(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022120381
(43)【公開日】2022-08-18
(54)【発明の名称】幾何要素判別装置、幾何要素判別方法、プログラム及び三次元測定機
(51)【国際特許分類】
G01B 21/00 20060101AFI20220810BHJP
【FI】
G01B21/00 Z
【審査請求】未請求
【請求項の数】16
【出願形態】OL
(21)【出願番号】P 2021017237
(22)【出願日】2021-02-05
(71)【出願人】
【識別番号】000151494
【氏名又は名称】株式会社東京精密
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(74)【代理人】
【識別番号】100170069
【弁理士】
【氏名又は名称】大原 一樹
(74)【代理人】
【識別番号】100128635
【弁理士】
【氏名又は名称】松村 潔
(74)【代理人】
【識別番号】100140992
【弁理士】
【氏名又は名称】松浦 憲政
(72)【発明者】
【氏名】杉田 広一
【テーマコード(参考)】
2F069
【Fターム(参考)】
2F069AA01
2F069AA04
2F069AA71
2F069DD15
2F069LL00
2F069NN09
2F069QQ01
(57)【要約】
【課題】幾何要素判別の誤判別に起因する判別結果の修正操作が低減され、測定効率を向上し得る幾何要素判別装置、幾何要素判別方法、プログラム及び三次元測定機を提供する。
【解決手段】測定対象物の測定データを取得する測定データ取得部、測定データを用いて測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定部(90)、二つ以上の判別方式のそれぞれを適用して、判別方式ごとに測定データに基づき幾何要素候補を導出する幾何要素候補導出部(92)、判別方式ごとの信頼度に基づく信頼度ポイントを幾何要素候補ごとに導出し、信頼度ポイントが最も高い幾何要素候補を判別結果として導出する判別結果導出部(92)を備える。
【選択図】
図3
【特許請求の範囲】
【請求項1】
測定対象物の測定データを取得する測定データ取得部と、
前記測定データを用いて前記測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定部と、
二つ以上の判別方式のそれぞれを適用して、判別方式ごとに前記測定データに基づき前記幾何要素候補を導出する幾何要素候補導出部と、
判別方式ごとの信頼度に基づく信頼度ポイントを前記幾何要素候補ごとに導出し、信頼度ポイントが最も高い前記幾何要素候補を判別結果として導出する判別結果導出部と、
を備える幾何要素判別装置。
【請求項2】
前記判別結果導出部は、同一の幾何要素候補を導出した複数の判別方式の信頼度を合算して、前記幾何要素候補ごとの前記信頼度ポイントを導出し、前記信頼度ポイントが最大となる幾何要素候補を判別結果として導出する請求項1に記載の幾何要素判別装置。
【請求項3】
前記判別結果導出部を用いて導出される判別結果を変更する判別結果変更部を備える請求項1又は2に記載の幾何要素判別装置。
【請求項4】
前記判別結果導出部は、複数の前記幾何要素候補を導出し、前記複数の幾何要素候補を信頼度ポイントが大きい順に第二候補以降の幾何要素候補として規定し、
前記判別結果変更部は、前記第二候補以降の幾何要素候補の中から、変更後の判別結果となる幾何要素候補を選択する請求項3に記載の幾何要素判別装置。
【請求項5】
幾何要素候補を変更する際に、変更の候補とされる幾何要素候補を表示する表示部を備える請求項3又は4に記載の幾何要素判別装置。
【請求項6】
前記判別方式は、第一次元判別閾値を適用して幾何要素の次元を判別し、かつ、次元が判別された幾何要素について、第一要素判別閾値を適用して幾何要素の要素を判別する第一判別方式が含まれる請求項1から5のいずれか一項に記載の幾何要素判別装置。
【請求項7】
前記判別方式は、幾何要素判別に適用される閾値をユーザに応じて設定する第二判別方式が含まれる請求項1から6のいずれか一項に記載の幾何要素判別装置。
【請求項8】
前記第二判別方式は、ユーザに応じて設定される第二次元判別閾値を適用して幾何要素の次元を判別し、かつ、次元が判別された幾何要素について、ユーザに応じて設定される第二要素判別閾値を適用して幾何要素の要素を判別する請求項7に記載の幾何要素判別装置。
【請求項9】
前記判別方式は、判別結果を正解データとし、前記正解データが得られた測定データと前記正解データとを学習データとして学習した学習済みモデルが適用される第三判別方式が含まれる請求項1から8のいずれか一項に記載の幾何要素判別装置。
【請求項10】
前記判別方式の追加、削除及び変更の少なくともいずれかを実施するメンテナンス部を備える請求項1から9のいずれか一項に記載の幾何要素判別装置。
【請求項11】
判別結果に応じて、前記判別方式ごとの信頼度を変更する信頼度変更部を備える請求項1から10のいずれか一項に記載の幾何要素判別装置。
【請求項12】
幾何要素判別の各種の情報を表示させる表示部であり、判別方式ごとの有効又は無効を示す状態及び判別方式ごとの信頼度を表示する表示部を備える請求項11に記載の幾何要
素判別装置。
【請求項13】
測定対象物の測定データを取得する測定データ取得工程と、
前記測定データを用いて前記測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定工程と、
二つ以上の判別方式のそれぞれを適用して、判別方式ごとに前記測定データに基づき前記幾何要素候補を導出する幾何要素候補導出工程と、
判別方式ごとの信頼度に基づく信頼度ポイントを前記幾何要素候補ごとに導出し、信頼度ポイントが最も高い前記幾何要素候補を判別結果として導出する判別結果導出工程と、
を含む幾何要素判別方法。
【請求項14】
コンピュータに、
測定対象物の測定データを取得する測定データ取得機能、
前記測定データを用いて前記測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定機能、
二つ以上の判別方式のそれぞれを適用して、判別方式ごとに前記測定データに基づき前記幾何要素候補を導出する幾何要素候補導出機能、及び
判別方式ごとの信頼度に基づく信頼度ポイントを前記幾何要素候補ごとに導出し、信頼度ポイントが最も高い前記幾何要素候補を判別結果として導出する判別結果導出機能を実現させるプログラム。
【請求項15】
測定対象物を測定するプローブを具備する測定部と、
前記プローブから測定対象物の測定データを取得する測定データ取得部と、
前記測定データを用いて前記測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定部と、
二つ以上の判別方式のそれぞれを適用して、判別方式ごとに前記測定データに基づき前記幾何要素候補を導出する幾何要素候補導出部と、
判別方式ごとの信頼度に基づく信頼度ポイントを前記幾何要素候補ごとに導出し、信頼度ポイントが最も高い前記幾何要素候補を判別結果として導出する判別結果導出部と、
を備える三次元測定機。
【請求項16】
前記判別結果に基づき、幾何要素のパラメータを計算する幾何要素計算部を備える請求項15に記載の三次元測定機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、幾何要素判別装置、幾何要素判別方法、プログラム及び三次元測定機に関する。
【背景技術】
【0002】
ワークの幾何要素を自動的に判別する幾何要素判別機能を実現するソフトウェアが搭載される三次元測定機が知られている。幾何要素判別機能が搭載される装置では、オペレータがソフトウェアの操作をせずに、ワークを測定することができ、測定効率の向上に寄与する。
【0003】
幾何要素判別機能は、プロービング点数、プロービング方向及びプロービング点の座標値等を含むパラメータを取得し、予め決められる条件式へ取得したパラメータを入力し、ワークにおける幾何要素を判別する。
【0004】
特許文献1は、被測定物の幾何形状を測定する三次元測定機が記載される。同文献に記載の装置は、被測定物の測定値と予め入力されている複数の幾何形状を表す各々の数式とに基づき、各々の幾何形状の誤差を算出し、誤差が最小となる幾何形状と測定方向とに基づき、最適な幾何形状を認識する。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
適切なプロービングが実施される場合は、幾何要素の自動判別において、適切な判別結果が得られる。しかしながら、ユーザの熟練度、ユーザの癖及びワークの形状等に起因し、適切なプロービングが常に実施されるとは限らない。適切でないプロービングが実施される場合、幾何要素の自動判別において、ユーザが意図しない結果が得られることが懸念される。
【0007】
幾何要素の自動判別において誤判別が発生した場合、自動判別された幾何要素をユーザが修正する操作が生じる。誤判別の発生に起因してユーザの修正操作が増え、測定効率の低下が懸念される。
【0008】
特許文献1に記載の発明は、被測定物の幾何形状の指示ミス及びジョイスティック操作の中断の抑制を課題としており、幾何形状の判別結果の修正操作に起因する測定効率の低下という課題に着目していない。また、特許文献1は、かかる課題を解決する具体的な手段を開示していない。
【0009】
本発明はこのような事情に鑑みてなされたもので、幾何要素判別の誤判別に起因する判別結果の修正操作が低減され、測定効率を向上し得る、幾何要素判別装置、幾何要素判別方法、プログラム及び三次元測定機を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するために、次の発明態様を提供する。
【0011】
本開示に係る幾何要素判別装置は、測定対象物の測定データを取得する測定データ取得部と、測定データを用いて測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定部と、二つ以上の判別方式のそれぞれを適用して、判別方式ごとに測定データに基づき幾何要素候補を導出する幾何要素候補導出部と、判別方式ごとの信頼度に基づく信頼度ポイントを幾何要素候補ごとに導出し、信頼度ポイントが最も高い幾何要素候補を判別結果として導出する判別結果導出部と、を備える幾何要素判別装置である。
【0012】
本開示に係る幾何要素判別装置によれば、二つ以上の判別方式を適用して、判別方式ごとに幾何要素候補が導出される。幾何要素候補は判別方式ごとに規定され信頼度に基づく信頼度ポイントが導出され、信頼度ポイントが最も高い幾何要素候補が判別結果として導出される。これにより、幾何要素判別の信頼性が向上し、幾何要素判別の誤判別の発生が抑制され、幾何要素判別の誤判別に起因する修正操作が低減され、測定効率を向上し得る。
【0013】
測定データは、幾何要素判別に適用されるパラメータを含み得る。幾何要素判別に適用されるパラメータは、プロービング点の点数、プロービング点の座標値及びプロービング方向を含み得る。
【0014】
二つ以上の判別方式は、予め記憶される複数の判別方式の中から選択し得る。予め記憶される複数の判別方式を表示する表示部を備え、表示される判別方式からユーザが選択した判別方式を採用し得る。
【0015】
他の態様に係る幾何要素判別装置は、判別結果導出部は、同一の幾何要素候補を導出した複数の判別方式の信頼度を合算して、幾何要素候補ごとの信頼度ポイントを導出し、信頼度ポイントが最大となる幾何要素候補を判別結果として導出する。
【0016】
かかる態様によれば、判別方式の信頼度に基づく判別結果が導出される。これにより、判別結果の信頼性の向上が見込まれる。
【0017】
他の態様に係る幾何要素判別装置は、判別結果導出部を用いて導出される判別結果を変更する判別結果変更部を備える。
【0018】
かかる態様によれば、誤判別が回避され、判別結果の信頼性がより向上し得る。
【0019】
他の態様に係る幾何要素判別装置は、判別結果導出部は、複数の幾何要素候補を導出し、複数の幾何要素候補を信頼度ポイントが大きい順に第二候補以降の幾何要素候補として規定し、判別結果変更部は、第二候補以降の幾何要素候補の中から、変更後の判別結果となる幾何要素候補を選択する。
【0020】
かかる態様によれば、判別結果の変更の際に、信頼度ポイントに応じた幾何要素候補を選択し得る。
【0021】
他の態様に係る幾何要素判別装置は、幾何要素候補を変更する際に、変更の候補とされる幾何要素候補を表示する表示部を備える。
【0022】
かかる態様によれば、表示部へ表示される幾何要素候補の中から、判別結果を変更する際の幾何要素候補を選択し得る。
【0023】
他の態様に係る幾何要素判別装置は、判別方式は、第一次元判別閾値を適用して幾何要素の次元を判別し、かつ、次元が判別された幾何要素について、第一要素判別閾値を適用して幾何要素の要素を判別する第一判別方式が含まれる。
【0024】
かかる態様によれば、規定の閾値を用いて実施される次元判別及び幾何要素判別に基づき、幾何要素候補を導出し得る。
【0025】
他の態様に係る幾何要素判別装置は、判別方式は、幾何要素判別に適用される閾値をユーザに応じて設定する第二判別方式が含まれる。
【0026】
かかる態様によれば、ユーザの熟練度等が反映される閾値が設定される。これにより、ユーザに応じた幾何要素候補の導出を実施し得る。
【0027】
他の態様に係る幾何要素判別装置は、第二判別方式は、ユーザに応じて設定される第二次元判別閾値を適用して幾何要素の次元を判別し、かつ、次元が判別された幾何要素について、ユーザに応じて設定される第二要素判別閾値を適用して幾何要素の要素を判別する。
【0028】
かかる態様によれば、規定の閾値を用いて実施される次元判別及び幾何要素判別に基づき、幾何要素候補を導出し得る。
【0029】
他の態様に係る幾何要素判別装置は、判別方式は、判別結果を正解データとし、正解データが得られた測定データと正解データとを学習データとして学習した学習済みモデルが適用される第三判別方式が含まれる。
【0030】
かかる態様によれば、学習済みモデルが適用される幾何要素判別を実施し得る。
【0031】
他の態様に係る幾何要素判別装置は、判別方式の追加、削除及び変更の少なくともいず
れかを実施するメンテナンス部を備える。
【0032】
かかる態様によれば、判別方式の追加等のメンテナンスを実施し得る。
【0033】
他の態様に係る幾何要素判別装置は、判別結果に応じて、判別方式ごとの信頼度を変更する信頼度変更部を備える。
【0034】
かかる態様によれば、判別方式ごとの信頼性が向上し得る。
【0035】
かかる態様において、判別結果される幾何要素候補を導出した判別方式の信頼度を増加させてもよい。また、判別結果とされない幾何要素候補を導出した判別方式の信頼度を減少させてもよい。
【0036】
他の態様に係る幾何要素判別装置は、幾何要素判別の各種の情報を表示させる表示部であり、判別方式ごとの有効又は無効を示す状態及び判別方式ごとの信頼度を表示する表示部を備える。
【0037】
かかる態様によれば、判別方式ごとの状態及び判別方式ごとの信頼度をユーザが視認し得る。
【0038】
本開示に係る幾何要素判別方法は、測定対象物の測定データを取得する測定データ取得工程と、測定データを用いて測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定工程と、
二つ以上の判別方式のそれぞれを適用して、判別方式ごとに測定データに基づき幾何要素候補を導出する幾何要素候補導出工程と、判別方式ごとの信頼度に基づく信頼度ポイントを幾何要素候補ごとに導出し、信頼度ポイントが最も高い幾何要素候補を判別結果として導出する判別結果導出工程と、を含む幾何要素判別方法である。
【0039】
本開示に係る幾何要素判別方法によれば、本開示に係る幾何要素判別装置と同様の作用効果を得ることが可能である。他の態様に係る幾何要素判別装置の構成要件は、他の態様に係る幾何要素判別方法の構成要件へ適用し得る。
【0040】
本開示に係るプログラムは、コンピュータに、測定対象物の測定データを取得する測定データ取得機能、測定データを用いて測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定機能、二つ以上の判別方式のそれぞれを適用して、判別方式ごとに測定データに基づき幾何要素候補を導出する幾何要素候補導出機能、及び判別方式ごとの信頼度に基づく信頼度ポイントを幾何要素候補ごとに導出し、信頼度ポイントが最も高い幾何要素候補を判別結果として導出する判別結果導出機能を実現させるプログラムである。
【0041】
本開示に係るプログラムによれば、本開示に係る幾何要素判別装置と同様の作用効果を得ることが可能である。他の態様に係る幾何要素判別装置の構成要件は、他の態様に係るプログラムの構成要件へ適用し得る。
【0042】
本開示に係る三次元測定機は、測定対象物を測定するプローブを具備する測定部と、プローブから測定対象物の測定データを取得する測定データ取得部と、測定データを用いて測定対象物の幾何要素候補を導出する判別方式であり、幾何要素判別における信頼度が規定される判別方式を二つ以上設定する判別方式設定部と、二つ以上の判別方式のそれぞれを適用して、判別方式ごとに測定データに基づき幾何要素候補を導出する幾何要素候補導出部と、判別方式ごとの信頼度に基づく信頼度ポイントを幾何要素候補ごとに導出し、信頼度ポイントが最も高い幾何要素候補を判別結果として導出する判別結果導出部と、を備える三次元測定機である。
【0043】
本開示に係る三次元測定機によれば、本開示に係る幾何要素判別装置と同様の作用効果を得ることが可能である。他の態様に係る幾何要素判別装置の構成要件は、他の態様に係る三次元測定機の構成要件へ適用し得る。
【0044】
他の態様に係る三次元装置は、判別結果に基づき、幾何要素のパラメータを計算する幾何要素計算部を備える。
【0045】
かかる態様によれば、幾何要素判別結果に基づき、幾何要素の各種のパラメータを計算し得る。
【0046】
かかる態様において、幾何要素のパラメータを表示する表示部を備え得る。
【発明の効果】
【0047】
本発明によれば、二つ以上の判別方式を適用して、判別方式ごとに幾何要素候補が導出される。幾何要素候補は判別方式ごとに規定され信頼度に基づく信頼度ポイントが導出され、信頼度ポイントが最も高い幾何要素候補が判別結果として導出される。これにより、幾何要素判別の信頼性が向上し、幾何要素判別の誤判別の発生が抑制され、幾何要素判別の誤判別に起因する修正操作が低減され、測定効率を向上し得る。
【図面の簡単な説明】
【0048】
【
図1】
図1は実施形態に係る三次元測定機の全体構成図である。
【
図2】
図2は
図1に示す三次元測定機に適用される電気的構成を示す機能ブロック図である。
【
図3】
図3は
図2に示す幾何要素判別部の機能ブロック図である。
【
図4】
図4は実施形態に係る幾何要素判別方法の手順を示すフローチャートである。
【
図5】
図5は
図1に示す三次元測定機に適用される幾何要素判別機能の説明図である。
【
図6】
図6は
図5に示す標準方式の手順を示すフローチャートである。
【
図7】
図7は
図5に示すキャリブレーションA方式の手順を示すフローチャートである。
【
図8】
図8は幾何要素判別に適用される初期画面の説明図である。
【
図9】
図9は第一プロービング点がプロービングされた際の画面の説明図である。
【
図10】
図10は第一プロービング点がプロービングされた際の判別処理の説明図である。
【
図11】
図11は第二プロービング点がプロービングされた際の画面の説明図である。
【
図12】
図12は第二プロービング点がプロービングされた際の判別処理の説明図である。
【
図13】
図13は第三プロービング点がプロービングされた際の画面の説明図である。
【
図14】
図14は第三プロービング点がプロービングされた際の判別処理の説明図である。
【
図15】
図15は第六プロービング点がプロービングされた際の画面の説明図である。
【
図16】
図16は第六プロービング点がプロービングされた際の判別処理の説明図である。
【
図19】
図19は第二候補から第四候補として挙げられた幾何要素候補のいずれかへ変更される場合の説明図である。
【
図20】
図20は幾何要素候補が変更された際の処理の説明図である。
【
図21】
図21は幾何要素計算が実施される際の画面の説明図である。
【
図22】
図22は幾何要素計算結果の表示例を示す説明図である。
【発明を実施するための形態】
【0049】
以下、添付図面に従って本発明の好ましい実施の形態について詳説する。本明細書では、同一の構成要素には同一の参照符号を付して、重複する説明は適宜省略する。
【0050】
[三次元測定機の全体構成]
図1は実施形態に係る三次元測定機の全体構成図である。三次元測定機10は、ワークの測定点の座標値を取得し、ワークの三次元形状の測定及びワークに含まれる幾何要素の解析を実施する。なお、三次元測定機は、英語表記Coordinate Measuring Machineの省略語を用いてCMMと称されることがある。実施形態に記載のワークは測定対象物の一例である。
【0051】
同図に示す三次元測定機10は、架台12、テーブル14、右Yキャリッジ16R、左
Yキャリッジ16L、Xガイド18、Xキャリッジ20、Zキャリッジ22及びプローブヘッド24を備える。
【0052】
架台12はテーブル14の下面を支持する支持台である。テーブル14は定盤が適用される。テーブル14は、上面のX軸方向における一方の端部に右Yキャリッジ16Rが立設され、他方の端部に左Yキャリッジ16Lが立設される。
【0053】
テーブル14のX軸方向における両端部の上面及び側面は、Y軸方向に沿って右Yキャリッジ16R及び左Yキャリッジ16Lが摺動する摺動面が形成される。また、右Yキャリッジ16R及び左Yキャリッジ16Lは、テーブル14の摺動面に対向する位置にエアベアリングが具備される。すなわち、右Yキャリッジ16R及び左Yキャリッジ16Lは、テーブル14を用いて、Y軸方向について移動自在に支持される。なお、右Yキャリッジ16R及び左Yキャリッジ16Lに具備されるエアベアリングの図示を省略する。
【0054】
Xガイド18は、右Yキャリッジ16Rを用いてX軸方向の一方の端部が支持され、左Yキャリッジ16Lを用いてX軸方向の他方の端部が支持される。右Yキャリッジ16R、左Yキャリッジ16L及びXガイド18は門型フレーム26を構成する。門型フレーム26は、Y軸方向について移動自在に構成される。
【0055】
Xガイド18は、Xキャリッジ20が摺動する摺動面がX軸方向に沿って形成される。Xキャリッジ20は、Xガイド18の摺動面に対向する位置にエアベアリングが具備される。Xキャリッジ20は、Xガイド18を用いてX軸方向について移動自在に支持される。なお、Xガイド18の摺動面に対向する位置に具備されるエアベアリングの図示を省略する。
【0056】
Zキャリッジ22は、Xキャリッジ20を用いて、Z軸方向に沿って移動自在に支持される。Xキャリッジ20は、Z軸方向についてZキャリッジ22を案内するエアベアリングが具備される。なお、Z軸方向についてZキャリッジ22を案内するエアベアリングの図示を省略する。
【0057】
プローブヘッド24は、Zキャリッジ22の下端に取り付けられる。プローブヘッド24は、プローブ24Aを備える。プローブ24Aはスライタス24B及び接触子24Cを備える。プローブヘッド24は、プローブ24Aを無段階に位置決めし得る無段階位置決め機構を備える五軸同時制御プローブヘッドを適用し得る。
【0058】
三次元測定機10は、X駆動部、Y駆動部及びZ駆動部を備える。X駆動部はX軸方向に沿ってXキャリッジ20を移動させる。Y駆動部はY軸方向に沿って門型フレーム26を移動させる。Z駆動部はZ軸方向に沿ってZキャリッジ22を移動させる。
【0059】
三次元測定機10は、X駆動部、Y駆動部及びZ駆動部を適宜動作させて、互いに直交するX軸方向、Y軸方向及びZ軸方向について、任意の位置へプローブヘッド24を移動させ得る。なお、
図1ではX駆動部、Y駆動部及びZ駆動部の図示を省略する。X駆動部、Y駆動部及びZ駆動部は、駆動部28として
図2に図示する。
【0060】
三次元測定機10は、第一回転軸の回りにプローブ24Aを回転させる第一回転駆動部及び第一回転軸と直交する第二回転軸の回りにプローブ24Aを回転させる第二回転駆動部を備える。第一回転駆動部及び第二回転駆動部は、プローブ24Aの姿勢を任意に回転させ得る。なお、
図1では第一回転駆動部及び第二回転駆動部の図示を省略する。第一回転駆動部及び第二回転駆動部は、駆動部28として
図2に図示する。
【0061】
Xガイド18は、X軸方向位置検出用リニアスケールが具備される。また、Xキャリッジ20はX軸方向位置検出ヘッドが具備される。X軸方向位置検出ヘッドは、X軸方向位置検出用リニアスケールの値を読み取り、X軸方向位置検出信号を出力する。
【0062】
テーブル14は、X軸方向における他方の端の側面にY軸方向位置検出用リニアスケールが具備される。また、右Yキャリッジ16RはY軸方向位置検出ヘッドが具備される。Y軸方向位置検出ヘッドは、Y軸方向位置検出用リニアスケールの値を読み取り、Y軸方向位置検出信号を出力する。
【0063】
Zキャリッジ22は、Z軸方向位置検出用リニアスケールが具備される。また、Xキャリッジ20はZ軸方向位置検出ヘッドが具備される。Z軸方向位置検出ヘッドは、Z軸方向位置検出用リニアスケールの値を読み取り、Z軸方向位置検出信号を出力する。
【0064】
プローブヘッド24は、プローブ24Aの回転角度を検出するエンコーダが具備される。プローブ24Aの回転角度は、X軸方向と平行の第一回転軸の回りを回転する際の第一回転方向における回転角度θ1及びZ軸方向と平行の第二回転軸の回りを回転する際の第二回転方向における回転角度θ2を適用し得る。
【0065】
プローブヘッド24は、プローブ24Aのワークへの接触を検出する接触センサを備える。接触センサは接触検出信号を出力する。すなわち、三次元測定機10は、接触子24Cのワークの任意の測定点への接触を検出した際に、X軸方向、Y軸方向及びZ軸方向の位置検出信号を取得し、かつ、第一回転方向及び第二回転方向の回転角度検出信号を取得し、接触子24Cの座標値を導出し得る。
【0066】
三次元測定機10は、コントローラ30及びコンピュータ40を備える。コントローラ30は、X駆動部、Y駆動部、Z駆動部、第一回転駆動部及び第二回転駆動部へ制御信号を送信し、プローブ24Aの位置及び姿勢を制御する。
【0067】
コントローラ30は、ジョイスティック等のプローブ操作部を備える。プローブ操作部は、プローブヘッド24を手動操作する際に操作される。なお、プローブ操作部は符号32を付して
図2に図示する。
【0068】
コントローラ30は、通信インターフェースを備える。コントローラ30は、通信インターフェースを介して、各種の位置検出ヘッド及び接触センサ等と電気接続される。コントローラ30は、各種の位置検出ヘッド及び接触センサ等が出力する各種の検出信号を取得する。
【0069】
コントローラ30は、通信インターフェースを介して、コンピュータ40と通信可能に接続される。コントローラ30とコンピュータ40との通信プロトコルは、TCP/IPを適用し得る。なお、TCPはTransmission Control Protocolの省略語である。また、IPはInternet Protocolの省略語である。
【0070】
コントローラ30及びコンピュータ40は、三次元測定機10の測定制御装置として機能する。コンピュータ40は、三次元測定機10の各種の機能に対応する命令が含まれるソフトウェア80が記憶される。コンピュータ40は、ソフトウェア80の各種の命令を実行して、三次元測定機10の各種の機能を実現する。
【0071】
コンピュータ40は、測定データとしてワークのパラメータを取得し、取得したワークのパラメータを用いて、ワークの幾何要素判別を実施する幾何要素判別装置として機能する。なお、幾何要素判別の詳細は後述する。
【0072】
三次元測定機10は、ディスプレイ装置50及びコンピュータ操作部52を備える。ディスプレイ装置50は、コンピュータ40から送信される表示信号に基づき、三次元測定機10における各種の情報を表示する。
【0073】
コンピュータ操作部52は、キーボート及びマウス等が含まれる。コンピュータ操作部52はユーザが入力する各種の情報を表す信号をコンピュータ40へ送信する。コンピュータ40は、コンピュータ操作部52から送信される信号に基づき、各種の処理を実施する。ディスプレイ装置50はタッチパネル方式を適用して、操作部と一体に構成してもよい。なお、実施形態に記載のプローブヘッド24は測定部の一例である。
【0074】
[三次元測定機の電気的構成]
図2は
図1に示す三次元測定機に適用される電気的構成を示す機能ブロック図である。コンピュータ40は、駆動制御部60を備える。ワークの自動測定が実施される場合に、駆動制御部60はコントローラ30へ指令信号を送信する。
【0075】
コントローラ30は、コンピュータ40から送信される指令信号に基づき駆動部28を制御して、キャリッジ29を動作させ、かつ、プローブヘッド24を回転させ、自動測定を実施する。
【0076】
ワークの手動測定が実施される場合に、コントローラ30はプローブ操作部32の操作に応じて駆動部28を制御して、キャリッジ29を動作させ、かつ、プローブヘッド24を回転させる。
【0077】
なお、
図2に示す駆動部28は、X駆動部、Y駆動部、Z駆動部、第一回転駆動部及び第二回転駆動部が含まれる。また、キャリッジ29は、
図1に示すXキャリッジ20、右Yキャリッジ16R、左Yキャリッジ16L及びZキャリッジ22が含まれる。
【0078】
コンピュータ40は、測定データ取得部62及び幾何要素判別部64を備える。測定データ取得部62は、プローブヘッド24からワークの測定データを取得する。幾何要素判別部64は、測定データ取得部62を適用して取得した測定データをパラメータとして、幾何要素判別を実施する。
【0079】
コンピュータ40は、入力情報取得部66を備える。入力情報取得部66は、コンピュータ操作部52から送信される入力情報を表す信号を取得する。コンピュータ40は、入力情報に基づき各種の制御を実施する。
【0080】
コンピュータ40は、表示制御部68を備える。表示制御部68は、ディスプレイ装置50へ表示信号を送信する。ディスプレイ装置50は、表示制御部68から送信される表示信号に基づき、三次元測定機10における各種の情報を表示する。なお、実施形態に記載のディスプレイ装置50及び表示制御部68は表示部の構成要素の一例である。
【0081】
駆動制御部60等の各種の制御部は、CPU(Central Processing Unit)等のプロセッサを用いて構成される。各種の制御部は、一つのプロセッサが適用されてもよいし、複数のプロセッサが適用されてもよい。また、一つのプロセッサを適用して、複数の制御部が構成されてもよい。複数のプロセッサは、同一の種類であってもよいし、異なる種類であってもよい。
【0082】
コンピュータ40、メモリ81を備える。メモリ81は、プログラムメモリ82、パラメータメモリ84及びデータメモリ86を備える。プログラムメモリ82は、三次元測定
機10の各種の機能に対応する各種のプログラムが記憶される。各種のプログラムは、
図1に示すソフトウェア80に相当する。
【0083】
パラメータメモリ84は、各種のプログラムを実行する際に使用される各種の制御パラメータが記憶される。データメモリ86は、三次元測定機10に適用される各種のデータが記憶される。
【0084】
[幾何要素判別部の構成例]
図3は
図2に示す幾何要素判別部の機能ブロック図である。幾何要素判別部64は判別方式選択部90を備える。判別方式選択部90は、幾何要素判別に適用される複数の判別方式から二つ以上の判別方式を選択する。なお、実施形態に記載の判別方式選択部90は、判別方式を二つ以上設定する判別方式設定部の一例である。
【0085】
幾何要素判別部64は判別処理部92を備える。判別処理部92は判別方式選択部90を用いて選択された判別方式を適用し、
図2に示す測定データ取得部62を適用して取得した測定データを用いて幾何要素判別を実施し、判別方式ごとの幾何要素候補を導出する。
【0086】
判別処理部92は、判別方式ごとの信頼度に基づき、幾何要素候補ごとの信頼度ポイントを算出する。判別処理部92は、信頼度ポイントが最も高い幾何要素候補を第一候補とし、判別結果を導出する。また、判別処理部92は、信頼度ポイントの高い順に第二候補以降の幾何要素候補を導出する。
【0087】
すなわち、判別処理部92は、判別方式ごとに幾何要素候補を導出する幾何要素候補導出部及び信頼度ポイントに基づき幾何要素候補の中から判別結果とされる幾何要素候補を導出する判別結果導出部を備える。
【0088】
幾何要素判別部64は、
図1等に示すディスプレイ装置50へ判別結果を表示させる。すなわち、幾何要素判別部64は、判別結果として第一候補の幾何要素候補を表示させる。幾何要素判別部64は、判別結果として第二候補以降の幾何要素候補を表示させてもよい。
【0089】
幾何要素判別部64は、ユーザ入力情報取得部94を備える。ユーザ入力情報取得部94は、
図1等に示すコンピュータ操作部52を用いて入力されるユーザの入力情報を表す信号を取得する。例えば、ユーザ入力情報取得部94は、ユーザが第一候補の幾何要素候補を選択する旨の信号及びユーザが第一候補の幾何要素候補を選択せず、判別結果を変更する旨の信号等を取得する。ユーザ入力情報取得部94は、
図2に示す入力情報取得部66を適用し得る。
【0090】
幾何要素判別部64は、幾何要素計算部95を備える。幾何要素計算部95は幾何要素のパラメータを計算する。幾何要素判別部64は、ディスプレイ装置50へ幾何要素の計算結果を表示させる。例えば、幾何要素が球の場合、幾何要素計算部95はパラメータとして球の半径等を計算し、表示させ得る。
【0091】
幾何要素判別部64は、幾何要素変更部96を備える。幾何要素変更部96は、ユーザ入力情報取得部94を介して、判別結果を変更する旨の入力情報を取得した際に、判別結果を第一候補の幾何要素候補から他の幾何要素候補へ変更する。判別結果変更の詳細は後述する。なお、実施形態に記載の幾何要素変更部96は判別結果変更部の一例である。
【0092】
幾何要素判別部64は、メンテナンス部97を備える。メンテナンス部97は、判別方
式のメンテナンスを実施する。メンテナンス部97は、判別結果に基づき判別方式ごとの信頼度を更新する。
【0093】
幾何要素判別部64は、判別方式記憶部98を備える。判別方式記憶部98は、判別方式選択部90における選択処理の対象となる判別方式が記憶される。判別方式記憶部98は、複数の判別方式が記憶される。また、判別方式記憶部98は判別方式ごとの信頼度が判別方式と関連付けされ記憶される。判別方式記憶部98は、
図2示すメモリ81を適用し得る。
【0094】
[幾何要素判別方法の手順]
図4は実施形態に係る幾何要素判別方法の手順を示すフローチャートである。測定前処理工程S10では、
図1等に示すコンピュータ40は、ワークの測定前に実施される各種の処理を実施する。測定前に実施される各種の処理の例として、プローブの校正処理等が挙げられる。測定前処理工程S10の後に判別方式選択工程S12へ進む。
【0095】
判別方式選択工程S12では、
図3に示す判別方式選択部90は判別方式記憶部98に記憶される複数の判別方式から、二以上の判別方式を選択する。判別方式選択工程S12の後に測定データ取得工程S14へ進む。
【0096】
なお、実施形態に記載の判別方式選択工程S12は判別方式設定工程の一例である。また、実施形態に記載の判別方式選択工程S12に対応する機能は、判別方式設定機能の一例である。
【0097】
測定データ取得工程S14では、幾何要素判別部64は測定データ取得部62を適用して取得されるワークの測定データを取得する。測定データ取得工程S14の後に判別処理工程S16へ進む。なお、実施形態に記載の測定データ取得工程S14に対応する機能は、測定データ取得機能の一例である。
【0098】
判別処理工程S16では、判別処理部92は測定データ取得工程S14において取得される測定データを用いて、判別方式選択工程S12において選択される二以上の判別方式のそれぞれを適用して、判別方式ごとの幾何要素候補を導出する。
【0099】
また、判別処理工程S16において、判別処理部92は判別方式ごとに規定される信頼度に基づき、幾何要素候補ごとに信頼度ポイントを導出し、信頼度ポイントが最も高い幾何要素候補を第一候補として導出する。
【0100】
更に、判別処理工程S16において、判別処理部92は信頼度ポイントの高い順に第二候補以降の幾何要素候補を導出する。判別処理工程S16の後に判別結果表示工程S18へ進む。
【0101】
なお、実施形態に記載の判別処理工程S16は、幾何要素候補導出工程の一例であり、判別結果導出工程の一例である。実施形態に記載の判別処理工程S16に対応する機能は、幾何要素候補導出機能の一例であり、判別結果導出機能の一例である。
【0102】
判別結果表示工程S18では、幾何要素判別部64はディスプレイ装置50へ判別結果を表示させる。ディスプレイ装置50へ表示される判別結果は少なくとも第一候補の幾何要素候補が含まれる。判別結果表示工程S18の後に確定判定工程S20へ進む。
【0103】
確定判定工程S20では、判別処理部92はディスプレイ装置50へ表示される第一候補の幾何要素候補を、判別結果として確定させるか否かを判定する。すなわち、確定判定
工程S20において、ユーザ入力情報取得部94が、第一候補の幾何要素候補を確定させずに変更する旨を表す信号を取得する場合はNo判定となる。No判定の場合、幾何要素選択工程S22へ進む。
【0104】
幾何要素選択工程S22では、判別処理部92は、ユーザ入力情報取得部94を介して幾何要素候補の選択情報を取得する。幾何要素選択工程S22の後に表示変更工程S24へ進む。
【0105】
表示変更工程S24では、判別処理部92はディスプレイ装置50へ幾何要素選択工程S22において選択される幾何要素候補を表示させる。表示変更工程S24の後に確定判定工程S20へ進む。以降、確定判定工程S20においてYes判定となるまで、確定判定工程S20から表示変更工程S24までの各工程をくり返し実行する。
【0106】
一方、確定判定工程S20において、ユーザ入力情報取得部94が、第一候補の幾何要素候補を、判別結果として確定させる旨を表す信号を取得する場合はYes判定となる。Yes判定の場合、判別処理部92は第一候補の幾何要素候補を、判別結果として確定させ、幾何要素計算工程S26へ進む。
【0107】
幾何要素計算工程S26では、幾何要素計算部95は確定した幾何要素のパラメータを計算する。例えば、幾何要素が球の場合、幾何要素のパラメータとして球の半径等が計算される。幾何要素計算工程S26の後に幾何要素計算結果表示工程S28へ進む。
【0108】
幾何要素計算結果表示工程S28では、幾何要素判別部64は、ディスプレイ装置50へ幾何要素の計算結果を表示させる。幾何要素計算結果表示工程S28の後に、コンピュータ40は幾何要素判別方法を終了させる。
【0109】
[幾何要素判別機能の詳細な説明]
図5は
図1に示す三次元測定機に適用される幾何要素判別機能の説明図である。三次元測定機10に適用される幾何要素判別機能は、標準方式に加えて、キャリブレーション方式及び学習方式など、複数の判別方式を適用して幾何要素を自動的に判別する。
【0110】
判別方式は、それぞれが個別にプラグインとして構成される。三次元測定機10は判別方式の追加及び削除が可能に構成される。
図5には、キャリブレーション方式として、キャリブレーションA方式及びキャリブレーションB方式を例示する。また、学習方式として、学習A方式及び学習B方式を例示する。
【0111】
判別方式は、信頼度が規定される。判別方式の信頼度は、判別結果がどれだけ信頼できるかを定量的に表す数値である。
図5に示す複数の判別方式は、信頼度の値が70のキャリブレーションB方式が最も信頼度が高く、信頼度の値が5の学習A方式が最も信頼度が低い。
【0112】
幾何要素判別機能は、入力情報としてプロービング点数、プロービング点の座標値及びプロービング方向を取得する。
図5に示す入力情報は、
図2に示す測定データ取得部62を適用して取得される測定データに含まれる。
【0113】
判別方式は、入力情報を用いて幾何要素を導出する。
図5に示す例では、標準方式は幾何要素候補として円を導出し、キャリブレーションA方式は幾何要素候補として平面を導出し、キャリブレーションB方式は幾何要素候補として円筒を導出する。また、学習A方式は幾何要素候補として球を導出し、学習B方式は幾何要素候補として円を導出する。
【0114】
幾何要素判別機能は、幾何要素候補ごとに信頼度を合算して信頼度ポイントを算出する。
図5に示す例では、幾何要素候補が円の場合、標準方式の信頼度の値である50と学習B方式の信頼度の値である60とを合算して、信頼度ポイントとして110が算出される。
【0115】
幾何要素判別機能は、複数の幾何要素候補が導出される場合に、信頼度ポイントが最も高い幾何要素候補を第一候補とし、信頼度ポイントの高い順に第二候補以降の幾何要素候補を規定する。幾何要素判別機能は、第一候補の幾何要素候補を判別結果として導出する。
【0116】
図5に示す例では、第一候補は信頼度ポイントが110の円であり、第二候補は信頼度ポイントが70の円筒である。また、第三候補は信頼度ポイントが20の平面であり、第四候補は信頼度ポイントが5の球である。判別結果として円が導出される。
【0117】
[判別方式の具体例]
〔標準方式〕
図6は
図5に示す標準方式の手順を示すフローチャートである。次元判別工程S100では、次元判別の閾値を適用し、プロービング点数及びプロービング点の座標を用いて、幾何要素の次元が判別される。幾何要素の次元は、0次元、一次元、二次元又は三次元のいずれかである。
【0118】
幾何要素の次元が0次元の場合は、幾何要素候補110として点が導出される。また、幾何要素の次元が一次元の場合は、一次元要素判別工程S101が実施される。一次元要素判別工程S101では、一次元要素判別の閾値を適用し、プロービング方向及びプロービング点数を用いて、幾何要素候補を直線とするか又は中点とするかが判定される。すなわち、一次元要素判別工程S101では、幾何要素候補112として直線が導出されるか又は幾何要素候補113として中点が導出される。
【0119】
幾何要素の次元が二次元の場合は、二次元要素判別工程S102が実施される。二次元要素判別工程S102では、二次元要素判別の閾値を適用し、プロービング方向を用いて、幾何要素候補を平面とするか又は円とするかが判定される。すなわち、二次元要素判別工程S102では、幾何要素候補114として平面が導出されるか又は幾何要素候補116として円が導出される。
【0120】
二次元要素判別工程S102において、nを整数とし、n点のプロービング点群から算出される平面の法線ベクトルNが算出される。法線ベクトルNは、プロービング点を用いて平面の計算を行う、公知の手法を用いて算出し得る。なお、本明細書ではベクトルを表す矢印線等を省略する。
【0121】
下記の式1を適用して、法線ベクトルNと各プロービングベクトルpiとの内積の平均aを算出する。
【0122】
a=(1/n)×ΣN
i=1(pi×N) …式1
式1を用いて算出される内積の平均aが閾値を超える場合は、幾何要素候補114として平面が導出される。一方、内積の平均aが閾値以下の場合は、幾何要素候補116としいて円が導出される。
【0123】
幾何要素の次元が三次元の場合は、三次元要素判別工程S104が実施される。三次元要素判別工程S104では、三次元要素判別の閾値を適用し、プロービング方向及びプロービング点の座標値を用いて、幾何要素候補が球であるか、円筒であるか又は円錐である
かが判定される。
【0124】
すなわち、三次元要素判別工程S104では、幾何要素候補118として球が導出されるか、幾何要素候補120として円筒が導出されるか又は幾何要素候補122として円錐が導出される。
【0125】
なお、実施形態に記載の標準方式は第一判別方式の一例である。実施形態に記載の次元判別工程S100に適用される閾値は第一次元判別閾値の一例である。実施形態に記載の二次元要素判別工程S102及び三次元要素判別工程S104に適用される閾値は、第一要素判別閾値の一例である。
【0126】
〔キャリブレーションA方式〕
図7は
図5に示すキャリブレーションA方式の手順を示すフローチャートである。キャリブレーションA方式は、標準方式における次元判別に適用される閾値及び要素判別に適用される閾値をユーザに合わせて変更する方式である。キャリブレーションA方式は、任意の閾値を静的に設定する方式である。
【0127】
閾値設定工程S120では、キャリブレーションA方式に適用される閾値が設定される。ここでいう閾値の設定は、既に設定される閾値を変更する態様を含み得る。キャリブレーションA方式に適用される各種の閾値が設定された後に、次元判別工程S122へ進む。
【0128】
閾値設定工程S120が実施される前に、ユーザ情報を取得するユーザ情報取得工程が実施されてもよい。閾値設定工程S120では、ユーザ情報に応じてユーザごとの閾値を設定してもよい。
【0129】
次元判別工程S122では、次元判別の閾値を適用し、プロービング点数及びプロービング点の座標を用いて、幾何要素の次元が判別される。幾何要素の次元が0次元の場合は幾何要素候補110として点が導出される。
【0130】
幾何要素の次元が一次元の場合は、一次元要素判別工程S124が実施される。一次元要素判別工程S124では、一次元要素判別の閾値を適用し、プロービング方向及びプロービング点数を用いて、幾何要素候補を直線とするか又は中点とするかが判定される。すなわち、一次元要素判別工程S124では、幾何要素候補112として直線が導出されるか又は幾何要素候補113として中点が導出される。
【0131】
幾何要素の次元が二次元の場合は二次元要素判別工程S126が実施される。二次元要素判別工程S126では、二次元要素判別の閾値を適用し、プロービング方向を用いて、幾何要素候補を平面とするか又は円とするかが判定される。すなわち、二次元要素判別工程S126では、幾何要素候補114として平面が導出されるか又は幾何要素候補116として円が導出される。
【0132】
幾何要素の次元が三次元の場合は三次元要素判別工程S128が実施される。三次元要素判別工程S128では、三次元要素判別の閾値を適用し、プロービング方向及びプロービング点の座標値を用いて、幾何要素が球であるか、円筒であるか又は円錐であるかを判別する。
【0133】
すなわち、三次元要素判別工程S128では、幾何要素候補118として球が導出されるか、幾何要素候補120として円筒が導出されるか又は幾何要素候補122として円錐が導出される。
【0134】
〔キャリブレーションB方式〕
キャリブレーションB方式は、ユーザの操作を学習し、次元判別等に適用される閾値が動的に設定される方式である。ユーザの操作の学習は、判別結果をユーザが変更したことをトリガとして、判別結果とされた幾何要素候補とユーザが選択した幾何要素候補とが異なる原因となる条件式に対して、新たな閾値が導出され、新たな閾値が再設定される。
【0135】
再設定される閾値は、ユーザが選択した幾何要素候補を算出し得る閾値と、これまでに再設定された閾値の平均との閾値が採用される。具体的には、ユーザが選択した幾何要素候補を算出し得る閾値をtaとし、既に設定されている閾値をtbとし、これまでにユーザが判別結果を変更した回数であるキャリブレーション回数をcとする。新たな閾値tcは、以下の式2を用いて表される。
【0136】
tc={(ta-tb)/(c+2)}+tb …式2
例えば、既に設定されている閾値tbをtb=30とし、ユーザが選択した幾何要素候補を算出し得る閾値taをta=50とする。判別結果をユーザが修正していない場合、新たな閾値tcは、tc={(50-30)/(0+2)}+30=40となる。また、判別結果をユーザが二回修正している場合、新たな閾値tcは、tc={(50-30)/(2+2)}+30=35となる。
【0137】
ここで、新たな閾値tcは、次元判別に適用される閾値及び各次元の要素判別に適用される閾値が含まれる。すなわち、次元判別に適用される閾値及び各次元の要素判別に適用される閾値のそれぞれは、上記の式2を適用して、適宜、更新される。
【0138】
以下に、新たな閾値tcの計算の具体例を示す。法線ベクトルNをN=(0,0,-1)とし、プロービング点数nをn=3とする。
【0139】
プロービングベクトルp1をp1=(0.7071,0.0000,-0.7071)とし、プロービングベクトルp2をp2=(0.0000,0.7071,-0.7071)とし、プロービングベクトルp3をp3=(-0.7071,0.0000,-0.7071)とする。なお、プロービングベクトルp1、プロービングベクトルp2及びプロービングベクトルp3における各成分は、プロービング点の座標値に対応する。
【0140】
既に設定されている閾値t0をt0=0.5とし、キャリブレーション回数cをc=0とする。上記の式1を用いて、法線ベクトルNと各プロービングベクトルpiとの内積の平均aを算出すると、a=0.7071となる。既に設定されている閾値t0=0.5と内積の平均aとを比較すると、a>t0を満たすので幾何要素候補として平面が導出される。
【0141】
判別結果として平面が導出され、ユーザが判別結果の平面を採用せずに、円を選択する場合、上記の式2を用いて、新たな閾値tcが算出される。すなわち、新たな閾値tcは、tc={(0.7010-0.5)/(0+2)}+0.5=0.6036となる。
【0142】
一方、ユーザが判別結果の円を変更せずに選択する場合は、新たな閾値tcの算出は実施されず、既に設定されている閾値t0=0.5が維持される。
【0143】
次回のプロービングにおいて、上記したプロービングベクトルp1、プロービングベクトルp2及びプロービングベクトルp3が得られ、ユーザが判別結果である平面を採用せずに、円を選択する場合、新たな閾値tcが算出される。新たな閾値tcはtc={(0
.7010-0.6036)/(1+2)}+0.6036=0.6381となる。
【0144】
このようにして、測定の進行に応じて、閾値が0.5、0.6036、0.6381と変化する。これにより、ユーザが期待する結果が得られる幾何要素判別が、徐々にできるようになる。
【0145】
閾値の更新が繰り返される場合、キャリブレーション回数cの値が大きくなり過ぎてしまい、一回のキャリブレーションにおいて変化し得る閾値の範囲が少なくなる懸念がある。そこで、キャリブレーション回数cの上限値が設定される。これにより、キャリブレーション回数cの回数が重ねられる場合であっても、閾値のキャリブレーションが機能し得る。
【0146】
ユーザが球を円に変更した場合など、ユーザが判別結果を次元が異なる幾何形状へ変更した場合は、次元判別に適用される閾値が修正される。また、円錐を円筒へ変更した場合など、ユーザが判別の結果を同一の次元の幾何形状へ変更した場合は、各次元の要素判別に適用される閾値が修正される。
【0147】
なお、実施形態に記載のキャリブレーションA方式及びキャリブレーションB方式は第二判別方式の一例である。実施形態に記載の次元判別工程S122に適用される閾値は第二次元判別閾値の一例である。実施形態に記載の一次元要素判別工程S124、二次元要素判別工程S126及び三次元要素判別工程S128に適用される閾値は、第二要素判別閾値の一例である。
【0148】
〔学習A方式〕
学習A方式は、ユーザが実際に測定した結果を学習した学習済みモデルを適用して、幾何要素候補を導出する方式である。学習A方式は、判別結果として確定した幾何要素候補を正解データとし、正解データが得られた測定データと正解データとの組を学習データとする教師あり学習を実施した学習済みモデルを適用し得る。
【0149】
〔学習B方式〕
学習B方式は、学習A方式と異なるアルゴリズムが適用される学習済みモデルを適用して、幾何要素候補を導出する方式である。なお、実施形態に記載の学習A方式及び学習B方式は第三判別方式の一例である。
【0150】
[幾何要素判別における画面遷移及び処理遷移の説明]
図8は幾何要素判別に適用される初期画面の説明図である。
図8に示す初期画面200は、ワークの測定前に表示される。なお、
図8に示す初期画面200等の各種の画面は、
図1等に示すディスプレイ装置50へ表示される。
【0151】
初期画面200は、メニュー領域202、文字情報表示領域204、測定条件表示領域206及び測定データ表示領域208が含まれる。メニュー領域202は、各種の機能が割り付けられる複数のボタン210が含まれる。なお、符号210はメニュー領域202に含まれる任意のボタンを表す。
【0152】
文字情報表示領域204は、各種の文字情報が表示される。
図8には、基準プローブ校正の実施を促す第一文字情報220、幾何要素判別の有効又は無効を表す第二文字情報222及びプロービング点の点数を表す第三文字情報224が表示される。
【0153】
図8に示す初期画面200は、第二文字情報222として幾何要素判別の有効を表す文字情報である自動が表示され、かつ、第三文字情報224としてプロービング点の情報の
未取得を表す数値0が表示される。
【0154】
測定条件表示領域206は、各種の測定条件が表示される。測定データ表示領域208は、現在の接触子24Cの位置を表す座標値が表示される。
図8にはワーク座標系が適用される例を図示する。なお、
図8に示す座標値は任意の値である。
【0155】
図9は第一プロービング点がプロービングされた際の画面の説明図である。同図に示す第一プロービング点測定画面230は、文字情報表示領域204へ表示される第二文字情報222として、第一候補の幾何要素候補を表す点が表示される。また、第一プロービング点測定画面230は、第三文字情報224として、プロービング点数が1であることを表す数値1が表示される。
【0156】
図10は第一プロービング点がプロービングされた際の判別処理の説明図である。表232は、判別方式ごとの信頼度及び幾何要素候補を示す。表234は、幾何要素候補及び信頼度ポイントを示す。
【0157】
プロービング点の点数が1の場合、全ての判別方式は、幾何要素候補として点を導出する。幾何要素候補は第一候補の点のみである。
図3に示す判別処理部92は、プロービング点の情報が取得される都度、判別処理を実施し得る。
【0158】
図11は第二プロービング点がプロービングされた際の画面の説明図である。同図に示す第二プロービング点測定画面240は、文字情報表示領域204へ表示される第二文字情報222として、第一候補の幾何要素候補を表す直線が表示される。また、第二プロービング点測定画面240は、第三文字情報224として、プロービング点数が2であることを表す数値2が表示される。
【0159】
第二プロービング点測定画面240は、メニュー領域202へ表示される第二候補選択ボタン210Aは第二候補の中点が表示され、第三候補選択ボタン210Bは第三候補の点が表示される。なお、第四候補選択ボタン210Cは第四候補の幾何要素候補を表示可能であるが、第四候補の幾何要素候補が導出されていないので、第四候補選択ボタン210Cは幾何要素候補が未表示とされる。
【0160】
図12は第二プロービング点がプロービングされた際の判別処理の説明図である。表242は、判別方式ごとの信頼度及び幾何要素候補を示す。表244は、幾何要素候補及び信頼度ポイントを示す。
【0161】
プロービング点の点数が2の場合、標準方式、キャリブレーションA方式及び学習B方式は幾何要素として直線を導出し、キャリブレーションB方式は幾何要素として中点を導出し、学習A方式は幾何要素として点を導出する。
【0162】
プロービング点の点数が2の場合、第一候補から第三候補までの幾何要素候補が導出される。信頼度ポイントが最も高い直線が第一候補とされ、信頼度ポイントが高い順に第二候補が中点とされ、第三候補が点とされる。
【0163】
図13は第三プロービング点がプロービングされた際の画面の説明図である。同図に示す第三プロービング点測定画面250は、文字情報表示領域204へ表示される第二文字情報222として、第一候補の幾何要素候補を表す円が表示される。また、第三プロービング点測定画面250は、第三文字情報224として、プロービング点数が3であることを表す数値3が表示される。
【0164】
第三プロービング点測定画面250は、第二候補選択ボタン210Aは第二候補の平面が表示され、第三候補選択ボタン210Bは第三候補の直線が表示される。一方、第四候補選択ボタン210Cは幾何要素候補が非表示である。
【0165】
図14は第三プロービング点がプロービングされた際の判別処理の説明図である。表252は、判別方式ごとの信頼度及び幾何要素候補を示す。表254は、幾何要素候補及び信頼度ポイントを示す。
【0166】
プロービング点の点数が3の場合、標準方式、キャリブレーションB方式及び学習B方式は幾何要素候補として円を導出し、キャリブレーションA方式は幾何要素候補として平面を導出し、学習A方式は幾何要素候補として直線を導出する。
【0167】
プロービング点の点数が3の場合、第一候補から第三候補までの幾何要素候補が導出される。信頼度ポイントが最も高い円が第一候補とされ、信頼度ポイントが高い順に第二候補が平面とされ、第三候補が直線とされる。
【0168】
図15は第六プロービング点がプロービングされた際の画面の説明図である。同図に示す第六プロービング点測定画面260は、文字情報表示領域204へ表示される第二文字情報222として、第一候補の幾何要素候補を表す円錐が表示される。また、第六プロービング点測定画面260は、第三文字情報224として、プロービング点数が6であることを表す数値6が表示される。
【0169】
第六プロービング点測定画面260は、メニュー領域202へ表示される第二候補選択ボタン210Aは第二候補の球が表示され、第三候補選択ボタン210Bは第三候補の円筒が表示され、第四候補選択ボタン210Cは第四候補の円が表示される。
【0170】
プロービング点数が6の場合、
図16に示すように第五候補の幾何要素が導出される。
図15に示す第六プロービング点測定画面260は、第五候補の幾何要素が表示されるボタンが設定されていないが、第六プロービング点測定画面260は第五候補の幾何要素が表示されるボタンが設定されてもよい。
【0171】
図16は第六プロービング点がプロービングされた際の判別処理の説明図である。表262は、判別方式ごとの判別結果を示す。表264は、幾何要素候補及び信頼度ポイントを示す。
【0172】
プロービング点の点数が6の場合、標準方式は幾何要素候補として球を導出し、キャリブレーションA方式は幾何要素候補として円筒を導出し、キャリブレーションB方式は幾何要素候補として円錐を導出する。また、学習A方式は幾何要素候補として円を導出し、学習B方式は幾何要素候補として平面を導出する。
【0173】
プロービング点の点数が6の場合、第一候補から第五候補までの幾何要素候補が導出される。信頼度ポイントが最も高い円錐が第一候補とされ、信頼度ポイントが高い順に第二候補が球とされ、第三候補が円筒とされ、第四候補が円とされ、第五候補が平面とされる。
【0174】
[判別結果の変更]
図17は判別結果変更の説明図である。同図には、
図15に示す第六プロービング点測定画面260における幾何要素変更ボタン210Dを強調して図示する。なお、
図15では符号210Dの図示が省略されている。
【0175】
幾何要素判別機能は、判別結果として導出される幾何要素を、ユーザが手動で変更し得る。判別結果として導出された第一候補の幾何要素を、第二候補から第四候補に挙げられていない幾何要素へ変更する場合は、
図17に示す幾何要素変更ボタン210Dが選択される。ボタンの選択は、マウス等を用いてユーザがボタンをクリックする態様及びユーザがボタンをタッチする態様等を適用し得る。
【0176】
図18は幾何要素選択の説明図である。同図に示す幾何要素選択画面270は、
図17に示す幾何要素変更ボタン210Dが選択された場合に、
図1等に示すディスプレイ装置50へ表示される。
【0177】
図18に示す幾何要素選択画面270は、複数の幾何要素選択ボタン272が表示される。幾何要素選択ボタン272は、
図17に示す第六プロービング点測定画面260に、第二候補以降の幾何要素候補として挙げられる球、円筒及び円のそれぞれに対応するボタンが含まれる。
【0178】
また、幾何要素選択ボタン272は、第二候補以降の幾何要素候補として挙げられていない、点、直線、部分円、平面、円錐及び中点に対応するボタンが含まれる。なお、
図18に示す幾何要素選択ボタン272は図示の例に限定されず、追加、削除及び変更等が可能である。
【0179】
ユーザは、幾何要素選択ボタン272の中から一つのボタンを選択し、OKボタン274を選択する。同図には、ユーザが球を選択する場合を図示する。
図3に示すユーザ入力情報取得部94は幾何要素候補の選択情報を取得し、幾何要素変更部96は幾何要素候補の選択情報に基づき、変更後の幾何要素候補を確定させる。ユーザがキャンセルボタン276を選択した場合は、幾何要素選択ボタン272の選択が解除され、幾何要素候補の選択待ちとなる。
【0180】
また、
図17に示す第二候補選択ボタン210A、第三候補選択ボタン210B及び第四候補選択ボタン210Cのいずれかが選択された場合、判別結果として導出された第一候補の幾何要素候補が、選択されたボタンに対応する幾何要素候補へ変更される。
【0181】
すなわち、
図3に示すユーザ入力情報取得部94は、選択された第二候補選択ボタン210A、第三候補選択ボタン210B及び第四候補選択ボタン210Cのいずれかに対応する幾何要素候補の選択情報を取得する。幾何要素変更部96はユーザ入力情報取得部94を介して取得される幾何要素候補の選択情報に基づき、変更後の幾何要素候補を確定させる。
【0182】
図19は第二候補から第四候補として挙げられた幾何要素候補のいずれかへ変更される場合の画面の説明図である。
図20は幾何要素候補が変更された際の処理の説明図である。
図19に示す幾何要素変更対応画面280は、
図15に示す第六プロービング点測定画面260に対して、第二文字情報222が球へ変更され、第二候補選択ボタン210Aが円錐へ変更される。
【0183】
図20に示す表264Aは、
図3等に示す幾何要素判別部64において、
図16に示す表262の処理が、第一候補の幾何要素候補である円錐から、第二候補の幾何要素候補である球へ変更されたことを模式的に表す。
【0184】
[幾何要素計算]
図21は幾何要素計算が実施される際の画面の説明図である。
図21には、
図19に示す幾何要素変更対応画面280におけるターミネートボタン210Eを強調して図示する
。なお、
図19では符号210Eの図示が省略されている。
【0185】
幾何要素変更対応画面280におけるターミネートボタン210Eが選択されると、
図3に示す判別処理部92は第二文字情報222へ表示される幾何要素候補を、判別結果として確定させる。幾何要素計算部95は確定した判別結果の幾何要素に対して幾何要素計算を実施する。なお、判別結果が修正されない場合も、ターミネートボタン210Eが選択され、判別結果が確定し、幾何要素計算が実施される。
【0186】
図22は幾何要素計算結果の表示例を示す説明図である。同図に示す計算結果表示画面290の幾何要素計算結果表示領域212には、計算対象の幾何要素を表す第四文字情報292及び計算結果294が表示される。
【0187】
図22には表形式が適用される計算結果294を図示する。計算結果294として、公差ラベルごとの実測値が算出される。なお、
図22に示す公差ラベルは一例であり、幾何要素に応じて追加、削除及び変更し得る。また、
図22に示す実測値は任意の値である。
【0188】
[判別方式のメンテナンス]
ユーザの入力に応じて、測定データから自動的に導出される判別結果が変更される場合、
図3に示すメンテナンス部97は判別方式のメンテナンスを実施する。すなわち、メンテナンス部97は、判別方式のメンテナンスとして、判別結果の変更に応じた判別方式ごとの信頼度の変更を実施する。
【0189】
図23は信頼度の変更の一例の説明図である。
図23には、
図16に示す表262に示す信頼度が、表262Aに示す信頼度に変更される例を模式的に示す。例えば、第一候補の幾何要素候補である円錐が球へ変更される場合、球を導出した標準方式の信頼度を1ポイント増加させる。一方、球ではない幾何要素候補を導出したキャリブレーションA方式、キャリブレーションB方式、学習A方式及び学習Bの信頼度を1ポイント減少させる。
【0190】
図24は信頼度の変更の他の一例の説明図である。
図24には、
図16に示す表262に示す信頼度が、表262Bに示す信頼度に変更される例を模式的に示す。例えば、第一候補の幾何要素候補である円錐が円筒へ変更される場合、円筒を導出したキャリブレーションA方式の信頼度を1ポイント増加させる。一方、円筒ではない幾何要素候補を導出した標準方式、キャリブレーションB方式、学習A方式及び学習Bの信頼度を1ポイント減少させる。なお、実施形態に記載のメンテナンス部97は信頼度変更部の一例である。
【0191】
図25はメンテナンス画面の説明図である。
図3に示すメンテナンス部97は、
図1等に示すディスプレイ装置50へ、
図25に示すメンテナンス画面300を表示させる。メンテナンス画面300は、判別方式の状態をユーザへ報知し得る。
【0192】
メンテナンス画面300は、判別方式一覧302が含まれる。判別方式一覧302は判別方式ごとの各種の情報が含まれる。
図25には表形式が適用される判別方式一覧302を図示する。同図に示す判別方式一覧302は、判別方式ごとの各種の情報として、識別番号、状態、ファイル名、信頼度及びメモが含まれる。
【0193】
メンテナンス画面300には、状態切替ボタン304が表示される。状態切替ボタン304は、判別方式ごとに有効化又は無効化の実施の際に操作される。例えば、
図25に示す標準方式が選択される状態において状態切替ボタン304が操作されると、有効である標準方式が無効化される。
【0194】
メンテナンス画面300は、メモボタン306が表示される。メモボタン306はメモ
欄の編集を実施する際に操作される。例えば、
図25に示す標準方式が選択される状態においてメモボタン306が操作されると、標準方式のメモ欄の編集が可能となる。
【0195】
メンテナンス画面300は、追加ボタン308及び削除ボタン310が表示される。追加ボタン308は判別方式を追加する際に操作される。削除ボタン310は判別方式を削除する際に操作される。
【0196】
三次元測定機10は一つ以上の有効な判別方式が存在する必要がある。そこで、有効な判別方式が一つの場合、状態切替ボタン304及び削除ボタン310の操作は無効とされる。
【0197】
メンテナンス画面300は、閉じるボタン312が表示される。閉じるボタン312が操作されると、メンテナンス画面300が閉じられる。
【0198】
[実施形態に係る三次元測定機及び幾何要素判別方法の作用効果]
上記の如く構成された三次元測定機10及び幾何要素判別方法によれば、以下の作用効果を得ることが可能である。
【0199】
〔1〕
幾何要素判別において、複数の判別方式から二つ以上の判別方式を選択し、判別方式ごとに幾何要素候補を導出し、判別方式ごとに規定される信頼度に基づく信頼度ポイントを幾何要素候補ごとに算出し、信頼度ポイントが最大となる幾何要素候補を判別結果として導出する。これにより、幾何要素判別における判別結果の信頼性が向上し、判別結果の誤判別に起因する判別結果の修正を回避し得る。
【0200】
〔2〕
ユーザが判別結果を変更し得る。これにより、誤判別が回避され、判別結果の信頼性がより向上し得る。
【0201】
〔3〕
ユーザが判別結果を変更する際に、ディスプレイ装置50へ変更の候補となる幾何要素候補が表示される。これにより、ユーザはディスプレイ装置50へ表示される幾何要素候補の中から、変更後の幾何要素候補を選択し得る。
【0202】
〔4〕
ユーザの判別結果を変更に応じて、判別方式ごとの信頼度が変更される。これにより、判別方式ごとに導出される幾何要素候補の信頼性が向上し得る。
【0203】
〔5〕
判別方式は、それぞれがプラグインとして構成される。これにより、判別方式の追加、削除及び変更等のメンテナンスを実施し得る。
【0204】
〔6〕
判別方式は、標準方式、ユーザに応じて閾値が設定されるキャリブレーション方式及び判別結果と測定データとの組を学習データとして学習を実施した学習済みモデルが適用される学習方式が含まれる。これにより、ユーザの熟練度及びユーザの癖等に起因する測定データのばらつきに依存しない幾何要素候補の導出を実施し得る。
【0205】
〔7〕
キャリブレーション方式は、判別結果に応じて閾値が変更される。これにより、ユーザ
の熟練度及びユーザの癖等に応じた、キャリブレーション方式のカスタマイズが可能となる。
【0206】
以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有する者により、多くの変形が可能である。
【符号の説明】
【0207】
10…三次元測定機、40…コンピュータ、50…ディスプレイ装置、62…測定データ取得部、64…幾何要素判別部、68…表示制御部、80…ソフトウェア、81…メモリ、90…判別方式選択部、92…判別処理部、94…ユーザ入力情報取得部、95…幾何要素計算部、96…幾何要素変更部、97…メンテナンス部