IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人九州大学の特許一覧 ▶ 日本ゼオン株式会社の特許一覧

特開2022-136073高圧水素機器用ガスシール部材および高圧水素機器
<>
  • 特開-高圧水素機器用ガスシール部材および高圧水素機器 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022136073
(43)【公開日】2022-09-15
(54)【発明の名称】高圧水素機器用ガスシール部材および高圧水素機器
(51)【国際特許分類】
   C08L 21/00 20060101AFI20220908BHJP
   C08K 3/013 20180101ALI20220908BHJP
   C08K 3/04 20060101ALI20220908BHJP
   F17C 13/00 20060101ALI20220908BHJP
   F16J 15/10 20060101ALI20220908BHJP
【FI】
C08L21/00
C08K3/013
C08K3/04
F17C13/00 301C
F16J15/10 Y
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022088895
(22)【出願日】2022-05-31
(62)【分割の表示】P 2018568533の分割
【原出願日】2018-02-13
(31)【優先権主張番号】P 2017025462
(32)【優先日】2017-02-14
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】504145342
【氏名又は名称】国立大学法人九州大学
(71)【出願人】
【識別番号】000229117
【氏名又は名称】日本ゼオン株式会社
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100175477
【弁理士】
【氏名又は名称】高橋 林太郎
(72)【発明者】
【氏名】西村 伸
(72)【発明者】
【氏名】武山 慶久
(57)【要約】
【課題】はみ出し破壊の発生とブリスター破壊の発生との双方を十分に抑制することが可能な高圧水素機器用ガスシール部材を提供する。
【解決手段】本発明の高圧水素機器用ガスシール部材は、エラストマー組成物の架橋物からなる高圧水素機器用ガスシール部材であって、前記エラストマー組成物は、エラストマーと、繊維状炭素ナノ構造体と、シリカとを含有し、前記エラストマーを含むエラストマー成分の架橋物の水素拡散係数D1と、前記エラストマー組成物の架橋物の水素拡散係数D2とが、0.7<D2/D1<1.0の関係式を満たし、エラストマー組成物中のシリカの含有量が、エラストマー100質量部当たり、50質量部以下である。
【選択図】図1
【特許請求の範囲】
【請求項1】
エラストマー組成物の架橋物からなる高圧水素機器用ガスシール部材であって、
前記エラストマー組成物は、エラストマーと、繊維状炭素ナノ構造体と、シリカとを含有し、
前記エラストマーを含むエラストマー成分の架橋物の水素拡散係数D1と、前記エラストマー組成物の架橋物の水素拡散係数D2とが、0.7<D2/D1<1.0の関係式を満たし、
前記エラストマー組成物中の前記シリカの含有量が、前記エラストマー100質量部当たり、50質量部以下である、高圧水素機器用ガスシール部材。
【請求項2】
前記エラストマーが、ニトリルゴム、水素化ニトリルゴム、又はフッ素ゴムである、請求項1に記載の高圧水素機器用ガスシール部材。
【請求項3】
前記繊維状炭素ナノ構造体の平均直径が1nm以上60nm以下である、請求項1または2に記載の高圧水素機器用ガスシール部材。
【請求項4】
前記繊維状炭素ナノ構造体が単層カーボンナノチューブを含む、請求項1~3の何れかに記載の高圧水素機器用ガスシール部材。
【請求項5】
前記エラストマー組成物が、前記エラストマー100質量部当たり、前記単層カーボンナノチューブを含む繊維状炭素ナノ構造体を3質量部以上15質量部以下の割合で含有する、請求項4に記載の高圧水素機器用ガスシール部材。
【請求項6】
35MPa以上105MPa以下の高圧水素に接触した状態で用いられる、請求項1~5の何れかに記載の高圧水素機器用ガスシール部材。
【請求項7】
35MPa以上105MPa以下の高圧水素が充填された容器と、
前記容器内に充填された前記高圧水素と接触している、請求項6に記載の高圧水素機器用ガスシール部材と、
を備える高圧水素機器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高圧水素機器用ガスシール部材および高圧水素機器に関するものである。
【背景技術】
【0002】
従来、気体の漏洩を防止する部材として、パッキンやガスケットなどのガスシール部材が用いられている。そして、このようなガスシール部材は、例えば、燃料電池車用の水素ステーションなどにおいて用いられている(例えば、特許文献1,2参照)。斯かる用途では、ガスシール部材は高温環境等の過酷な条件に曝されることとなるため、ガスシール部材には、高温環境下における、より高い耐久性が求められている。
【0003】
例えば特許文献3では、3元系の含フッ素エラストマーに対して所定の平均直径を有する多層カーボンナノチューブを所定の割合で配合してなるエラストマー組成物を架橋してガスシール部材を形成することにより、高温環境等の過酷な条件においても長時間使用に耐え得るガスシール部材を提供している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2016-090050号公報
【特許文献2】特開2015-206002号公報
【特許文献3】特開2014-109020号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、燃料電池車用の水素ステーション等の高圧水素機器において用いられるガスシール部材には、例えば、35MPa以上105MPa以下という高圧水素環境下での耐久性が求められる。このような高圧水素に接触するガスシール部材には、はみ出し破壊およびブリスター破壊が起こり得るため、これらの破壊の発生を抑制することが求められている。
ここで、「はみ出し破壊」とは、高圧の水素との接触によってガスシール部材が所定の設置位置(例えば、設置用の溝など)からはみ出し、設置位置周囲の隙間などに噛み込むことにより生じる破壊である。また、「ブリスター破壊」とは、高圧の水素との接触によってガスシール部材の内部に浸透した水素が、急速減圧時などにガスシール部材の内部に滞留したまま膨張してガスシール部材を破裂させることにより生じる破壊である。
【0006】
しかし、特許文献3に記載のガスシール部材は、高温環境における耐久性には優れるものの、高圧水素機器に適用した際の高圧水素条件下における耐久性は十分とは言えず、はみ出し破壊およびブリスター破壊の発生を十分に抑制できるとは言い得なかった。
【0007】
そこで、本発明は、はみ出し破壊の発生とブリスター破壊の発生との双方を十分に抑制することができる高圧水素機器用ガスシール部材を提供することを目的とする。
また、本発明は、ガスシール部材のはみ出し破壊およびブリスター破壊の発生が十分に抑制された高圧水素機器を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、エラストマー組成物の架橋物からなる高圧水素機器用ガスシール部材であって、前記エラストマー組成物は、エラストマーと、繊維状炭素ナノ構造体とを含有し、前記エラストマーを含むエラストマー成分の架橋物の水素拡散係数D1と、前記エラストマー組成物の架橋物の水素拡散係数D2とが、0.7<D2/D1<1.0の関係式を満たせば、はみ出し破壊の発生とブリスター破壊の発生との双方を十分に抑制できることを見出し、本発明を完成させた。
【0009】
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の高圧水素機器用ガスシール部材は、エラストマー組成物の架橋物からなる高圧水素機器用ガスシール部材であって、前記エラストマー組成物は、エラストマーと、繊維状炭素ナノ構造体とを含有し、前記エラストマーを含むエラストマー成分の架橋物の水素拡散係数D1と、前記エラストマー組成物の架橋物の水素拡散係数D2とが、0.7<D2/D1<1.0の関係式を満たすことを特徴とする。このように、エラストマーを含むエラストマー成分の架橋物の水素拡散係数D1と、エラストマー組成物の架橋物の水素拡散係数D2とが、0.7<D2/D1<1.0の関係式を満たすガスシール部材は、はみ出し破壊の発生とブリスター破壊の発生との双方を十分に抑制することができる。
【0010】
ここで、本発明の高圧水素機器用ガスシール部材では、前記エラストマーが、ニトリルゴム、水素化ニトリルゴム、又はフッ素ゴムであってもよい。ここで、例えば、フッ素ゴムをエラストマーとして使用すれば、耐熱性等を向上させることができる。
【0011】
そして、前記繊維状炭素ナノ構造体の平均直径が1nm以上60nm以下であることが好ましい。平均直径が1nm以上60nm以下の繊維状炭素ナノ構造体を使用すれば、はみ出し破壊の発生およびブリスター破壊の発生を更に抑制することができるからである。
なお、「繊維状炭素ナノ構造体の平均直径(Av)」は、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)を測定して求めることができる。
【0012】
また、前記繊維状炭素ナノ構造体が単層カーボンナノチューブを含むことが好ましい。繊維状炭素ナノ構造体が単層カーボンナノチューブを含むことで、はみ出し破壊の発生およびブリスター破壊の発生を更に抑制することができるからである。
【0013】
更に、前記エラストマー組成物が、前記エラストマー100質量部当たり、前記単層カーボンナノチューブを含む繊維状炭素ナノ構造体を3質量部以上15質量部以下の割合で含有することが好ましい。前記エラストマー組成物が、前記エラストマー100質量部当たり、前記単層カーボンナノチューブを含む繊維状炭素ナノ構造体を3質量部以上15質量部以下の割合で含有すれば、はみ出し破壊の発生およびブリスター破壊の発生を確実に抑制することができるからである。
【0014】
そして、上述した本発明の高圧水素機器用ガスシール部材は、35MPa以上105MPa以下の高圧水素に接触した状態で用いられてもよい。
また、本発明の高圧水素機器は、35MPa以上105MPa以下の高圧水素が充填された容器と、前記容器内に充填された前記高圧水素と接触している高圧水素機器用ガスシール部材と、を備えるものとすることができる。上述した高圧水素機器用ガスシール部材を用いることにより、35MPa以上105MPa以下の高圧水素に接触していても、十分な耐久性を奏することができる。
なお、高圧水素の圧力は、例えば60MPa以上または70MPa以上とすることができる。また、高圧水素の圧力は、例えば100MPa以下または95MPa以下とすることができる。
【発明の効果】
【0015】
本発明によれば、はみ出し破壊の発生とブリスター破壊の発生との双方を十分に抑制することが可能な高圧水素機器用ガスシール部材を提供することができる。
また、本発明によれば、ガスシール部材のはみ出し破壊およびブリスター破壊の発生が十分に抑制された高圧水素機器を提供することができる。
【図面の簡単な説明】
【0016】
図1図1は、水素ステーションの構成を示す概略図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態について、詳細に説明する。
ここで、本発明に係る高圧水素機器用ガスシール部材は、燃料電池車用の水素ステーションなどにおいて気体の漏洩を防止する部材として用いることができる。特に、本発明に係る高圧水素機器用ガスシール部材は、高圧水素機器用ガスシール部材が高圧水素に接触する高圧水素機器において好適に用いることができる。このような高圧水素機器としては、例えば、高圧水素が充填された容器と、容器内に充填された高圧水素と接触して高圧水素の漏出を防止する高圧水素機器用ガスシール部材とを備える高圧水素機器が挙げられる。ここで、「高圧水素機器」とは、高圧水素(例えば35MPa以上105MPa以下)を取り扱う機器を意味し、具体的には、水素ステーションに用いられる、水素製造装置(例えば、後述する図1における水素製造装置111)や、水素ガス圧縮機(例えば、後述する図1における水素ガス圧縮機(昇圧機)112)、蓄ガス機(例えば、後述する図1における蓄ガス機(蓄圧器)113)、ディスペンサー(例えば、後述する図1におけるディスペンサー114)、車両(例えば、後述する図1における車両(燃料電池車)120)に搭載された燃料電池、等を挙げることができる。
【0018】
(高圧水素機器用ガスシール部材)
本発明の高圧水素機器用ガスシール部材は、エラストマー組成物を所望の形状に成形して得ることができる。具体的には、高圧水素機器用ガスシール部材は、例えば、エラストマー組成物を金型に投入し、架橋させて形成することができる。そして、エラストマー組成物を用いて形成した高圧水素機器用ガスシール部材は、エラストマー組成物に含まれていた成分に由来する成分を、エラストマー組成物と同様の比率で含有する。即ち、高圧水素機器用ガスシール部材は、例えばエラストマー組成物が架橋剤を含有していた場合には、架橋されたエラストマー成分と、繊維状炭素ナノ構造体とを含有し、任意に補強材などの添加剤を更に含有する。
【0019】
なお、高圧水素機器用ガスシール部材の形状は、用途に応じた任意の形状とすることができ、高圧水素機器用ガスシール部材は、例えば、環状のガスシール部材(Oリング)であってもよいし、中空円盤状のガスシール部材であってもよい。
【0020】
そして、上記高圧水素機器用ガスシール部材は、はみ出し破壊の発生とブリスター破壊の発生との双方を十分に抑制することができる。
【0021】
なお、高圧水素機器用ガスシール部材は、後述するエラストマー組成物を架橋してなる架橋物からなるが、架橋物の「引張強さ」および「切断時伸び」は、JIS K6251に準拠して測定することができる。
また、架橋物の「水素溶解量」は、昇温脱離ガス分析装置を用いて水素曝露後の試験片の水素放出量の経時変化を計測することにより、測定することができる。
また、架橋物の「体積膨潤度」は、2次元寸法測定器を用いて水素曝露前後の体積変化率より、測定することができる。
【0022】
(エラストマー組成物)
本発明に係る高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物は、エラストマーと、繊維状炭素ナノ構造体とを含有し、任意に、シリカ等の補強材、架橋剤、酸化防止剤などの添加剤を更に含有する。そして、本発明の高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物では、エラストマーを含むエラストマー成分の架橋物(エラストマー組成物から繊維状炭素ナノ構造体及び補強材(シリカ、カーボンブラック、等)を除いたものの架橋物)の水素拡散係数D1と、エラストマー組成物の架橋物の水素拡散係数D2とが、0.7<D2/D1<1.0の関係式を満たす。
【0023】
ここで、各架橋物の水素拡散係数は、架橋物中の水素の拡散のし易さを表す指標である。従って、架橋物で構成されたガスシール部材においては、架橋物の水素拡散係数が大きいほど、ガスシール部材の内部に滞留した水素が急速減圧時などにガスシール部材の外部へと抜け出し易く、ブリスター破壊が起こり難い。一方、一般に、ガスシール部材を構成する架橋物中にカーボンブラック等の補強材が含まれている場合、架橋物の引張強度が向上してはみ出し破壊は起こり難くなるものの、カーボンブラック等の補強材に水素が吸着されたり、架橋物内での水素の移動が阻害されたりする結果、架橋物の水素拡散係数は低下する(即ち、ブリスター破壊が起こり易くなる)。
本発明では、繊維状炭素ナノ構造体が水素拡散係数を低下させ難い補強材となり得ることを見出し、繊維状炭素ナノ構造体を含有させると共にD2/D1を上記範囲内とすることで、高圧水素機器用ガスシール部材においてはみ出し破壊の発生とブリスター破壊の発生との双方を良好に抑制することを可能にしている。
【0024】
エラストマーを含むエラストマー成分の架橋物の水素拡散係数D1に対するエラストマー組成物の架橋物の水素拡散係数D2の比(D2/D1)は、0.75以上であることが好ましく、0.80以上であることがより好ましく、0.83以上が特に好ましく、0.95以下であることが好ましく、0.90以下であることがより好ましく、0.87以下が特に好ましい。
D2/D1が、0.75以上であれば、水素拡散を確保して、ブリスター破壊の発生との双方を更に抑制することができ、0.95以下であれば、強度を確保して、はみ出し破壊の発生とブリスター破壊の発生との双方を更に抑制することができる。
【0025】
<エラストマー>
ここで、エラストマー組成物におけるエラストマーとしては、特に限定されることなく、ガスシール部材の形成に用いられる既知のエラストマーを用いることができる。具体的には、エラストマーとしては、例えば、天然ゴム、ブタジエンゴム、スチレンブタジエンゴム、イソプレンゴム、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)、フッ素ゴム、クロロプレンゴム、エチレンプロピレンゴム、ハロゲン化ブチルゴム、ポリイソブチレンゴム、シリコーンゴム、エチレン・プロピレン・ジエンゴム(EPDM)などを用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
上述した中でも、エラストマーとしては、ムーニー粘度(ML1+4、100℃)が20以上150以下であるゴム(例えば、水素化ニトリルゴム、ニトリルゴム等)およびムーニー粘度(ML1+10、121℃)が20以上150以下のフッ素ゴムが好ましい。なお、本発明において、ムーニー粘度は、JIS K6300に準拠して測定することができる。
【0026】
なお、水素ガス圧縮機(昇圧機)(例えば、-20℃~180℃:95MPa)に用いられるガスシール部材に含まれるエラストマーとしては、フッ素ゴム(例えばFKM)が好ましく、蓄ガス機(蓄圧器)(例えば、-20℃~50℃:95MPa)に用いられるガスシール部材に含まれるエラストマーとしては、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)が好ましく、ディスペンサー(例えば、-40℃~50℃:82MPa)に用いられるガスシール部材に含まれるエラストマーとしては、エチレン・プロピレン・ジエンゴム(EPDM)が好ましい。
【0027】
<繊維状炭素ナノ構造体>
繊維状炭素ナノ構造体としては、例えば、カーボンナノチューブ(CNT)等の円筒形状の炭素ナノ構造体や、炭素の六員環ネットワークが扁平筒状に形成されてなる炭素ナノ構造体等の非円筒形状の炭素ナノ構造体が挙げられる。
エラストマー組成物に繊維状炭素ナノ構造体を含有させることで、水素拡散係数D2を大幅に低下させることなく強度を確保することができるので、はみ出し破壊の発生およびブリスター破壊の発生を抑制することができる。
【0028】
なお、エラストマー組成物に繊維状炭素ナノ構造体を含有させることで水素拡散係数D2を大幅に低下させることなく強度を確保し、はみ出し破壊の発生およびブリスター破壊の発生を抑制することができる理由は、明らかではないが、以下の通りであると推察される。即ち、繊維状炭素ナノ構造体は、カーボンブラック等と比較して、少量の添加であっても、高い補強効果を得ることができる。また、繊維状炭素ナノ構造体は、カーボンブラック等と比較して、水素を内部に溶解(または吸収)させ難く、水素の拡散係数を低下させ難い物質である。従って、繊維状炭素ナノ構造体を用いたガスシール部材では、高い補強効果を得つつ水素の拡散係数を高く維持することができるので、内部に浸透した水素が急速減圧時などにガスシール部材から抜け易くなり、ブリスター破壊の発生を抑制することができると推察される。また、繊維状炭素ナノ構造体は、カーボンブラック等と比較して補強効果が高いので、繊維状炭素ナノ構造体を用いたガスシール部材は、高圧の水素と接触した場合でも変形し難く(体積膨潤率が低く)、はみ出し破壊が発生し難いと推察される。
【0029】
そして、高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物中の繊維状炭素ナノ構造体の含有量は、エラストマー100質量部当たり、0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることが更に好ましく、3質量部以上であることが更により好ましく、4質量部以上であることが更により好ましく、8質量部以上であることが特に好ましく、10質量部以上であることが最も好ましい。繊維状炭素ナノ構造体の含有量がエラストマー100質量部当たり0.1質量部未満である場合、エラストマー組成物を用いて形成したガスシール部材の強度を確保することができないことがあり、はみ出し破壊の発生およびブリスター破壊の発生を十分に抑制することができないことがある。
また、高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物中の繊維状炭素ナノ構造体の含有量は、エラストマー100質量部当たり、50質量部以下であることが好ましく、45質量部以下であることがより好ましく、40質量部以下であることが更に好ましく、35質量部以下であることが特に好ましく、30質量部以下であることが最も好ましい。繊維状炭素ナノ構造体の含有量がエラストマー100質量部当たり50質量部超である場合、エラストマー組成物を用いて形成したガスシール部材の内部に浸透した水素が急速減圧時などにガスシール部材から抜け難くなるため、ブリスター破壊の発生を十分に抑制することができないことがある。
【0030】
ここで、繊維状炭素ナノ構造体は、特に限定されることなく、単層カーボンナノチューブ(単層CNT)のみからなるものであってもよいし、多層カーボンナノチューブ(多層CNT)のみからなるものであってもよいし、単層CNTと多層CNTとの混合物であってもよいし、カーボンナノチューブ(CNT)と、CNT以外の繊維状炭素ナノ構造体との混合物であってもよい。
単層CNTは、多層CNTと比較して、水素が更に吸着され難く、補強効果が高い点で、好ましい。
そして、エラストマー組成物を用いて形成したガスシール部材においてはみ出し破壊の発生とブリスター破壊の発生との双方を更に抑制する観点からは、繊維状炭素ナノ構造体100本中の単層CNTの割合は、50本以上であることが好ましく、70本以上であることがより好ましく、90本以上であることが更に好ましく、100本であることが特に好ましい。
【0031】
そして、本発明の高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物では、繊維状炭素ナノ構造体として単層CNTを含む繊維状炭素ナノ構造体を使用することが好ましい。このように、単層CNTを含む繊維状炭素ナノ構造体を使用することで、はみ出し破壊の発生およびブリスター破壊の発生を更に抑制することができるからである。
【0032】
なお、単層CNTを含む繊維状炭素ナノ構造体を使用することではみ出し破壊の発生およびブリスター破壊の発生を更に抑制することができる理由は、明らかではないが、以下の通りであると推察される。即ち、単層CNTは多層CNTと比較して水素が透過し易く、単層CNTを用いたガスシール部材では、内部に浸透した水素が急速減圧時などにガスシール部材から抜け易くなるため、ブリスター破壊の発生を更に抑制することができると推察される。また、単層CNTは多層CNTと比較して補強効果が高いため、単層CNTを用いたガスシール部材は、高圧の水素と接触した場合でも変形し難く、はみ出し破壊の発生を更に抑制することができると推察される。
【0033】
そして、単層CNTを含む繊維状炭素ナノ構造体を使用する場合、高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物中の単層CNTを含む繊維状炭素ナノ構造体の含有量は、エラストマー100質量部当たり、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることが更に好ましく、3質量部以上であることが特に好ましい。単層CNTを含む繊維状炭素ナノ構造体がエラストマー100質量部当たり0.5質量部未満である場合、エラストマー組成物を用いて形成したガスシール部材の強度を確保することができず、はみ出し破壊の発生およびブリスター破壊の発生を十分に抑制することができないことがある。
また、高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物中の単層CNTを含む繊維状炭素ナノ構造体の含有量は、エラストマー100質量部当たり、15質量部以下であることが好ましく、13.5質量部以下であることがより好ましく、12質量部以下であることが更に好ましく、10.5質量部以下であることが特に好ましい。単層CNTを含む繊維状炭素ナノ構造体の含有量がエラストマー100質量部当たり15質量部超である場合、エラストマー組成物を用いて形成したガスシール部材の内部に浸透した水素が急速減圧時などにガスシール部材から抜け難くなるため、ブリスター破壊の発生を十分に抑制することができないことがある。
【0034】
また、繊維状炭素ナノ構造体は、吸着等温線から得られるt-プロットが上に凸な形状を示すことが好ましい。吸着等温線から得られるt-プロットが上に凸な形状を示す繊維状炭素ナノ構造体を使用すれば、ブリスター破壊の発生を更に抑制することが可能なガスシール部材を形成することができる。
なお、繊維状炭素ナノ構造体は、CNTの開口処理が施されておらず、t-プロットが上に凸な形状を示すことがより好ましい。
【0035】
ここで、一般に、吸着とは、ガス分子が気相から固体表面に取り去られる現象であり、その原因から、物理吸着と化学吸着に分類される。そして、t-プロットの取得に用いられる窒素ガス吸着法では、物理吸着を利用する。なお、通常、吸着温度が一定であれば、繊維状炭素ナノ構造体に吸着する窒素ガス分子の数は、圧力が大きいほど多くなる。また、横軸に相対圧(吸着平衡状態の圧力Pと飽和蒸気圧P0の比)、縦軸に窒素ガス吸着量をプロットしたものを「等温線」といい、圧力を増加させながら窒素ガス吸着量を測定した場合を「吸着等温線」、圧力を減少させながら窒素ガス吸着量を測定した場合を「脱着等温線」という。
【0036】
そして、t-プロットは、窒素ガス吸着法により測定された吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することにより得られる。即ち、窒素ガス吸着層の平均厚みtを相対圧P/P0に対してプロットした、既知の標準等温線から、相対圧に対応する窒素ガス吸着層の平均厚みtを求めて上記変換を行うことにより、繊維状炭素ナノ構造体のt-プロットが得られる(de Boerらによるt-プロット法)。
【0037】
ここで、表面に細孔を有する試料では、窒素ガス吸着層の成長は、次の(1)~(3)の過程に分類される。そして、下記の(1)~(3)の過程によって、t-プロットの傾きに変化が生じる。
(1)全表面への窒素分子の単分子吸着層形成過程
(2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程
【0038】
そして、繊維状炭素ナノ構造体のt-プロットは、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となり、上に凸な形状を示すことが好ましい。かかるt-プロットの形状は、繊維状炭素ナノ構造体の全比表面積に対する内部比表面積の割合が大きく、繊維状炭素ナノ構造体を構成する炭素ナノ構造体に多数の開口が形成されていることを示している。そして、多数の開口が形成されている結果として、当該繊維状炭素ナノ構造体は、繊維状炭素ナノ構造体の内部まで浸透したガスが透過して抜け易い(即ち、当該繊維状炭素ナノ構造体を含むガスシール部材はブリスター破壊が起こり難くなる)と推察される。
【0039】
なお、繊維状炭素ナノ構造体のt-プロットの屈曲点は、0.2≦t(nm)≦1.5を満たす範囲にあることが好ましく、0.45≦t(nm)≦1.5を満たす範囲にあることがより好ましく、0.55≦t(nm)≦1.0を満たす範囲にあることが更に好ましい。t-プロットの屈曲点の位置が上記範囲内にあると、繊維状炭素ナノ構造体の特性が更に向上するため、ブリスター破壊の発生を更に抑制することができる。
ここで、「屈曲点の位置」とは、t-プロットにおける、前述した(1)の過程の近似直線Aと、前述した(3)の過程の近似直線Bとの交点である。
【0040】
更に、繊維状炭素ナノ構造体は、t-プロットから得られる全比表面積S1に対する内部比表面積S2の比(S2/S1)が、0.05以上であることが好ましく、0.06以上であることがより好ましく、0.08以上であることが更に好ましく、0.30以下であることが好ましい。S2/S1が0.05以上0.30以下であれば、繊維状炭素ナノ構造体の特性を更に向上させることができるので、ブリスター破壊の発生を更に抑制することができる。
また、繊維状炭素ナノ構造体の全比表面積S1および内部比表面積S2は、特に限定されないが、個別には、S1は、600m/g以上1400m/g以下であることが好ましく、800m/g以上1200m/g以下であることが更に好ましい。一方、S2は、30m/g以上540m/g以下であることが好ましい。
ここで、繊維状炭素ナノ構造体の全比表面積S1および内部比表面積S2は、そのt-プロットから求めることができる。具体的には、まず、(1)の過程の近似直線の傾きから全比表面積S1を、(3)の過程の近似直線の傾きから外部比表面積S3を、それぞれ求めることができる。そして、全比表面積S1から外部比表面積S3を差し引くことにより、内部比表面積S2を算出することができる。
【0041】
因みに、繊維状炭素ナノ構造体の吸着等温線の測定、t-プロットの作成、および、t-プロットの解析に基づく全比表面積S1と内部比表面積S2との算出は、例えば、市販の測定装置である「BELSORP(登録商標)-mini」(日本ベル(株)製)を用いて行うことができる。
【0042】
また、繊維状炭素ナノ構造体としては、平均直径(Av)に対する、直径の標準偏差(σ)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.60未満の繊維状炭素ナノ構造体を用いることが好ましく、3σ/Avが0.25超の繊維状炭素ナノ構造体を用いることがより好ましく、3σ/Avが0.40超の繊維状炭素ナノ構造体を用いることが更に好ましく、3σ/Avが0.50超の繊維状炭素ナノ構造体を用いることが特に好ましい。3σ/Avが0.20超0.60未満の繊維状炭素ナノ構造体を使用すれば、はみ出し破壊の発生とブリスター破壊の発生とを更に抑制することが可能なガスシール部材を形成することができる。
なお、「繊維状炭素ナノ構造体の平均直径(Av)」および「繊維状炭素ナノ構造体の直径の標準偏差(σ:標本標準偏差)」は、それぞれ、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)を測定して求めることができる。そして、繊維状炭素ナノ構造体の平均直径(Av)および標準偏差(σ)は、繊維状炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られた繊維状炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
【0043】
また、繊維状炭素ナノ構造体の平均直径(Av)は、2nm以上であることが好ましく、2.5nm以上であることが更に好ましく、60nm以下であることが好ましく、10nm以下であることが更に好ましい。繊維状炭素ナノ構造体の平均直径(Av)が2nm以上であれば、架橋物中で凝集せずに良好に分散して十分な補強効果が得られる。また、繊維状炭素ナノ構造体の平均直径(Av)が60nm以下であれば、架橋物内の水素の通過を阻害しないで、水素拡散係数の低下を防止することができる。
【0044】
また、繊維状炭素ナノ構造体は、合成時における構造体の平均長さが100μm以上であることが好ましい。なお、合成時の構造体の長さが長いほど、分散時に繊維状炭素ナノ構造体に破断や切断などの損傷が発生し易いので、合成時の構造体の平均長さは5000μm以下であることが好ましい。
そして、繊維状炭素ナノ構造体のアスペクト比(長さ/直径)は、10を超えることが好ましい。なお、繊維状炭素ナノ構造体のアスペクト比は、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径および長さを測定し、直径と長さとの比(長さ/直径)の平均値を算出することにより求めることができる。
【0045】
更に、繊維状炭素ナノ構造体のBET比表面積は、600m/g以上であることが好ましく、800m/g以上であることが更に好ましく、2500m/g以下であることが好ましく、1200m/g以下であることが更に好ましい。繊維状炭素ナノ構造体のBET比表面積が600m/g以上であれば、エラストマー組成物を用いて形成したガスシール部材の強度を高めることができるので、はみ出し破壊の発生を更に抑制することができる。また、繊維状炭素ナノ構造体のBET比表面積が2500m/g以下であれば、繊維状炭素ナノ構造体の表面から内部へと浸透するガスの量を低減して、ブリスター破壊の発生を更に抑制することが可能なガスシール部材を形成することができ、また、架橋物中で凝集せずに良好に分散して十分な補強効果が得られる。
なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
【0046】
また、繊維状炭素ナノ構造体は、後述のスーパーグロース法によれば、カーボンナノチューブ成長用の触媒層を表面に有する基材上に、基材に略垂直な方向に配向した集合体(配向集合体)として得られるが、当該集合体としての繊維状炭素ナノ構造体の質量密度は、0.002g/cm以上0.2g/cm以下であることが好ましい。質量密度が0.2g/cm以下であれば、繊維状炭素ナノ構造体同士の結びつきが弱くなるので、エラストマー中で繊維状炭素ナノ構造体を均質に分散させることができる。また、質量密度が0.002g/cm以上であれば、繊維状炭素ナノ構造体の一体性を向上させ、バラけることを抑制できるため取り扱いが容易になる。
【0047】
そして、上述した性状を有する繊維状炭素ナノ構造体は、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)において、基材表面への触媒層の形成をウェットプロセスにより行うことで、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
【0048】
なお、スーパーグロース法により製造した繊維状炭素ナノ構造体は、SGCNTのみから構成されていてもよいし、SGCNTと、非円筒形状の炭素ナノ構造体とから構成されていてもよい。具体的には、繊維状炭素ナノ構造体には、内壁同士が近接または接着したテープ状部分を全長に亘って有する単層または多層の扁平筒状の炭素ナノ構造体(以下、「グラフェンナノテープ(GNT)」と称することがある。)が含まれていてもよい。
【0049】
<添加剤>
高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物に任意に配合し得る添加剤としては、特に限定されることなく、補強材、架橋剤、架橋助剤、酸化防止剤などの既知の添加剤を用いることができる。
【0050】
具体的には、補強材としては、特に限定されることなく、シリカやカーボンブラックなどを用いることができるが、シリカを用いることが好ましい。上述の繊維状炭素ナノ構造体とシリカを併用することで、水素拡散係数D2を大幅に低下させることなく、得られる高圧水素機器用ガスシール部材の強度を向上させることができる。なお、エラストマー組成物中のシリカの含有量は、エラストマー100質量部当たり、50質量部以下であることが好ましく、10質量部以上30質量部以下であることがより好ましい。シリカがエラストマー100質量部当たり50質量部超である場合、水素拡散係数の比D2/D1を0.7超に維持することができず、ブリスター破壊の発生の発生を十分に抑制することができないことがあるからである。また、高圧水素機器用ガスシール部材の強度が向上する程度にカーボンブラックをエラストマー組成物に添加すると、水素拡散係数比(D2/D1)は0.7以下となるので、カーボンブラックをエラストマー組成物に添加する場合は、添加量をごく少量(例えば、エラストマー100質量部当たり、10質量部以下)とすることが好ましく、エラストマー組成物はカーボンブラックを含まないことがより好ましい。
また、架橋剤としては、特に限定されることなく、エラストマー組成物に含まれているエラストマー成分を架橋可能な既知の架橋剤を用いることができる。より具体的には、架橋剤としては、例えば、硫黄、パーオキサイド系架橋剤(例えば、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン)、トリアリルイソシアヌレートなどを用いることができる。
また、架橋助剤としては、特に限定されることなく、例えば亜鉛華などを用いることができる。
更に、酸化防止剤としては、特に限定されることなく、アミン系酸化防止剤(例えば、4,4’-ビス(a,a-ジメチルベンジル)ジフェニルアミン)やイミダゾール系酸化防止剤(例えば、2-メルカプトベンズイミダゾールの亜鉛塩)などを用いることができる。
これらの添加剤は、1種単独で使用してもよいし、2種以上を併用してもよい。また、添加剤の配合量は、所望の効果の発現が阻害されない限り、任意の量とすることができる。
【0051】
<エラストマー組成物の調製>
なお、高圧水素機器用ガスシール部材を形成するために用いられるエラストマー組成物は、例えば、エラストマーと、繊維状炭素ナノ構造体と、任意成分である添加剤とを、所望の配合比で混合または混練することにより調製することができる。
【0052】
具体的には、エラストマー組成物は、特に限定されることなく、エラストマーと繊維状炭素ナノ構造体との混合物(マスターバッチ)を得た後、得られた混合物(マスターバッチ)と任意成分である添加剤とを混練することにより、調製することができる。
【0053】
そして、エラストマーと繊維状炭素ナノ構造体との混合物(マスターバッチ)の調製は、エラストマー中に繊維状炭素ナノ構造体を分散させることが可能な任意の混合方法を用いて行うことができる。具体的には、上記混合物(マスターバッチ)は、特に限定されることなく、(i)有機溶媒にエラストマーを溶解させてなるエラストマー溶液または分散媒にエラストマーを分散させてなるエラストマー分散液に対し、繊維状炭素ナノ構造体を添加し、更に超音波ホモジナイザーや湿式ジェットミルなどを用いて繊維状炭素ナノ構造体を分散処理してスラリーを調製した後、得られたスラリーとしての分散処理液から有機溶媒または分散媒を除去することや、(ii)有機溶媒にエラストマーを溶解させてなるエラストマー溶液または分散媒にエラストマーを分散させてなるエラストマー分散液に対し、繊維状炭素ナノ構造体を添加し、更に超音波ホモジナイザーや湿式ジェットミルなどを用いて繊維状炭素ナノ構造体を分散処理してスラリーを調製した後、得られたスラリーとしての分散処理液から有機溶媒または分散媒を除去し、その後、エラストマーと繊維状炭素ナノ構造体との混合物に対してエラストマーをさらに添加して混練する混練操作を1回以上実施すること、などにより、調製することができる。なお、溶媒または分散媒の除去には、例えば凝固法、キャスト法または乾燥法を用いることができる。
【0054】
即ち、エラストマーと繊維状炭素ナノ構造体との混合物(マスターバッチ)を得る方法としては、(i)最終的に得られるエラストマー組成物に含まれる全てのエラストマーと繊維状炭素ナノ構造体とを一括混合し、有機溶媒または分散媒を除去する方法であってもよく、また、(ii)最終的に得られるエラストマー組成物に含まれるエラストマーの一部と繊維状炭素ナノ構造体とを混合し、有機溶媒または分散媒を除去し、その後、得られた混合物に対してエラストマーを更に添加して混練する混練操作を1回以上実施する方法であってもよい。
【0055】
また、混練は、例えば、ミキサー、一軸混練機、二軸混練機、ロール、ブラベンダー、押出機などを用いて行うことができる。
【0056】
さらに、成形・架橋条件としては、特に制限はないが、例えば、温度:140℃~250℃、圧力:1MPa~20MPa、時間:1分間~180分間の条件で行うことが好ましい。
【0057】
(高圧水素機器)
本発明の高圧水素機器は、高圧水素が充填された容器と、本発明の高圧水素機器用ガスシール部材とを備える。高圧水素機器用ガスシール部材は、容器内に充填された高圧水素と接触している。
このような高圧水素機器としては、例えば、水素ステーションに用いられる、水素製造装置(例えば、後述する図1における水素製造装置111)や、水素ガス圧縮機(例えば、後述する図1における水素ガス圧縮機(昇圧機)112)、蓄ガス機(例えば、後述する図1における蓄ガス機(蓄圧器)113)、ディスペンサー(例えば、後述する図1におけるディスペンサー114)、車両(例えば、後述する図1における車両(燃料電池車120)に搭載された燃料電池、等を挙げることができる。
【0058】
図1は、水素ステーションの構成を示す概略図である。
図1において、水素ステーション100は、水素製造装置111と、水素ガス圧縮機(昇圧機)112と、蓄ガス機(蓄圧器)113と、ディスペンサー114を備え、各設備は、水素配管118により接続されている。また、各水素配管118の途中には必要に応じてバルブや継手などの配管機器(図示せず)が配設されている。
オンサイト型の水素ステーション100では、外部から燃料(ナフサ又は灯油)が供給され、この燃料を用いて、燃料改質装置111Aと水素の高純度化を図る水素精製装置111Bとを備えた水素製造装置111で水素が製造される。
水素製造装置111で製造された水素は、水素ガス圧縮機(昇圧機)112で所定の温度(例えば、-20℃~180℃)および圧力(例えば、95MPa)の高圧水素とされ、昇圧された水素は、高圧水素を一時的に蓄えるための蓄ガス機(蓄圧器)113と、蓄ガス機(蓄圧器)113に蓄えられた高圧水素を車両(燃料電池車)120に供給するためのディスペンサー114とを介して、水素タンク(図示せず)を備えた車両(燃料電池車)120に供給される。
このとき、ディスペンサー114から車両(燃料電池車)120への水素の供給は、水素の差圧により行う。例えば、蓄ガス機(蓄圧器)113内の温度および圧力をそれぞれ、-20℃~50℃、95MPaとし、ディスペンサー114での温度および圧力をそれぞれ、-40℃~50℃、82MPaとしておき、差圧により車両(燃料電池車)120内の水素タンクに水素を充填する。
【0059】
ディスペンサー114は、車両(燃料電池車)120の水素タンクに水素を供給するための水素供給ホース115を備えており、水素供給ホース115には車両120のレセプタクル121に着脱自在に接続される水素供給プラグ116が取り付けられている。よって、水素供給プラグ116をレセプタクル121に接続することにより、車両(燃料電池車)120に水素を供給することができる。
また、水素供給ホース115の途中には、緊急離脱カップリング117が配設されている。よって、緊急時(例えば、車両(燃料電池車)120が誤発進した場合)には、この緊急離脱カップリング117を作動させることで、水素ステーション100側から車両(燃料電池車)120側への水素の供給を停止することができる。
なお、本発明の高圧水素機器用ガスシール部材は、例えば、各設備(水素製造装置111,水素ガス圧縮機(昇圧機)112,蓄ガス機(蓄圧器)113,ディスペンサー114)と水素配管118との接続部分や、各設備(水素製造装置111,水素ガス圧縮機(昇圧機)112,蓄ガス機(蓄圧器)113,ディスペンサー114)における容器本体と蓋部との間、などに設けられる。
【実施例0060】
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
実施例および比較例において、架橋物の引張強さ、切断時伸び、拡散係数、水素溶解量、および体積膨潤度は、それぞれ以下の方法を使用して測定または評価した。
【0061】
<引張強さ>
作製したシート状の架橋物をダンベル状3号形で打ち抜き、試験片を得た。そして、得られた試験片について、JIS K6251に準拠し、23℃における引張強さを測定した。ここで、引張強さが高いほど、ブリスタ破壊とはみ出し破壊が起こり難い。
【0062】
<切断時伸び>
作製したシート状の架橋物をダンベル状3号形で打ち抜き、試験片を得た。そして、得られた試験片について、JIS K6251に準拠し、23℃における切断時伸びを測定した。
【0063】
<拡散係数>
作製したシート状の架橋物について、90MPaに24時間暴露した後、水素暴露後の試験片を温度30℃の昇温脱離ガス分析装置を用いて水素放出量の経時変化をガスクロマトグラフィーにより測定した水素放出プロファイルを飽和水素量と拡散係数を未知定数とし下式で近似し、拡散係数を測定し、繊維状炭素ナノ構造体およびカーボンブラックのいずれも含まないエラストマー成分の架橋物としての比較例1、3又は5の拡散係数を100とした値を拡散係数(index)として算出した。具体的には、(i)表1に示される、実施例1、実施例2、および比較例2の拡散係数は、比較例1の拡散係数を100とした拡散係数(index)であり、(ii)表2に示される、実施例3、実施例4、および比較例4の拡散係数は、比較例3の拡散係数を100とした拡散係数(index)であり、(iii)表3に示される、実施例5、実施例6、および比較例6の拡散係数は、比較例5の拡散係数を100とした拡散係数(index)である。ここで、拡散係数(index)が高いほど、ブリスタ破壊が起こり難い。
【0064】
【数1】
t:減圧後の経過時間
H,R(t):時間tにおける残留水素量
H0:平衡水素量
D:拡散係数
ρ:水素曝露後の円柱試験片の半径
l:水素暴露後の円柱試験片の厚み
β:第0次ベッセル関数の根
【0065】
<水素溶解量>
作製したシート状の架橋物について、90MPaに24時間暴露した後、水素暴露後の試験片を温度30℃の昇温脱離ガス分析装置を用いて水素放出量の経時変化をガスクロマトグラフィーにより測定した水素放出プロファイルを飽和水素量と拡散係数を未知定数とし下式で近似し、t=0における水素量を外挿することにより、水素溶解量を測定した。ここで、水素溶解量が低いほど、ブリスタ破壊が起こり難い。
【0066】
【数2】
t:減圧後の経過時間
H,R(t):時間tにおける残留水素量
H0:平衡水素量
D:拡散係数
ρ:水素曝露後の円柱試験片の半径
l:水素暴露後の円柱試験片の厚み
β:第0次ベッセル関数の根
【0067】
<体積膨潤度>
作製したシート状の架橋物について、温度30℃に温調した全領域測定2次元多点寸法測定器(キーエンス社製、製品名「TM-3000」)を用いて、2次元のシルエット像の面積を計測し平方根の3乗することで、水素曝露試験前の試験片の体積V0を算出した。ついで、90MPaに24時間暴露した後、水素暴露後の試験片を温度30℃に温調した全領域測定2次元多点寸法測定器(キーエンス社製、製品名「TM-3000」)を用いて、2次元のシルエット像から水素曝露した試験片の体積Vを算出し、VをV0で割ることで体積膨潤度V/V0を測定した。ここで、体積膨潤度が低いほど、はみ出し破壊が起こり難い。
【0068】
(実施例1)
<単層カーボンナノチューブを含む繊維状炭素ナノ構造体の調製>
国際公開第2006/011655号の記載に従い、スーパーグロース法により繊維状炭素ナノ構造体としてのカーボンナノチューブ(SGCNT)を調製した。なお、SGCNTの調製時には、基材表面への触媒層の形成をウェットプロセスにより行い、アセチレンを主成分とする原料ガスを用いた。
得られたSGCNTは、主として単層CNTからなり、ラマン分光光度計での測定において、単層CNTに特長的な100~300cm-1の低波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。また、BET比表面積計(日本ベル(株)製、BELSORP(登録商標)-max)を用いて測定したSGCNTのBET比表面積は1050m2/g(未開口)であった。更に、透過型電子顕微鏡を用いて無作為に選択した100本のSGCNTの直径および長さを測定し、SGCNTの平均直径(Av)、直径の標準偏差(σ)および平均長さを求めたところ、平均直径(Av)は3.3nmであり、標準偏差(σ)に3を乗じた値(3σ)は1.9nmであり、それらの比(3σ/Av)は0.58であり、平均長さは500μmであった。更に、日本ベル(株)製の「BELSORP(登録商標)-mini」を用いてSGCNTのt-プロットを測定したところ、t-プロットは、上に凸な形状で屈曲していた。そして、S2/S1は0.09であり、屈曲点の位置tは0.6nmであった。
【0069】
<エラストマー組成物の調製>
[混合物(一次マスターバッチ)の調製]
有機溶媒としてのメチルエチルケトン760gにエラストマーとしてのニトリルゴム(アクリロニトリルブタジエンゴム、日本ゼオン製、Nipol1024)40gを加え、24時間撹拌してアクリロニトリルブタジエンゴムを溶解させた。なお、JIS K6300に準拠して測定したアクリロニトリルブタジエンゴムのムーニー粘度(ML1+4、100℃)は、77.5であった。
次に、得られたアクリロニトリルブタジエンゴム溶液に対し、SGCNTを8g加え、撹拌機(PRIMIX製、ラボ・リューション(登録商標))を用いて10分間撹拌した。更に、湿式ジェットミル(吉田機械興業製、L-ES007)を用いて、SGCNTを加えた溶液を100MPaで分散処理した。その後、得られた分散処理液を3200gのシクロヘキサンへ滴下し、凝固させて黒色固体を得た。そして、得られた黒色固体を60℃で12時間減圧乾燥し、アクリロニトリルブタジエンゴムとSGCNTとの混合物(一次マスターバッチ)を得た。
【0070】
[混練]
その後、50℃のオープンロールを用いて、アクリロニトリルブタジエンゴム40gとSGCNT8gとの混合物(一次マスターバッチ)48gと、アクリロニトリルブタジエンゴム30gとを10分間混練して、二次マスターバッチを作製した。
さらに、その後、50℃のオープンロールを用いて、アクリロニトリルブタジエンゴム70gとSGCNT8gとの混合物(二次マスターバッチ)78gとアクリロニトリルブタジエンゴム30gとを10分間混練して、三次マスターバッチを作製した。
さらに、その後、アクリロニトリルブタジエンゴム100gとSGCNT8gとの混合物(三次マスターバッチ)と、酸化防止剤としての4,4’-ビス(a,a-ジメチルベンジル)ジフェニルアミン(大内新興化学工業製、商品名「ノクラックCD」)1.5gおよび2-メルカプトベンズイミダゾールの亜鉛塩(大内新興化学工業製、商品名「ノクラックMBZ」)1.5gと、架橋剤としての1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン(GEO Specialty Chemicals Inc製、商品名「Vul Cup 40KE」)8gとを混練し、エラストマー組成物を得た。
【0071】
<シート状の架橋物の作製>
得られたエラストマー組成物を金型に投入し、温度160℃、圧力10MPaで10分間架橋させてシート状の架橋物(長さ:150mm、幅:150mm、厚さ:2mm)を得た。
そして、得られたシート状の架橋物を用いて架橋物の引張強さ、切断時伸び、拡散係数、水素溶解量、および体積膨潤度を測定した。結果を表1に示す。
【0072】
(実施例2)
混合物を調製する際にアクリロニトリルブタジエンゴム溶液に対して添加するSGCNT8gを、「単層CNTを含まない繊維状炭素ナノ構造体としての多層CNT(ナノシル製、商品名「NC7000」、BET比表面積:290m/g)」(MWCNT)30gに変更したこと以外は実施例1と同様にして、エラストマー組成物の調製し、シート状の架橋物を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
【0073】
(比較例1)
エラストマー組成物の調製を下記に示すように行ったこと以外は実施例1と同様にして、シート状の架橋物(エラストマー成分の架橋物)を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
【0074】
<エラストマー組成物の調製>
容量250mlのバンバリーミキサーを用いて、アクリロニトリルブタジエンゴム(日本ゼオン製、Nipol1024)100gを素練りし、酸化防止剤としての4,4’-ビス(a,a-ジメチルベンジル)ジフェニルアミン(大内新興化学工業製、商品名「ノクラックCD」)1.5gおよび2-メルカプトベンズイミダゾールの亜鉛塩(大内新興化学工業製、商品名「ノクラックMBZ」)1.5gとを添加し、80℃を開始温度として3.5分間混合した。得られた混合物をロールに移し、架橋剤としての1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン(GEO Specialty Chemicals Inc製、商品名「Vul Cup 40KE」)8gを添加し、温度50℃で混練してエラストマー組成物を得た。
【0075】
(比較例2)
エラストマー組成物の調製を下記に示すように行ったこと以外は実施例1と同様にして、シート状の架橋物を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
【0076】
<エラストマー組成物の調製>
容量250mlのバンバリーミキサーを用いて、アクリロニトリルブタジエンゴム(日本ゼオン製、Nipol1024)100gを素練りし、次に、カーボンブラック(東海カーボン製、商品名「シーストSO」、BET比表面積:42m/g)50gと、酸化防止剤としての4,4’-ビス(a,a-ジメチルベンジル)ジフェニルアミン(大内新興化学工業製、商品名「ノクラックCD」)1.5gおよび2-メルカプトベンズイミダゾールの亜鉛塩(大内新興化学工業製、商品名「ノクラックMBZ」)1.5gとを添加し、80℃を開始温度として3.5分間混合した。得られた混合物をロールに移し、架橋剤としての1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン(GEO Specialty Chemicals Inc製、商品名「Vul Cup 40KE」)8gを添加し、温度50℃で混練してエラストマー組成物を得た。
【0077】
(実施例3)
混合物を調製する際にエラストマーとしてアクリロニトリルブタジエンゴムに替えて水素化ニトリルゴム(日本ゼオン製、Zetpol2020L)を使用し、SGCNTの添加量を10gに変更したこと以外は実施例1と同様にして、エラストマー組成物およびシート状の架橋物を作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
なお、JIS K6300に準拠して測定した水素化ニトリルゴムのムーニー粘度(ML1+10、121℃)は、57.5であった。
【0078】
(実施例4)
混合物を調製する際にエラストマーとしてアクリロニトリルブタジエンゴムに替えて水素化ニトリルゴム(日本ゼオン製、Zetpol2020L)を使用したこと以外は実施例2と同様にして、エラストマー組成物およびシート状の架橋物を作製した。そして、実施例2と同様にして評価を行った。結果を表2に示す。
【0079】
(比較例3)
エラストマー組成物を調製する際にエラストマーとしてアクリロニトリルブタジエンゴムに替えて水素化ニトリルゴム(日本ゼオン製、Zetpol2020L)を使用したこと以外は比較例1と同様にして、エラストマー組成物およびシート状の架橋物(エラストマー成分の架橋物)を作製した。そして、比較例1と同様にして評価を行った。結果を表2に示す。
【0080】
(比較例4)
エラストマー組成物を調製する際にエラストマーとしてアクリロニトリルブタジエンゴムに替えて水素化ニトリルゴム(日本ゼオン製、Zetpol2020L)を使用し、カーボンブラックの添加量を80gに変更したこと以外は比較例2と同様にして、エラストマー組成物およびシート状の架橋物を作製した。そして、比較例2と同様にして評価を行った。結果を表2に示す。
【0081】
(実施例5)
エラストマー組成物の調製およびシート状の架橋物の作製を下記に示すように行ったこと以外は実施例1と同様にして評価を行った。結果を表3に示す。
<エラストマー組成物の調製>
[混合物(一次マスターバッチ)の調製]
有機溶媒としてのメチルエチルケトン760gにエラストマーとしてのフッ素ゴム(デュポン製、バイトン(登録商標)GBL600S)40gを加え、24時間撹拌してフッ素ゴムを溶解させた。なお、JIS K6300に準拠して測定したフッ素ゴムのムーニー粘度(ML1+4、100℃)は、65であった。
次に、得られたフッ素ゴム溶液に対し、SGCNTを4g加え、撹拌機(PRIMIX製、ラボ・リューション(登録商標))を用いて10分間撹拌した。更に、湿式ジェットミル(吉田機械興業製、L-ES007)を用いて、SGCNTを加えた溶液を100MPaで分散処理した。その後、得られた分散処理液を3200gのメタノールへ滴下し、凝固させて黒色固体を得た。そして、得られた黒色固体を60℃で12時間減圧乾燥し、フッ素ゴムとSGCNTとの混合物を得た。
【0082】
[混練]
その後、50℃のオープンロールを用いて、フッ素ゴム40gとSGCNT4gとの混合物(一次マスターバッチ)44gと、フッ素ゴム30gとを10分間混練して、二次マスターバッチを作製した。
さらに、その後、50℃のオープンロールを用いて、フッ素ゴム70gとSGCNT4gとの混合物(二次マスターバッチ)74gとフッ素ゴム30gとを混練して、三次マスターバッチを作製した。
さらに、その後、フッ素ゴム100gとSGCNT4gとの混合物(三次マスターバッチ)と、架橋助剤としての亜鉛華3gと、架橋剤としての2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂製、商品名「パーヘキサ25B40」)2gと、共架橋剤としてのトリアリルイソシアヌレート(日本化成製、商品名「TAIC」)3gとを混練し、エラストマー組成物を得た。
【0083】
<シート状の架橋物の作製>
得られたエラストマー組成物を金型に投入し、温度170℃、圧力10MPaで20分間架橋させてシート状の一次架橋物(長さ:150mm、幅:150mm、厚さ:2mm)を得た。次いで、得られたシート状の一次架橋物をギヤー式オーブンにて230℃で2時間二次架橋し、シート状の架橋物を作製した。
【0084】
(実施例6)
混合物を調製する際にフッ素ゴム溶液に対して添加するSGCNT4gを、「単層CNTを含まない繊維状炭素ナノ構造体としての多層CNT(ナノシル製、商品名「NC7000」、BET比表面積:290m/g)」(MWCNT)30gに変更したこと以外は実施例5と同様にして、エラストマー組成物の調製し、シート状の架橋物を作製した。そして、実施例5と同様にして評価を行った。結果を表3に示す。
【0085】
(比較例5)
エラストマー組成物を調製する際にエラストマーとして『アクリロニトリルブタジエンゴム』に替えて『フッ素ゴム(デュポン製、バイトン(登録商標)GBL600S)』を使用し、架橋剤・架橋助剤として『1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン(GEO Specialty Chemicals Inc製、商品名「VulCup 40KE」)8g』に替えて『架橋助剤としての亜鉛華3gと、架橋剤としての2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂製、商品名「パーヘキサ25B40」)2gと、共架橋剤としてのトリアリルイソシアヌレート(日本化成製、商品名「TAIC」)3gと』を使用したこと以外は比較例1と同様にして、エラストマー組成物を作製した。シート状の架橋物(エラストマー成分の架橋物)の作製は、下記に示すように行った。そして、比較例1と同様にして評価を行った。結果を表3に示す。
【0086】
<シート状の架橋物(エラストマー成分の架橋物)の作製>
得られたエラストマー組成物を金型に投入し、温度170℃、圧力10MPaで20分間架橋させてシート状の一次架橋物(長さ:150mm、幅:150mm、厚さ:2mm)を得た。次いで、得られたシート状の一次架橋物をギヤー式オーブンにて230℃で2時間二次架橋し、シート状の架橋物を作製した。
【0087】
(比較例6)
エラストマー組成物を調製する際にエラストマーとして『アクリロニトリルブタジエンゴム』に替えて『フッ素ゴム(デュポン製、バイトン(登録商標)GBL600S)』を使用し、架橋剤・架橋助剤として『1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン(GEO Specialty Chemicals Inc製、商品名「VulCup 40KE」)8g』に替えて『架橋助剤としての亜鉛華3gと、架橋剤としての2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂製、商品名「パーヘキサ25B40」)2gと、共架橋剤としてのトリアリルイソシアヌレート(日本化成製、商品名「TAIC」)3gと』を使用し、カーボンブラックとして『カーボンブラック(東海カーボン製、商品名「シーストSO」、BET比表面積:42m/g)50g』に替えて『MT級カーボンブラック(東海カーボン製、商品名「サーマックスMT」)60g』を使用したこと以外は、比較例2と同様にして、エラストマー組成物を作製した。シート状の架橋物の作製は、下記に示すように行った。そして、比較例2と同様にして評価を行った。結果を表3に示す。
【0088】
<シート状の架橋物の作製>
得られたエラストマー組成物を金型に投入し、温度170℃、圧力10MPaで20分間架橋させてシート状の一次架橋物(長さ:150mm、幅:150mm、厚さ:2mm)を得た。次いで、得られたシート状の一次架橋物をギヤー式オーブンにて230℃で2時間二次架橋し、シート状の架橋物を作製した。
【0089】
【表1】
【0090】
【表2】
【0091】
【表3】
【0092】
表1~3より、0.7<D2/D1<1.0の関係式を満たす実施例1~6では、0.7<D2/D1<1.0の関係式を満たさない比較例1~6と比較して、はみ出し破壊の発生とブリスター破壊の発生との双方を十分に抑制したガスシール部材が得られることが分かる。
なお、「はみ出し破壊」の発生を抑制できることについては、引張強度が高く、体積膨潤度が低いことから読み取ることができ、「ブリスター破壊」の発生を抑制できることについては、引張強度が高く、拡散係数が高く、体積膨潤度が低く、水素溶解量が低いことから読み取ることができる。
例えば、比較例1は、引張強度が低く、体積膨潤度が大きいので、はみ出し破壊を抑制できず、また、引張強度が低いので、ブリスター破壊を抑制できない。水素溶解量について、比較例1では1850で、実施例2の1870より低く、好ましい態様のように思われるが、比較例1はフィラー(CNT又はカーボンブラック)が入っていないので、補強性が低く、体積膨張率が1.9と高く、好ましい態様とは言えない。
カーボンブラックは水素を吸着(溶解)するので、エラストマー組成物にカーボンブラックを添加するほど、内部破壊が起り易くなる。このことは、例えば、カーボンブラックを添加したエラストマー組成物を用いた比較例2で、水素溶解度が高い(2000~2500)ことからも分かる。なお、カーボンブラックは、その表面の凹凸が水素を吸着しているものと推察される。
一方、CNTは水素を吸着(溶解)せず、また、体積膨潤度が低いので、エラストマー組成物にCNTを添加することで、水素溶解度および体積膨潤度を低く維持することができる。
なお、実施例1と実施例2との組合せ、実施例3と実施例4との組合せ、実施例5と実施例6との組合せにおいては、いずれも、エラストマー組成物の架橋物の硬度を同程度にするために、単層CNTおよび複層CNTの量が調整されている。
【産業上の利用可能性】
【0093】
本発明によれば、はみ出し破壊の発生とブリスター破壊の発生との双方を十分に抑制することが可能な高圧水素機器用ガスシール部材を提供することができる。
また、本発明によれば、ガスシール部材のはみ出し破壊およびブリスター破壊の発生が十分に抑制された高圧水素機器を提供することができる。
【符号の説明】
【0094】
100 水素ステーション
111 水素製造装置
111A 燃料改質装置
111B 水素精製装置
112 水素ガス圧縮機(昇圧機)
113 蓄ガス機(蓄圧器)
114 ディスペンサー
115 水素供給ホース
116 水素供給プラグ
117 離脱カップリング
118 水素配管
120 車両(燃料電池車)
121 レセプタクル
図1