑕疵の検査及び精査に関する。
【背景技術】
【0003】
一般に、半導体製造産業は、基板上に積層及びパターニングされた、シリコン等の半導体材料を用いて集積回路を作製する極めて複雑な技術を必要とする。回路の大規模な集積化と半導体装置の小型化とにより、作製された装置は、ますます瑕疵に影響され易くなっている。すなわち、装置に障害を引き起こす瑕疵の大きさは小さくなり続けている。エンドユーザ又は販売先への出荷前に、装置に異常はない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許出願公開第2005/0036136号
【発明の概要】
【発明が解決しようとする課題】
【0005】
半導体ウエハの検査装置及び検査技術の改良を求める継続した要望がある。
【課題を解決するための手段】
【0006】
本発明の一部の実施形態についての基本的な理解を提供するために、本開示の概要を下記に示す。この概要は、開示内容を広範囲にわたって概説するものではなく、本発明の主要/不可欠な要素を特定するものでも、本発明の範囲を規定するものでもない。この概要の唯一の目的は、本明細書に開示するいくつかの概念を簡略化した形式で提示して、後述する詳細な説明の序章となることである。
【0007】
半導体試料内の瑕疵を検出する又は精査するシステムを開示する。本システムは、明視野(Brightfield,BF)モジュールであって、試料上のBFスポットにBF照明ビームを送り、BFスポット上に送られたBF照明ビームに呼応して試料上のBFスポットから反射された出力ビームを検出するBFモジュールと、変調光反射率(Modulated Optical Reflectance,MOR)モジュールであって、試料上のポンプスポットにポンプビームを送ると共に、試料上のプローブスポットにプローブビームを送り、ポンプビーム及びプローブビームに対応する、プローブスポットからのMOR出力ビームを検出するMORモジュールと、を含み、本システムにおいて、プローブスポットはポンプスポットと一致している。また、本システムは、(i)BFモジュールに、試料上の複数のBFスポットにおいてBF照明ビームを走査させて、複数のBFスポットからの出力ビームを検出し、(ii)MORモジュールに、複数のポンプスポット及び複数のプローブスポットにおいてポンプビーム及びプローブビームをそれぞれ走査させて、複数のプローブスポットからのMOR出力ビームを検出し、(iii)複数のBFスポットからのBF出力ビームを分析して、試料の表面上又は表面近傍の一つ以上の瑕疵を検出し、(iv)複数のプローブスポットからのMOR出力ビームを分析して、試料の表面より下に位置する一つ以上の瑕疵を検出する動作を実行する又は引き起こすように動作可能なプロセッサも含む。
【0008】
特定の実施例において、BFモジュール及びMORモジュールは、対物レンズを共用する。他の態様において、本システムは、暗視野(Darkfield,DF)モジュールを含み、DFモジュールは、試料上のDFスポットにDF照明ビームを送り、DFスポット上に送られたDF照明ビームに呼応して試料上のDFスポットから散乱した出力ビームを検出する。更に他の態様において、プロセッサは、ポンプビームとプローブビームの走査前に、BF照明ビーム及びDF照明ビームに試料を走査させ、試料全体又は試料の一部がBF照明ビーム及びDF照明ビームによって走査された後で、BF出力ビーム及びDF出力ビームの分析に基づいて、ポンプビーム及びプローブビームを走査する目標位置を一つ以上特定するように構成される。更に他の態様において、BFモジュールとDFモジュールは、BF照明ビーム及びDF照明ビームを生成する光源を共用する。他の実施例において、BFモジュールは、BF照明ビームを生成するBF光源を有し、DFモジュールは、DF照明ビームを生成するDF光源を有する。
【0009】
特定の実施例において、MORモジュールは、約400~600nmの波長範囲でポンプビームを生成するポンプレーザ光源と、ポンプビームを変調するようにポンプレーザ光源を設定する変調器と、約600~800nmの波長範囲でプローブビームを生成するプローブ連続発振(Continuous Wave,CW)レーザ光源と、ポンプビーム及びプローブビームを試料に誘導する照明光学系と、光熱検出器と、MOR出力ビームを光熱検出器に誘導する集光光学系とを含み、光熱検出器は、MOR出力ビームを検出し、ポンプビームの変調と同期した変化量を分離するようにフィルタリングされる出力信号を生成する。更に他の態様において、BFモジュールは、BF照明ビームを生成するBF光源と、BF照明ビームを試料に誘導する照明光学系と、BF検出器と、BF出力ビームを検出するBF検出器にBF出力ビームを誘導する集光光学系とを含む。更に他の態様において、BFモジュールの照明光学系は、一つ以上の構成要素をMORモジュールの照明光学系と共用し、BFモジュールの集光光学系は、一つ以上の構成要素をMORモジュールの集光光学系と共用する。
【0010】
特定の実施形態において、表面より下に位置する瑕疵は、一つ以上の空洞、材料の密度変化、及び側壁角度の変化のうちの一つ以上を含み、且つ/又は、瑕疵は、貫通シリコンビア(Through-Silicon Via,TSV)構造内に存在する。他の態様において、本システムは、試料に自動焦点ビームを送り、自動焦点ビームに対応する試料からの反射ビームを検出し、更に、システムの焦点を調整する自動焦点モジュールを含む。一態様において、BFモジュール、MORモジュール、及び自動焦点モジュールは対物レンズを共用する。一実施形態において、プロセッサは、BF照明ビーム、ポンプビーム、及びプローブビームに同時に走査を行わせるように構成される。他の態様において、BFモジュール及びMORモジュールは、BF出力ビーム及びMOR出力ビームを検出する同一の検出器を共用する。
【0011】
代替の実施形態において、本発明は、半導体試料内の瑕疵を検出又は精査する方法に関し、本方法は、(i)明視野(BF)照明ビームで試料部分を走査し、(ii)BFビームが試料部分を走査するときに試料部分から反射されたBF出力ビームを検出し、(iii)検出したBF出力ビームに基づいて、試料部分の表面特性又は近表面特性を特定し、(iv)検出したBF出力ビームに基づいて特定された試料部分の特定済みの表面特性又は近表面特性に基づいて、試料の表面より下に別の瑕疵を有する可能性のある試料部分内の候補位置を見つけ、(v)各位置候補に変調ポンプビーム及びプローブビームを送り、(vi)各候補位置に送られた各プローブビームに対応する各候補位置からの変調光反射率信号を検出し、(vii)候補位置から検出された変調光反射率信号に基づいて、該当する候補位置において表面の下に存在するフィーチャ特性を特定することを含む。
【0012】
他の態様において、本方法は、(viii)BFビームが試料部分全体を走査するときに、又は試料部分上での暗視野ビームの走査に呼応して試料部分から散乱した暗視野(DF)出力ビームを検出し、(ix)検出したDF出力ビームに基づいて、試料部分の表面特性又は近表面特性を特定し、(x)検出したDF出力ビームに基づいた試料部分の表面特性又は近表面特性に基づいて、第2の複数の候補位置を見つけ、(xi)第2の各候補位置に送られた各プローブビームに対応する第2の各候補位置からの変調光反射率信号を検出し、(xii)第2の各候補位置から検出された変調光反射率に基づいて、該当する第2の候補位置において表面の下に位置するフィーチャ特性を特定することを含む。更に他の態様において、最初の候補位置及び第2の候補位置は、表面特性又は近表面特性を表面下の瑕疵の存在と関連付けることによって検知される。更なる他の態様において、最初の候補位置及び第2の候補位置は、試料部分の平均から所定量で変位している表面特性又は近表面特性を一つ以上有する、試料部分のサブエリアにそれぞれ対応付けられる。更に他の態様において、最初の候補位置及び第2の候補位置のうちの少なくとも一つは、貫通シリコンビア(TSV)を有する。
【0013】
他の実施形態において、最初の候補位置及び第2の候補位置は、対応するサブエリア全体に分布するように選択される。他の例において、本方法は、表面特性又は近表面特性が、表面上に酸化部が存在することを示すかどうかを判定し、各候補位置に変調ポンプビーム及びプローブビームを送る前に、酸化部を除去することを含む。他の例において、候補位置の少なくともいくつかは、構造体の中央に集中するように、BF出力ビームに基づいて生成された、該当する構造体の像に基づいてそれぞれ選択される。他の実施例において、候補位置の少なくともいくつかは、構造体全体に分布するように、BF出力ビームに基づいて生成された、該当する構造体の像に基づいて更に選択される。
【0014】
本発明について前述した態様及び他の態様は、下記において、図面を参照しながら更に説明される。
【図面の簡単な説明】
【0015】
図1A】Cu充填貫通シリコンビア(TSV)の模式的側面図である。
図1B】表面下の瑕疵を有するCu充填貫通シリコンビア(TSV)の模式的側面図である。
図2】本発明の一実施形態に係る、明視野(BF)、暗視野(DF)、及び変調光反射率(MOR)を組み合わせた装置を示す模式図である。
図3】本発明の代替実施形態に係る、BF及びDF複合検査システムを示す模式図である。
図4】本発明の一実施形態に係る検査手順を示すフローチャートである。
図5】本発明の特定の実施例に係る、MORベースの照明ビームを位置合わせする手順を示すフローチャートである。
【発明を実施するための形態】
【0016】
下記の説明において、本発明についての完全な理解を提供するために、多数の具体的細部を記載する。本発明は、これらの具体的細部のうちの一部又は全てを用いずに実施することができる。他の例では、本発明が不必要に曖昧にならないように、周知の構成要素又は処理動作を記載していない。本発明を特定の実施形態と組み合わせて説明するが、これは本発明を実施形態に限定することを意図したものでないことは理解されるであろう。
【0017】
全般的に、本発明の特定の実施形態は、明視野(BF)、暗視野(DF)、及び変調光反射率(MOR)の各チャンネルを有する複合システムに関する。複合装置は、ウエハ等の半導体試料の各種構造体において、Cu充填貫通シリコンビア(TSV)構造又は他の3D積層半導体構造内の空洞や他の不良形状等、表面下の瑕疵の検出及び計量、並びに表面特性及び表面瑕疵の検出及び計量において特に有用である。
【0018】
図1Aは、Cu充填貫通シリコンビア(TSV)構造体100の模式的側面図である。図示したように、Cu充填TSV108は、能動回路領域104と共にシリコンバルク106から形成されて、裏面金属部110と一つ以上の上部金属層102とを電気的に結合する。
【0019】
BFベース及びDFベースの技術は、半導体製造の各種の段階における各種の構造体内(例えば、能動回路領域104内)の表面及び近表面の瑕疵を検出することができる。ただし、Cu充填TSV等、集積回路(Integrated Circuit,IC)の製造における特定のフィーチャは、従来の光学に基づいたマクロ検査技法の感応深度よりもかなり深いところに存在し得る。図1Bは、空洞領域122や粒子欠陥120等、深部に瑕疵を有するCu充填貫通シリコンビア(TSV)を示す模式的側面図である。
【0020】
BFベース又はDFベースの技術とは対照的に、MORベースの技術は、TSV構造体内に存在する瑕疵や、材料バルク内に存在する瑕疵等の表面下のフィーチャに対する感度が非常に高い。したがって、これらの光学的手法と光熱的手法とを単一の装置内に組み込んだものは、関心領域全体に亘って(表面より1μmから50μmの下方において)瑕疵のシグネチャを検出可能な器具を提供することが期待される。このような組み合わせ方式の他の利点は、簡潔さである。X線又は超音波の波長とは異なり、光熱システムは、その構築、保守、及び利用が容易である。
【0021】
図2は、本発明の一実施形態に係る複合装置200の模式図である。システム200の異なる照明ビーム及び出力ビームは、図面を簡潔にして全てのビームをより明瞭に示すために、それぞれ別の光路を有するものとして図示されている。システム200は、光熱式MORベースのモジュールと、BFベースのモジュールと、DFベースのモジュールとを含む。MORベース、BFベース、及びDFベースのモジュールのうちの少なくともいずれかは、一つ以上の構成要素を共用しても、又は、完全に独立したモジュールであってもよい。図示した実施例において、MORモジュールとBFモジュールは、いくつかの同一の照明光学系、例えば対物レンズ210等を共用する。BF光源は、試料、例えば、ウエハ216に向けてミラー222g、リレー204、ミラー222d、及び対物レンズ210によって誘導される照明ビーム(黒)を生成する。同様に、ポンプ光源202cは、ミラー222eによって試料216に誘導されて、上記と同じ対物レンズ210によって試料上に合焦される放射線のポンプビーム(白)を生成する。プローブ光源202dも、ミラー222cによって試料216に誘導されて、同じ対物レンズ210によって試料216上に合焦されるプローブビームを生成する。本明細書に記載した光源からの照明ビームは、いずれも多数のレンズを通ってよく、これらのレンズは、試料216までビームを中継する(例えば、焦点オフセットの整形、合焦、又は調整、波長のフィルタリング/選択、偏光状態のフィルタリング/選択、歪みのサイズ変更、拡大、縮小等を行う)機能を有する。
【0022】
試料216は、検査システム200の検査台(図示せず)上に配置されてもよく、検査システム200は、入射ビームに対して検査台(及び試料)を相対移動する位置決め機構を含んでもよい。例えば、一つ以上の各モータ機構が、スクリュー駆動装置とステッピングモータ、フィードバック位置を有する線形駆動装置、又は、バンドアクチュエータとステッピングモータで構成されてよい。試料216は、パターニングされた又はパターニングされていないシリコンウエハ等の、各種の適切にパターニングされた基板又はパターニングされていない基板であってよい。
【0023】
一般に、検査システム又は検査モジュールの各光学部品は、試料216の瑕疵を検出する、又は試料216のフィーチャの特性を決定する光の波長範囲に合わせて最適化することができる。最適化処理は、波長依存収差を低減することを含み、これは、例えば、対応する波長範囲の収差を低減するガラスタイプ、配置、形状、及びコーティング(例えば、反射防止コーティング、高反射コーティング)を選択することによって達成される。例えば、本システムの光学部品は、BF及びDFによって使用される波長範囲ごとに、分散によって生じる作用を抑制するように配置されてよい。
【0024】
任意の適切なBF光源202aが利用されてよい。BF光源の例としては、コヒーレントレーザ光源、レーザ駆動光源(例えば、深紫外線又は気体レーザ発生器)、ハイパワープラズマ光源、透過照明光源(例えば、ハロゲンランプ)、濾波ランプ、LED光源等が挙げられる。本検査システムは、任意の適切な数で任意の適切なタイプの光源を含んでよい。
【0025】
BF光源202aは、図示した垂直角度の他に、任意の適切な入射角度で各種適切な広帯域放射線を生成してよい。例えば、BF照明ビームは、傾斜した角度で試料216に送られてよい。BF光源が向けられた試料上の位置は、BFスポットと呼ぶことができる。BFスポットは、約0.5μm~約5μmの間であってよい。一例において、BFスポットは、約1μmである。
【0026】
光源202aからの入射ビームが試料216に衝突した後、光は試料216から反射(及び/又は透過)されると共に、試料216から拡散される。本明細書では、この衝突後の光を「出力光」又は「出力ビーム」と呼ぶ。検査システムは、一つ以上の検出器に出力光を誘導する任意の適切なレンズ装置を含むことができる。前述したようなBF照明ビームに応じて、対応するBF出力ビームが試料から集光される。図示したように、垂直な出力ビーム(黒)は、対物レンズ210、各ミラー222a,222b,222c,222d,222eを介して垂直軸に沿って集光され、光学部品222hで反射し、ビームスプリッタ222jによって分割されて、BF検出器218aと精査カメラ218cの両方に到達する。例を挙げると、BF検出器218aは、CCD(電荷結合素子)検出器、TDI(時間遅延積分)検出器、光電子倍増管(photomultiplier tube,PMT)、及び他のセンサの形式であってよい。
【0027】
また、システム200は、DF光源202bを含むDFチャンネルを含んでもよく、DF光源202bは、図示した傾斜角度等の特定の角度で試料216に向かうDF照明ビーム(灰色)を生成する。DF光源が向けられる試料上の位置は、DFスポットと呼ぶことができる。DFスポットは、約0.5μmから約10μmまでの間、より詳細には、0.5μm~5μmの間であってよい。一例において、DFスポットは約1μmである。DFスポットは、BFスポットと一致してよく、BFスポットとDFスポットの両方が同時に生成されてよい。これに代えて、BFビーム及びDFビームは、試料上の異なるスポットに同時に送られてもよい。BF検査とDF検査を同時に行うシステムの一例は、カリフォルニア州ミルピータスのケーエルエー・テンコール(KLA-Tencor)社から入手できるAltair8900である。
【0028】
DF集光チャンネルは、入射DFビームを受けて試料216から散乱した出力光(灰色)を集光するように構成されてよい。図示したように、散乱したDF出力光は、対物レンズ210、ミラー222a,222b,222c,22d,222eを通って集光され、光学部品222h及びミラー222fで反射されて、DF検出器218bに誘導される。
【0029】
システム200は、後で説明するように、BFモジュール及びDFモジュールからの出力データを分析する制御装置と分析器290も含んでよい。
【0030】
システム200は、MORベースのモジュールも含む。ポンプ光源202cは、放射線の強度変調ポンプビームを生成する。例えば、この光源は、強度変調レーザ光源又はインコヒーレント光源を含んでよい。光ファイバに連結されたレーザシステムを含め、気体レーザ、個体レーザ、又は半導体レーザが利用されてよい。ポンプ光源は、任意の適切な波長範囲を有するポンプビームを生成できる。例えば、ポンプビームは、試料(例えば、シリコン)による強い吸収をもたらす十分に低い波長範囲でありながら、BFチャンネルの共通の照明光学系の帯域要件内に維持された波長範囲を有する。特定の実施例において、ポンプビームは、約400~600nmの間の安定した波長範囲を有する。広帯域可変波長光源を利用することで、各種の波長を実現できる。分光ポンプ光源を利用して、試料からのより高い反射率を実現してもよい。
【0031】
ポンプビームは強度変調される。ポンプビームは、所定の周波数でポンプビームを変調するように構成されても、又は、複数の変調周波数において追加のデータを取得するために変調周波数を変化させるように構成されてもよい。したがって、ポンプ光源は、通常、ポンプビームの強度を変調するための駆動信号をポンプ光源に供給する変調器203を含む。変調周波数は、数ヘルツ(Hz)から数十メガヘルツ(MHz)まで変更できる。一実施例において、変調周波数は、1MHz等、一般的な半導体試料内にプラズマ波を生成する約10Hz~10MHzの間の範囲である。
【0032】
ポンプビーム光源202cがオンに切り替えられると、試料の表面上にポンプビームが照射されて、試料216の局部加熱を行うことができる。ポンプ光源が変調されると、局部加熱(励起)及びその後の冷却(緩和)により、試料216内に一連の熱波とプラズマ波を生成できる。熱波及びプラズマ波は、各種のフィーチャから反射及び散乱して試料216内の各種の領域と相互作用でき、これにより、ポンプビームスポットからの熱の流れとプラズマの流れの少なくともいずれかを変更できる。代替の実施例において、ウエハ全体が、専用チャンバの中もしくは温度処理を利用した特定の環境の中で、又はその両方の中で緩和されてよい。
【0033】
プラズマ波は、半導体材料内でのみ生成され、通常は、銅などの導電性材料内では生成されないが、熱波は、半導体材料と導電性材料の両方の中で生成される。プラズマ波及び熱波は、生成領域(例えば、表面上のポンプスポット)から伝播して表面から離れる方向に進む。プラズマ波及び熱波は、材料の吸収係数の高い場所、例えばシリコン材料において生成されて、結晶構造の不完全部位から反射する、又は特定の構造特性から影響を受ける傾向がある。プラズマ波又は熱波に影響し得る不完全部位又はフィーチャ特性としては、空洞、粒子、材料の欠損、追加された材料、側壁角度の変化、垂直方向に対する側壁の変位、材料の密度変化等が挙げられる。熱波はかなりの深部まで透過でき、その透過深度は、ポンプレーザの強度変調周波数を変化させることによって変えることができる。
【0034】
熱波、プラズマ波、これらの波と下部の構造体又は瑕疵との相互作用、及びこれらの波の異なる吸収係数又は熱コントラストは、表面の反射率に直接影響を与えることになる。すなわち、熱波及びプラズマ波の経路を変化させる、試料表面より下のフィーチャ及び領域は、試料表面における光反射パターンを変化させる。熱コントラストは、一般に、体積を乗算した熱伝導率の差異又は熱拡散率の差異に応じて変化する。瑕疵と周囲の瑕疵のない構造体又は領域との間に熱コントラストが存在すると、表面反射率に大きな変化が生じ得る。
【0035】
表面における試料の反射率の変化を観察することによって、表面より下の特性についての情報を調査できる。瑕疵を検出する場合、MORベースのモジュールは、下部の構造体と瑕疵の少なくともいずれかによって引き起こされる反射率の変化を監視する機構を含む。システム200は、放射線の変調されていないプローブビームを生成するプローブビーム光源202dを含む。例えば、プローブ光源202dは、CW(連続発振)レーザ光源、広帯域光源、又は白色光源であってよい。プローブ光源は、試料材料の反射率特性に応じて、各種の適切な波長範囲を有するプローブビームを生成できる。例えば、銅において適切に機能するプローブビームは、約600~800nmの波長範囲を有する。他の実施形態において、光源は、3Dスタックメモリ素子に透通するように、約700~950nmの範囲(例えば、可視波長領域、IR波長領域、及びNIR波長領域のうちの少なくともいずれかの範囲)の照明光を出力する。光源の例としては、レーザ駆動光源、ハイパワープラズマ光源、透過照明光源(例えば、ハロゲンランプ又はキセノンランプ)、濾波ランプ、LED光源等がある。複数のLED又はスペックル破壊レーザダイオード(speckle buster laser diodes)も利用可能な光源である。
【0036】
プローブビームは、入射ポンプビームと同じスポットを少なくとも部分的に共用するプローブスポット上で合焦できる。すなわち、プローブビームの衝突箇所は、ポンプスポットと重なってよい。システム200は、ポンプビームとプローブビームとを一緒に移動して試料の同一領域を走査できるように、偏向器等の走査部品も含むことができる。ポンプビーム又はプローブビームのいずれかの経路内に少なくとも一つのビーム追跡装置(例えば、222c又は222a)を設けて、試料上のポンプビームとプローブビームの相対位置を調整することができる。この追跡装置を利用して、ポンプビームとプローブビームの横方向オフセットを変化させることで、複数のMOR測定値が得られる。プローブビームは、試料表面に対して垂直(図示した状態)であっても、又は、任意の適切な入射角であってもよい。他の実施形態において、プローブビームは、試料216のフラッシュアニールを行うハイパワーに調整されてよい。
【0037】
MORチャンネルは、試料に入射したポンプビーム及びプローブビームに呼応して試料216から反射又は散乱された出力放射線を収集する集光路を含んでよい。例えば、集光路は、出力ビームを中継及び拡大して、又は中継もしくは拡大して光熱(photothermal,PT)検出器218dに送る任意の適切なレンズ又は光学部品(例えば、217)を含んでよい。
【0038】
PT検出器218dは、概して、入射プローブビームに呼応して試料から反射したプローブビームの反射率の変化を監視するように構成される。PT検出器218dは、出力放射線を検知して出力信号を生成する。この出力信号は、プローブビームの反射力に比例するため、試料表面の各種異なる光反射率を表す。PT検出器218dは、積分強度信号等、MORベースの信号を検出する任意の適切な形式であってよい。例えば、PT検出器218dは、単純なシリコンフォトダイオード、フォトダイオードアレイ等、一つ以上の光検出器部品を含んでよい。PT検出器218dは、低ノイズで、安定性が高く、コストが低いものであると好ましい。
【0039】
PT検出器218dからの出力信号をフィルタリングして、ポンプビーム変調周波数と同期した変化を分離することができる。多数の実施例において、フィルタリングは、ヘテロダイン式又はロックイン式検出システムを用いて実行できる。米国特許第5,978,074号明細書は、ロックイン式検出システムの複数の例を開示しており、この米国特許は、その開示内容全体を本願明細書に援用する。ロックイン検出器を利用して、検出器出力の同相(I)成分と直角(Q)成分の両方を測定することができる。出力信号の2つのチャンネル、すなわち、振幅A2=I2+Q2と位相θ=arctan(I/Q)は、従来から、それぞれ変調光反射率(MOR)又は熱波(TW)の信号振幅及び位相と呼ばれている。
【0040】
制御装置又は分析器290は、PT光検出器218dからの出力を分析するように構成されてもよい。一般に、反射率信号の位相及び変化は、変調ポンプ信号と比較して監視される。半導体内の合計MOR信号の熱に関する成分及びキャリアプラズマに関する成分の動力学特性は、下記の一般式で得られる。
【0041】
【数1】
【0042】
上式において、ΔT及びΔNは、半導体の表面における温度及びキャリアプラズマ密度、Rは光反射率、δR/δTは温度反射率係数、δR/δNはキャリア反射率係数である。シリコンの場合、δR/δTは、スペクトルの可視部及び近紫外線部において正になるが、関心スペクトル領域全体では負のままである。符号の違いは、熱波とプラズマ波の間の相殺的干渉となって、特定の条件下において合計MOR信号を減少させる。この作用の大きさは、半導体試料の性質、光熱システムのパラメータ、特に、ポンプ波長及びプローブ波長によって異なる。
【0043】
分析器及びプロセッサ290は、動作パラメータを制御又は検出する一つ以上のシステム構成要素に通信可能に結合されてもよい。例えば、プロセス290は、変調器203によるポンプビームの変調を調整及び制御するように構成されてよい。
【0044】
また、システム200は、対象とする試料の自動合焦を提供する自動焦点モジュール206を含んでもよい。自動焦点モジュール206は、概して、対物レンズ210を通って試料に向かうようにミラー222aによって誘導される自動焦点ビームを生成し、その後、応答信号を検出して焦点の特定及び調整を行う。この実施形態において、自動焦点モジュール206は、BFベース及びMORベースのモジュールと同じ対物レンズを共用する。
【0045】
図3は、本発明の代替実施形態に係る検査システム300の模式図である。このシステム300は、図2のシステムについて説明した構成要素のうちの一つ以上を含んでよい。図3に示すように、本システムは、入射ビームを生成する、広帯域光源等のBF光源302aを含んでよい。光源の例としては、コヒーレントレーザ光源、レーザ駆動光源(例えば、深紫外線発生器又は気体レーザ発生器)、ハイパワープラズマ光源、透過照明光源(例えば、ハロゲンランプ)、濾過ランプ、LED光源等がある。本検査システムは、任意の適切な数で任意の適切なタイプの光源を含んでよい。
【0046】
BF光源302aからの入射ビームは、次に、試料316に向けてビームを中継する(例えば、整形、焦点合わせ、サイズ変更、拡大、歪み低減等を行う)複数のレンズを通る。図示した実施形態において、入射ビームは、入射ビームをコリメートするレンズ304を通り、続いて、入射ビームを集束させるレンズ306を通る。入射ビームは、次に、ビームスプリッタ312で受け取られ、そこで入射ビームは対物レンズ314を通るように反射され、対物レンズ314は、一つ以上の入射角で試料316上に入射ビームを合焦させる。
【0047】
検査システム300は、光源302aからの照明ビームの瞳平面に配置された照明選択器305も含んでよい。一実施形態において、照明選択器305は、構成可能な瞳孔開口の形式であり、この瞳孔開口は、瞳平面に複数の異なる照明ビームプロファイルを形成するように調整できる。また、検査システム300は、照明選択器の異なる開口構成を、光源302aからの入射ビームの経路内に選択的に移動する一つ以上の位置決め機構も含んでよい。
【0048】
光源302aからの入射ビームが試料316に衝突した後、光は、試料316から反射(及び透過、又は反射せずに透過)且つ散乱される。この光を本明細書では「出力光」又は「出力ビーム」と呼ぶ。また、検査システムは、出力ビームを一つ以上の検出器に向けて誘導する任意の適切なレンズ構成も含む。図示した実施形態において、出力光は、ビームスプリッタ312、フーリエ面リレーレンズ320、結像開口322、そしてズームレンズ324を通る。フーリエ面リレーレンズは、通常、試料のフーリエ面を結像開口322まで中継する。結像開口322は、出力ビームを部分的にブロックするように構成されてよい。例えば、結像開口322は、明視野検査モードにおいて対物レンズ開口数内の全ての出力光を透過し、暗視野検査モードでは試料からの散乱光のみを透過するように構成される。結像開口322にフィルタを配置して、高次の出力ビームをブロックし、検出信号から周期構造をフィルタリングしてもよい。
【0049】
結像開口322を通り抜けた後、出力ビームは、任意の数の光学部品、ビームスプリッタ332a,332b,332c等を通り、その後で、試料316の像を拡大する機能を有するズームレンズ324を通過してよい。次に、出力ビームは検出器326aに衝突する。一例として、検出器は、CCD(電荷結合素子)検出器、TDI(時間遅延積分)検出器、光電子倍増管(PMT)、及び他のセンサの形式であってよい。
【0050】
システム300は、ポンプビームを生成するポンプ光源302bも含んでよく、生成されたポンプビームは、一つ以上のレンズ及び光学部品(例えば、334a,332a~c、320,312,314)によって試料316に送られる。同様に、プローブ光源302cは、一つ以上のレンズ及び光学部品(例えば、334b,332b,332c、320,312,314)によって試料316に送られるプローブビームを生成する。試料316からの出力ビームも、一つ以上のレンズ(例えば、314,312,320,332,336)によってPT検出器326bに送られる。
【0051】
前述したシステムのセンサによって捕捉された信号は、制御装置又は分析器システム(290又は310)で処理することができ、この制御装置又は分析器システムは、センサからのアナログ信号を処理用のデジタル信号に変換するように構成されたアナログ・デジタル変換器を有する信号処理装置を含んでよい。制御装置は、検知された光ビームの強度、位相、及び他の特性のうちの一つ以上を分析するように構成されてよい。制御装置は、ここで更に説明するような、結果的に得られる試験画像及び他の検査特性を表示するためのユーザインタフェース(例えば、コンピュータ画面上のユーザインタフェース)を提供するように構成(例えば、プログラム命令を用いて構成)されてよい。また、制御装置は、開口設定の変更、検出結果データ又は画像の表示、検査器具配合の設定等のユーザ入力を提供する一つ以上の入力装置(例えば、キーボード、マウス、ジョイスティック)も含んでよい。特定の実施形態において、制御装置は、開口選択、又は下記に詳述する検査技法を実行するように構成される。本発明の技法は、適切に組み合わされたハードウェアとソフトウェアの少なくともいずれかにおいて実施されてよい。制御装置は、通常、入出力ポートに連結されたプロセッサを有すると共に、適切なバス又は他の通信機構を介して一つ以上のメモリを有する。
【0052】
制御装置は、ソフトウェアとハードウェアの任意の適切な組み合わせであってよく、概して、検査システムの各種の構成要素を制御するように構成される。例えば、制御装置は、照明光源の選択的起動、ポンプ光源の変調、照明選択器/開口設定、結像開口設定等を制御してよい。また、制御装置は、各検出器で生成された画像又は信号を受け取り、結果的に得られる画像又は信号を分析して、試料上に瑕疵が存在するかどうかの判定、試料上に存在する瑕疵の特徴付け、又は他の方式での試料の特徴付けを行うように構成されてもよい。例えば、制御装置は、本発明の方法の実施形態の命令を実施するようにプログラムされたプロセッサ、メモリ、及び他のコンピュータ周辺機器を含んでよい。
【0053】
このような情報及びプログラム命令は、特殊構成されたコンピュータシステム上で実行されてよく、このようなコンピュータシステムは、コンピュータ可読媒体に保存でき、本明細書に記載した各種の動作を実行するプログラム命令/コンピュータコードを含む。機械可読媒体の例としては、限定するものではないが、ハードディスク、フロッピディスク、及び磁気テープ等の磁気媒体、CD-ROMディスク等の光学媒体、光ディスク等の光磁気媒体、読み取り専用記憶装置(ROM)及びランダムアクセスメモリ(RAM)等の、プログラム命令を格納及び実行するように特殊構成されたハードウェア装置が挙げられる。プログラム命令の例は、コンパイラによって生成されるような機械コード、及びインタプリタを利用してコンピュータによって実行され得る高レベルコードを収容したファイルの両方を含む。
【0054】
また、前述の説明及び図面は、本システムの特定の構成要素に対する限定として解釈されるべきではなく、本システムは多数の他の形式で実施できることに留意されたい。例えば、検査又は測定器具は、瑕疵の検出、及びレチクル又はウエハのフィーチャの重要な側面の解明の両方又はいずれかを行うように配置された任意の数の既知の画像生成器具又は計測器具の各種の適切な機能を備えることが意図される。一例として、検査器具又は測定器具は、明視野像顕微鏡検査、暗視野像顕微鏡検査、全天像(full sky imaging)顕微鏡検査、位相差顕微鏡検査、偏光コントラスト顕微鏡検査、及びコヒーレンスプローブ顕微鏡検査に適合するように構成されてよい。また、対象の像を捉えるために、単一像方法及び複数像方法を利用できることも意図される。これらの方法は、例えば、シングルグラブ方法、ダブルグラブ方法、シングルグラブコヒーレンスプローブ顕微鏡検査(Coherence Probe Microscopy,CPM)方法、及びダブルグラブCPM方法を含む。スキャトロメトリ等の非結像光学方法も検査装置又は計測装置を構成する要素として考えられる。
【0055】
明視野(BF)及び暗視野(DF)モジュールは、表面上、又は非常に薄いフィルムで被覆された表面上の瑕疵を検出することができる。これらのモジュールは、通常、表面下の瑕疵については、瑕疵が表面近くに存在する場合、又は、瑕疵がスタック内に隆起を発生させ、その隆起が表面に波及し得るために検出可能な表面瑕疵が形成される場合にのみ検出することができる。MORベースのモジュールは、TSV構造体の底又は側壁等、試料内の深部に位置する瑕疵を検出することができる。
【0056】
BF/DFベースのモジュールとMORベースのモジュールとを同時に使用して、表面上と試料内の深部の両方の瑕疵を検出したり、特性を分析したりできる。表面付近又は表面上の瑕疵についても、BF/DFベースのモジュールとMORベースのモジュールとを一緒に利用して、このような瑕疵の特徴付け機能を拡張してもよい。BF/DFベースの検査及びMORベースの検査により、同一の場所について複数の異なる瑕疵又は特性が得られる。瑕疵を特定してフィーチャ特性を取得する分析技法について下記で更に説明する。一般に、BF/DFベースのモジュール及びMORベースのモジュールは、熱シグネチャ及び光学シグネチャの異なる瑕疵を検知することに利用できる。
【0057】
他の実施形態において、BF/DFモジュール及びMORベースのモジュールを同時に利用して、検査プロセスを向上させることができる。必須ではないが、BF又はDFモジュールとMORベースのモジュールは、同一の時点では使用されないため、これら両方のモジュールで検出器を共用してもよい。
【0058】
図4は、本発明の一実施形態に係る検査手順400を示すフローチャートである。図示したように、動作402において、最初にBFが生成されて、試料スポットに誘導される。省略可能であるが、この最初の試料スポットに向けて、DF照明ビームも送出されてよい。次に、動作404において、BF(及びDF)照明ビームに対応するBF(及びDF)出力ビームが試料スポットから検出されてよい。検出信号又は画像等のBF及びDF出力データは同時に収集されてよい。
【0059】
次に、動作406において、最後のスポットに到達したかが判定されてよい。例えば、検査対象の全領域がBFビーム(加えて、省略可能であるがDFビーム)によって走査されたかどうかが判定される。試料全体又は試料の一部がBF(及びDF)ビームで走査されてよい。最後の試料スポットにまだ到達していない場合は、動作408において、BF(及びDF)照明ビームに対して試料を移動して、次のスポットが走査されてよい。
【0060】
BF(及びDF)ビームは、試料の個々の走査幅に亘って走査されてよい。例えば、BFビーム及びDFビームは、第1走査方向において第1走査幅で走査される。次に、これらのBF及びDFビームは、第1走査幅の走査方向とは逆の走査方向において前回とは別の第2走査幅に亘って走査されてよく、これにより蛇行した走査パターンが実現する。これに代えて、BFビーム及びDFビームは、円形走査パターン、螺旋形走査パターン等、任意の適切な走査パターンで試料全体に亘って走査されてもよい。もちろん、試料から円又は螺旋の形状を走査するため、走査中に、センサを異なる配置(例えば、円形パターン)にすること、及び試料を異なる方式で移動(例えば、回転)することのうちの少なくともいずれかを行う必要が生じ得る。
【0061】
最初の走査が完了した後、動作410において、検査領域の表面又は近表面の特性が検出されたBF(及びDF)出力ビームに基づいて判定されてよく、これにより、表面より下に追加の瑕疵を有する可能性のある候補位置を検知できる。すなわち、表面上又は表面近くに位置していない瑕疵を含む可能性のある候補位置は、BF(及びDF)出力データを分析することによって特定することができる。
【0062】
一実施形態において、金型同士、セル同士、又は金型とデータベースとを比較して、特定の閾値を超える差異が検知される。この差異は、特定の瑕疵タイプとして分類されてよい。これらの瑕疵タイプのいくつかは、より深部の瑕疵に関連していると判定されてよい。
【0063】
BFチャンネル及びDFチャンネルによって、異なるタイプの瑕疵又は特性を確認することができる。BF出力データは、概して、表面構造体の平面の変形という形式の瑕疵の検出に利用できる。例えば、一部の構造体は、設計された状態よりも大きくなる、又は小さくなることがある。BF出力データは、例えば、色の変化という形式において膜厚変化を示すこともできる。BF応答での色の変化は、材料自体の変化(例えば、密度変化)にも影響され得る。また、不良になった構造体のグループは、周囲の構造体に影響を与える可能性がある(グループ内の個々の構造体のみに瑕疵がある場合であっても同様である)。これに対し、DF出力データは、特定の構造体について、粒子欠陥及び表面の粗さ、構造高さにおける局所勾配等を検出できる。
【0064】
BF出力データ又はDF出力データから得られるタイプの特定の瑕疵又は試料特性を利用して、更なるMORベースの精査のための候補位置を特定できる。例えば、ある種のCu充填貫通シリコンビア(TSV)又はTSV構造体のグループは、他のTSV構造体と比べると、特定の瑕疵タイプ(例えば、変形)又は特性(例えば、色)が異なっている可能性がある。これらのTSV構造体は、MORベースモジュールによって更に精査すべき候補として選択されてよい。
【0065】
他の例において、本プロセスは、領域異形に対する平均化BF/DF手法を用いて監視される。BF/DFチェンネルから得られる瑕疵の大きさ、個数、又は他の特性の平均は、試料の領域単位で監視されてよい。例えば、特定の領域は、TSV構造体等、同じタイプの構造体を有する他の領域よりも大きい平面構造を有する可能性がある。他の試料領域の平均値又は中央値から所定の閾値で逸脱している領域は、より深いMORベースの精査の候補として選択されてよい。これに代えて、逸脱領域内の複数の位置の抽出サンプルが、更なるMORベースの精査に選択されてもよい。例えば、複数のTSV構造体を有するある程度大きい領域は、より大型の構造体を有すると判定されてよく、大型の構造体は、TSV構造体を含んでも含まなくてもよい。このある程度大きい領域内のTSV構造体からの抽出サンプル、又は全てのTSV構造体は、次に、MORベースの精査の対象として選択されてよい。一実施形態において、候補のTSV位置は、特定の領域全体に分散するように選択される。
【0066】
ポンプビーム及びプローブビーム(例えば、MORベースモジュールからのビーム)は、動作412において生成されて試料上の第1候補位置に送られる。次に、動作414において、ポンプ照明ビーム及びプローブ照明ビームに呼応した、候補位置からのMORベースの出力ビームが検出されてよい。変調ポンプビームは、試料上の第1候補位置においてポンプスポットに送られ、プローブビームは、前記ポンプスポットの少なくとも一部に向けて送出される。プローブビームからの反射信号は、例えば、前述したようなPT検出器で検出される。
【0067】
候補位置における表面より下のフィーチャ特性は、動作415において、MORベースの出力ビームに基づいて特定されてよい。MORベースのモジュールから得られた反射率データを利用して、候補位置において試料内に深く位置する瑕疵を検知すること、又はフィーチャを更に特徴付けることができる。MORベースの精査を利用して観測、測定、又は検知できる深部の瑕疵及びフィーチャ特性としては、空洞、粒子、材料の欠損、追加された材料、側壁角度の変化、垂直方向に対する側壁の変位、材料の密度変化等が挙げられる。
【0068】
既知の深さ(又は表面以外)の特性及び瑕疵のトレーニング集合を分析して、その集合のMORベースの出力信号を特定できる。モデルは、MORベースの反射率出力データに基づいて特定の特性値又は瑕疵タイプを算出するように、生成及び調整されてもよい。
【0069】
次に、動作416において、最後の候補が精査されたかどうかが判定されてよい。精査されてない場合は、動作418において、ポンプ照明ビーム及びプローブ照明ビームに対して試料を相対移動して、次の候補位置を走査することができる。最後の候補が精査されるまで、MORベースのチャンネルを用いて、各候補位置についてのMORベースの出力データを収集する。
【0070】
最後の候補位置に到達したら、動作420において、試料が検査に合格したかどうかが判定されてよい。例えば、瑕疵は、生産量を規制する瑕疵であるのか、又は単なる擾乱型の瑕疵であるのかが判断される。BF、DF、及びMORベースの瑕疵及びフィーチャ特性を全て分析して、試料が検査に合格したかどうかが判定されてよい。また、特定のフィーチャ特性が規格外であるかどうかが判定されてもよい。試料が検査に合格しない場合は、動作422において、プロセスが修正されてよく、試料が修復される、又は試料が破棄されてよい。一実施例において、試料が破棄されてプロセスが修正される。試料が検査に合格した場合、手順400を終了でき、試料は、製品として使用されても、又は更に加工されてもよい。更なる加工の後で、試料は再度検査されてよい。
【0071】
更なるMORベースの精査用の候補位置を見つける最初の検査工程にBF/DFチャンネルを使用すると、検査プロセスがより効率的になり得る。BF/DF走査は、MORベースの走査よりもかなり高速である。すなわち、試料は、BF検査プロセスとDF検査プロセスの少なくともいずれかを用いて迅速に走査することができる。疑わしい候補位置は、その後でMORベースのチャンネルによって再び精査することができる。MORベースの精査から得られたデータは、BF検査及びDF検査の少なくともいずれかから得たデータに追加できるため、試料上におけるフィーチャ特性の観察又は瑕疵の検知に高度な分析を提供することができる。
【0072】
MORベースの出力データを利用して、BF出力データ及びDF出力データの感度を改善することができる。TSVの例において、銅内の熱拡散距離は、ポンプビーム変調周波数を調整することによって大きく変化させることができる。低い変調周波数において、熱拡散長さ及びシステムの感応領域は、銅のTSV構造体内の深部空洞(深さ40~60μm、幅3~8μm)の特性を決定できる50~100μmのサイズである。
【0073】
また、BFモジュールを利用して、MORベースのモジュールによる検査の前に、TSV構造体が酸化されているかどうかを判定することもできる。例えば、TSV像の抽出サンプルを精査して、酸化物が存在するかどうかが判定されてよい。TSV構造体についてのMORベースの探測中に酸化物が存在すると、ポンプレーザによって酸化物が燃え尽きて、信頼できない結果が生じる可能性がある。このようなTSV構造体や他の構造体等から酸化物を除去すると有利である。酸化物が存在する場合は、試料を研磨(又は他の技法を実施)して、酸化物を除去してよい。その後で、MORベースの検査を実施できる。
【0074】
BFモジュールを利用して、対象の構造体を基準にポンプビーム及びプローブビームを整列させてもよい。例えば、BF出力データを利用して、ポンプビームとプローブビームとを整列させることで、対象構造体の一つ以上の特定の目標位置を正確に探測できる。特定の例において、対象とする構造体はTSV構造体である。図5は、本発明の特定の実施例に係る、MORベースの照明ビームを位置合わせする手順500を示すフローチャートである。まず、動作502において、BF照明ビームが生成されて、対象構造体上で走査されてよい。次に、動作504において、BF照明ビームに対応する、対象構造体からのBF出力ビームが検出されてよい。一例において、対象構造体の像は、BF出力ビームに基づいて生成されてよい。
【0075】
次に、動作506において、BF出力ビームを分析して、走査した対象構造体上の一つ以上の目標位置が特定されてよい。一実施形態において、対象物の端縁が特定されてよく、その後で、MORベースの探測処理のために、対象物の中心が特定されてよい。例えば、対象構造体の幅(又は半径)方向に沿ったピクセルのラインが取得されてよく、このように取得されたラインを利用して、対象構造体の中心を検知することができる。これに代えて、対象構造体を横断する、ピクセルの2つの直交方向を取得して、対象構造体の中心を特定してもよい。
【0076】
プローブビームと比べて対象構造体が大きい場合、複数の目標位置が、対象構造体全体に分散して目標構造体の領域をほぼ網羅するように選択されてよい。分散探測手法では、対象構造体を系統的に探測する、特定のパターンの目標位置が選択されてよい。一例において、構造体の中心から螺旋状に延びる螺旋パターンで位置が選択される。他の例において、対象物全体に亘って蛇行パターンで走査できるグリッドで位置が選択される。TSVの例において、TSVは、TSV構造体全体を網羅するように探測される。
【0077】
一つ以上の目標位置が決定した後、動作508において、ポンプビームとプローブビームとが生成されて、試料上の第1目標位置に向けて誘導されてよい。次に、動作510において、ポンプ照明ビーム及びプローブ照明ビームに対応するMORベースの出力ビームが目標位置から検出される。この後、動作512において、最後の目標位置に到達したかどうかが判定されてよい。すなわち、プローブパターンが完成したかどうかが判定される。最後の目標位置に到達していない場合は、続いて動作514において、次の目標位置を走査するために、ポンプ照明ビーム及びプローブ照明ビームを基準に試料が相対移動されてよい。
【0078】
最後の目標位置が探測された後、動作516において、表面より下に存在する対象構造体のフィーチャ特性が、上記で詳述したように、MORベースの出力ビームに基づいて判定されてよい。位置合わせ手順500は、任意の数の対象構造体上で繰り返されてよい。
【0079】
本明細書では、深部の瑕疵又はフィーチャを特性付けする検査システム及び検査技術について、特定のタイプのTSV構造体に適用されるものとして説明したが、本発明の実施形態は、テラビットセルアレイトランジスタ(Terabit Cell Array Transistor,TCAT)、垂直スタックアレイトランジスタ(Vertical-Stacked Array Transistor,VSAT)、ビットコスト計測可能技術(Bit Cost Scalable Technology,BiCST)、パイプ型BiCS技術(P-BiCS)等を利用して形成されるNAND又はNORメモリ素子等、任意の適切な3次元半導体構造又は垂直方向の半導体構造に適用できることは理解されよう。垂直方向は、一般に、基板表面に対して垂直な方向である。また、検査の実施形態は、基板上に複数の層が形成される製造フローの任意の時点で適用されてよく、このような層は、任意の数で各種の材料を含み得る。
【0080】
検査/精査器具の光学的配置は、前述したものと異なってもよい。例えば、対物レンズは、具体的に選択される波長帯又は波長副帯に応じて透過コーティングが最適化されて、各波長帯の収差が低減されるのであれば、多数の実現可能な構成の一つであり得る。任意の適切なレンズ配置を用いて、各照明ビームを試料に誘導し、試料から到来する出力ビームを各検出器に向かうように誘導してよい。システムの照明光学部品及び集光光学部品は、反射式であっても透過式であってもよい。出力ビームは、試料から反射されても、試料から散乱されても、又は試料を透過してもよい。
【0081】
上記の発明について、明確な理解を提供することを目的としてある程度詳細に記述したが、付属の請求項の範囲内で何らかの変更及び修正を行えることは明らかであろう。また、本発明のプロセス、システム、及び装置を実現する多数の代替方式が存在することも注記しておく。したがって、本実施形態は、限定ではなく例示として理解されるべきであり、本発明は、本明細書に記載した詳細内容に限定されるものではない。
図1A
図1B
図2
図3
図4
図5