(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022150811
(43)【公開日】2022-10-07
(54)【発明の名称】単結晶炭化珪素基板の加工方法
(51)【国際特許分類】
H01L 21/304 20060101AFI20220929BHJP
【FI】
H01L21/304 631
【審査請求】未請求
【請求項の数】3
【出願形態】OL
(21)【出願番号】P 2021053588
(22)【出願日】2021-03-26
(71)【出願人】
【識別番号】000134051
【氏名又は名称】株式会社ディスコ
(74)【代理人】
【識別番号】100075384
【弁理士】
【氏名又は名称】松本 昂
(74)【代理人】
【識別番号】100172281
【弁理士】
【氏名又は名称】岡本 知広
(74)【代理人】
【識別番号】100206553
【弁理士】
【氏名又は名称】笠原 崇廣
(74)【代理人】
【識別番号】100189773
【弁理士】
【氏名又は名称】岡本 英哲
(74)【代理人】
【識別番号】100184055
【弁理士】
【氏名又は名称】岡野 貴之
(74)【代理人】
【識別番号】100185959
【弁理士】
【氏名又は名称】今藤 敏和
(72)【発明者】
【氏名】村澤 尚樹
(72)【発明者】
【氏名】高橋 邦充
【テーマコード(参考)】
5F057
【Fターム(参考)】
5F057AA34
5F057BA15
5F057BB09
5F057CA14
5F057DA11
5F057DA22
(57)【要約】
【課題】除去すべき量が少ない場合に採用でき、加工に要するコストも低く抑えられる新たな単結晶炭化珪素基板の加工方法を提供する。
【解決手段】単結晶炭化珪素基板の加工方法であって、単結晶炭化珪素基板に対し、波長が9μm~11μmのパルスレーザービームを第1の面側に照射するレーザービーム照射ステップと、単結晶炭化珪素基板を研削する研削ステップと、を含む。レーザービーム照射ステップでは、単結晶炭化珪素基板に照射されるパルスレーザービームの第1の面上の被照射領域と、単結晶炭化珪素基板に次に照射されるパルスレーザービームの第1の面上の被照射領域と、の一部が重なるように、パルスレーザービームの照射予定領域を第1の面上で移動させ、パルスレーザービームの照射により単結晶炭化珪素基板の被照射領域を含む部位を加熱することで、加熱された部位を単結晶炭化珪素基板の残りの部位から剥離させて除去する。
【選択図】
図6
【特許請求の範囲】
【請求項1】
第1の面と、該第1の面の反対側に位置する第2の面と、を備え、該第1の面と該第2の面とに対してc軸が交差する単結晶炭化珪素基板を加工する際に用いられる単結晶炭化珪素基板の加工方法であって、
該単結晶炭化珪素基板に対し、波長が9μm~11μmのパルスレーザービームを該第1の面側に照射するレーザービーム照射ステップと、
該パルスレーザービームが照射された該単結晶炭化珪素基板の該第1の面側に対し、研削用の砥石を含む研削ホイールを回転させながら該砥石を接触させて、該単結晶炭化珪素基板を研削する研削ステップと、を含み、
該レーザービーム照射ステップでは、該単結晶炭化珪素基板に照射される該パルスレーザービームの該第1の面上の被照射領域と、該単結晶炭化珪素基板に次に照射される該パルスレーザービームの該第1の面上の被照射領域と、の一部が重なるように、該パルスレーザービームの照射予定領域を該第1の面上で移動させ、該パルスレーザービームの照射により該単結晶炭化珪素基板の被照射領域を含む部位を加熱することで、加熱された該部位を該単結晶炭化珪素基板の残りの部位から剥離させて除去する単結晶炭化珪素基板の加工方法。
【請求項2】
該レーザービーム照射ステップでは、該部位の深さが該第1の面から30μm未満となる条件で、該パルスレーザービームを該単結晶炭化珪素基板に照射する請求項1に記載の単結晶炭化珪素基板の加工方法。
【請求項3】
該単結晶炭化珪素基板の該第2の面は、複数のデバイスを含むデバイス領域と、該デバイス領域を囲む外周余剰領域と、を有し、
該レーザービーム照射ステップでは、該単結晶炭化珪素基板の該デバイス領域とは反対側に位置する該第1の面側の領域に対し、該パルスレーザービームを照射し、
該研削ステップでは、該単結晶炭化珪素基板の該第1の面側の領域を研削し、円盤状の薄板部を形成するとともに、該薄板部を囲む環状の厚板部を形成する請求項1又は請求項2に記載の単結晶炭化珪素基板の加工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、単結晶炭化珪素基板の加工方法に関する。
【背景技術】
【0002】
小型で軽量なデバイスチップを実現するために、集積回路等のデバイスが表面側に設けられた半導体基板(半導体ウェーハ)を薄く加工する機会が増えている。例えば、半導体基板の表面側をチャックテーブルで保持し、砥粒を含む研削用の砥石が固定された研削ホイールとチャックテーブルとを互いに回転させながら、半導体基板の裏面に砥石を押し当てることで、この半導体基板を研削して薄くできる。
【0003】
ところで、インバータに代表されるパワーエレクトロニクス機器には、電力の制御に適したパワーデバイスと呼ばれる半導体素子が組み込まれる。このパワーデバイスは、例えば、単結晶珪素(Si)等に比べて高耐圧化及び低損失化の観点で有利な単結晶炭化珪素(SiC)でなる基板(以下、単結晶炭化珪素基板)を用いて製造される。
【0004】
一方で、単結晶炭化珪素は非常に硬いため、上述した方法で単結晶炭化珪素基板を研削すると、砥石が大きく消耗してしまう。そこで、近年では、単結晶炭化珪素基板の表面から所定の深さの複数の領域をレーザービームで改質し、この複数の領域を含む面を境に、単結晶炭化珪素基板を薄い2枚の単結晶炭化珪素基板に分離する技術が提案されている(例えば、特許文献1参照)。
【0005】
レーザービームによって改質された領域は他の領域に比べて脆く、また、隣接する2つの改質された領域の間にはクラックが発生するので、この技術を用いることで、単結晶炭化珪素基板を小さな力で簡単に2枚に分離して薄くできる。つまり、後の研削によって除去すべき量(厚み)が減るので、砥石の消耗を小さく抑えられる。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、上述した技術では、単結晶炭化珪素基板の表面から100μm未満の浅い位置を改質し、この浅い位置で単結晶炭化珪素基板を2枚に分離することが難しい。そのため、例えば、単結晶炭化珪素基板から除去されるべき量が少ない場合(すなわち、表面から近い位置に分離の際の境界を配置すべき場合)には、上述の技術を採用できなかった。
【0008】
また、上述の技術では、砥石の消耗を小さく抑えることができる代わりに、単結晶炭化珪素基板をレーザービームによって改質する工程と、力を加えて単結晶炭化珪素基板を2枚に分離するという工程と、を新たに必要とする。そのため、加工に要するコスト等の観点から、より有利な技術が求められていた。
【0009】
本発明はかかる問題点に鑑みてなされたものであり、その目的は、除去すべき量が少ない場合(除去すべき厚みが小さい場合)に採用でき、加工に要するコストも低く抑えられる新たな単結晶炭化珪素基板の加工方法を提供することである。
【課題を解決するための手段】
【0010】
本発明の一側面によれば、第1の面と、該第1の面の反対側に位置する第2の面と、を備え、該第1の面と該第2の面とに対してc軸が交差する単結晶炭化珪素基板を加工する際に用いられる単結晶炭化珪素基板の加工方法であって、該単結晶炭化珪素基板に対し、波長が9μm~11μmのパルスレーザービームを該第1の面側に照射するレーザービーム照射ステップと、該パルスレーザービームが照射された該単結晶炭化珪素基板の該第1の面側に対し、研削用の砥石を含む研削ホイールを回転させながら該砥石を接触させて、該単結晶炭化珪素基板を研削する研削ステップと、を含み、該レーザービーム照射ステップでは、該単結晶炭化珪素基板に照射される該パルスレーザービームの該第1の面上の被照射領域と、該単結晶炭化珪素基板に次に照射される該パルスレーザービームの該第1の面上の被照射領域と、の一部が重なるように、該パルスレーザービームの照射予定領域を該第1の面上で移動させ、該パルスレーザービームの照射により該単結晶炭化珪素基板の被照射領域を含む部位を加熱することで、加熱された該部位を該単結晶炭化珪素基板の残りの部位から剥離させて除去する単結晶炭化珪素基板の加工方法が提供される。
【0011】
好ましくは、該レーザービーム照射ステップでは、該部位の深さが該第1の面から30μm未満となる条件で、該パルスレーザービームを該単結晶炭化珪素基板に照射する。
【0012】
好ましくは、該単結晶炭化珪素基板の該第2の面は、複数のデバイスを含むデバイス領域と、該デバイス領域を囲む外周余剰領域と、を有し、該レーザービーム照射ステップでは、該単結晶炭化珪素基板の該デバイス領域とは反対側に位置する該第1の面側の領域に対し、該パルスレーザービームを照射し、該研削ステップでは、該単結晶炭化珪素基板の該第1の面側の領域を研削し、円盤状の薄板部を形成するとともに、該薄板部を囲む環状の厚板部を形成する。
【発明の効果】
【0013】
本発明の一側面にかかる単結晶炭化珪素基板の加工方法では、単結晶炭化珪素基板にパルスレーザービームを照射する際に、パルスレーザービームの被照射領域が部分的に重なるようにパルスレーザービームの照射予定領域を移動させ、パルスレーザービームの照射により単結晶炭化珪素基板の被照射領域を含む部位を加熱することで、加熱された部位を単結晶炭化珪素基板の残りの部位から剥離させて除去する。
【0014】
そのため、パルスレーザービームの照射の条件を変更するだけで、単結晶炭化珪素基板の除去される部位の大きさを容易に調整できる。すなわち、除去すべき量が少ない場合(除去すべき厚みが小さい場合)にも、本発明の一側面にかかる単結晶炭化珪素基板の加工方法を採用できる。
【0015】
また、パルスレーザービームの照射に伴う加熱の影響で、単結晶炭化珪素基板の加熱された部位が自然に剥離されるので、パルスレーザービームを照射した後に、剥離のための力を単結晶炭化珪素基板に加えて、加熱された部位を剥離する必要がない。よって、レーザービームを照射した後に力を加える必要のある従来の方法に比べて、加工に要するコストを低く抑えられる。
【図面の簡単な説明】
【0016】
【
図1】
図1は、単結晶炭化珪素基板の例を示す斜視図である。
【
図2】
図2は、単結晶炭化珪素基板の例を示す側面図である。
【
図3】
図3は、レーザー加工装置の例を示す斜視図である。
【
図4】
図4は、単結晶炭化珪素基板がチャックテーブルにより保持される様子を示す斜視図である。
【
図5】
図5は、単結晶炭化珪素基板にパルスレーザービームが照射される様子を示す斜視図である。
【
図6】
図6は、パルスレーザービームの被照射領域の例を示す平面図である。
【
図7】
図7は、パルスレーザービームにより加熱された部位の例を示す断面図である。
【
図8】
図8は、加熱された部位が除去された単結晶炭化珪素基板の例を示す断面図である。
【
図10】
図10は、単結晶炭化珪素基板が研削される様子を示す斜視図である。
【発明を実施するための形態】
【0017】
添付図面を参照して、本発明の実施形態について説明する。
図1は、本実施形態にかかる単結晶炭化珪素基板の加工方法で加工される単結晶炭化珪素基板11の例を示す斜視図であり、
図2は、単結晶炭化珪素基板11の例を示す側面図である。
図1及び
図2に示すように、単結晶炭化珪素基板11は、六方晶の単結晶炭化珪素(SiC)により構成された円盤状のウェーハである。
【0018】
この単結晶炭化珪素基板11は、円形状の第1の面11aと、第1の面11aの反対側に位置し第1の面11aに対して概ね平行な円形状の第2の面11bと、を備えている。単結晶炭化珪素基板11の外周部には、第1の面11a(又は第2の面11b)に対して垂直な方向から見て概ね直線状の第1のオリエンテーションフラット13a及び第2のオリエンテーションフラット13bが形成されている。
【0019】
第1のオリエンテーションフラット13aの伸びる方向と第2のオリエンテーションフラット13bの伸びる方向とは、互いに概ね垂直である。また、第1の面11aに平行な方向での第1のオリエンテーションフラット13aの長さは、第1の面11aに平行な方向での第2のオリエンテーションフラット13bの長さよりも長い。
【0020】
単結晶炭化珪素基板11を構成する単結晶炭化珪素のc軸15は、第1の面11aの垂線(第2の面11bの垂線)17に対して、第2のオリエンテーションフラット13bの方向にαの角度(オフ角と呼ばれる)で傾斜している。つまり、c軸15に対して垂直なc面19も、第1の面11a及び第2の面11bに対してαの角度をなしている。αは、代表的には、4°である。ただし、αは、1°~6°の範囲で自由に設定され得る。
【0021】
単結晶炭化珪素基板11の第2の面11bは、例えば、概ね円形状のデバイス領域と、デバイス領域を囲む外周余剰領域とに区画される。デバイス領域は、互いに交差する複数のストリート(分割予定ライン)によって更に複数の小領域に区画されており、各小領域には、パワーMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等のデバイスが形成されている。すなわち、デバイス領域は、複数のデバイスを含む。
【0022】
なお、単結晶炭化珪素基板11に形成されるデバイスの種類、数量、形状、構造、大きさ、配置等に制限はない。本実施形態では、第2の面11bにデバイスが形成された単結晶炭化珪素基板11を被加工物としているが、本発明にかかる単結晶炭化珪素基板の加工方法は、デバイスが設けられていない単結晶炭化珪素基板11にも適用され得る。
【0023】
本実施形態にかかる単結晶炭化珪素基板の加工方法では、単結晶炭化珪素基板11を第1の面11a側から加工して薄くする。具体的には、まず、この単結晶炭化珪素基板11に対し、波長が9μm~11μmのパルスレーザービームを第1の面11a側に照射する(レーザービーム照射ステップ)。
【0024】
図3は、本実施形態で使用されるレーザー加工装置2の例を示す斜視図である。なお、
図3では、レーザー加工装置2の一部の構成要素を機能ブロックで示している。また、以下の説明で用いられるX1軸方向(加工送り方向)、Y1軸方向(割り出し送り方向)、及びZ1軸方向(鉛直方向)は、互いに垂直である。
【0025】
図3に示すように、レーザー加工装置2は、各構成要素が搭載される基台4を備えている。基台4の上面には、水平移動機構(加工送り機構、割り出し送り機構)6が配置されている。水平移動機構6は、基台4の上面に固定されY1軸方向に対して概ね平行な一対のY1軸ガイドレール8を備えている。Y1軸ガイドレール8には、Y1軸移動プレート10がY1軸方向に沿ってスライドできる態様で取り付けられている。
【0026】
Y1軸移動プレート10の下面側には、ボールネジを構成するナット部(不図示)が設けられている。このナット部には、Y1軸ガイドレール8に対して概ね平行なネジ軸12が回転できる態様で連結されている。ネジ軸12の一端部には、Y1軸パルスモーター14が接続されている。Y1軸パルスモーター14でネジ軸12を回転させれば、Y1軸移動プレート10は、Y1軸ガイドレール8に沿ってY1軸方向に移動する。
【0027】
Y1軸移動プレート10の上面には、X1軸方向に対して概ね平行な一対のX1軸ガイドレール16が設けられている。X1軸ガイドレール16には、X1軸移動プレート18がX1軸方向に沿ってスライドできる態様で取り付けられている。X1軸移動プレート18の下面側には、ボールネジを構成するナット部(不図示)が設けられている。
【0028】
このナット部には、X1軸ガイドレール16に対して概ね平行なネジ軸20が回転できる態様で連結されている。ネジ軸20の一端部には、X1軸パルスモーター22が接続されている。X1軸パルスモーター22でネジ軸20を回転させれば、X1軸移動プレート18は、X1軸ガイドレール16に沿ってX1軸方向に移動する。
【0029】
X1軸移動プレート18の上面側には、円柱状のテーブル基台24が配置されている。また、テーブル基台24の上部には、被加工物となる単結晶炭化珪素基板11の保持に使用されるチャックテーブル(保持テーブル)26が配置されている。テーブル基台24の下部には、モーター等の回転駆動源(不図示)が連結されている。
【0030】
この回転駆動源から発生する力によって、チャックテーブル26は、Z1軸方向に対して概ね平行な回転軸の周りに回転する。また、テーブル基台24及びチャックテーブル26は、上述した水平移動機構6によって、X1軸方向及びY1軸方向に移動する(加工送り、割り出し送り)。
【0031】
なお、このレーザー加工装置2では、テープ21を介して環状のフレーム23に支持された状態の単結晶炭化珪素基板11を加工することが想定されている。つまり、レーザー加工装置2で単結晶炭化珪素基板11の第1の面11aにパルスレーザービームを照射する前には、単結晶炭化珪素基板11の第2の面11b側に、単結晶炭化珪素基板11よりも径の大きいテープ21が貼付される。
【0032】
また、テープ21の外周部には、単結晶炭化珪素基板11を囲むことができるように構成された環状のフレーム23が固定される。もちろん、本発明にかかる単結晶炭化珪素基板の加工方法では、テープ21が貼付されていない状態や、フレーム23に支持されていない状態の単結晶炭化珪素基板11にパルスレーザービームを照射して良い。
【0033】
チャックテーブル26の上面の一部は、例えば、多孔質材で形成されており、テープ21(テープ21が貼付されない場合には単結晶炭化珪素基板11)と接触して単結晶炭化珪素基板11を保持する保持面26aとして機能する。この保持面26aは、X1軸方向及びY1軸方向に対して概ね平行である。
【0034】
また、保持面26aは、チャックテーブル26の内部に設けられた流路(不図示)等を介して真空ポンプ等の吸引源(不図示)に接続されている。チャックテーブル26の周囲には、単結晶炭化珪素基板11を支持する環状のフレーム23を固定できる4個のクランプ28が設けられている。
【0035】
水平移動機構6のY1軸方向の一方側の領域には、X1軸方向に対して概ね垂直な側面を持つ支持構造30が設けられている。この支持構造30の側面には、鉛直移動機構(高さ調整機構)32が配置されている。鉛直移動機構32は、支持構造30の側面に固定されZ1軸方向に対して概ね平行な一対のZ1軸ガイドレール34を備えている。Z1軸ガイドレール34には、Z1軸移動プレート36がZ1軸方向に沿ってスライドできる態様で取り付けられている。
【0036】
Z1軸移動プレート36の裏面側(Z1軸ガイドレール34側)には、ボールネジを構成するナット部(不図示)が設けられている。このナット部には、Z1軸ガイドレール34に対して概ね平行なネジ軸(不図示)が回転できる態様で連結されている。ネジ軸の一端部には、Z1軸パルスモーター38が接続されている。Z1軸パルスモーター38でネジ軸を回転させれば、Z1軸移動プレート36は、Z1軸ガイドレール34に沿ってZ1軸方向に移動する。
【0037】
Z1軸移動プレート36の表面側には、支持具40が固定されており、この支持具40には、レーザービーム照射ユニット42の一部が支持されている。レーザービーム照射ユニット42は、例えば、基台4に固定されたレーザー発振器(不図示)と、支持具40に支持されY1軸方向に長い筒状のハウジング44と、ハウジング44の端部(Y1軸方向の他方側の端部)に設けられた照射ヘッド46と、を含む。
【0038】
レーザー発振器は、例えば、炭酸ガスをレーザー媒質として使用し、単結晶炭化珪素基板11の加工に適した大出力のパルスレーザービームを生成してハウジング44側に放射する。本実施形態では、このレーザー発振器によって、単結晶炭化珪素基板11に吸収される波長(10.6μm)のパルスレーザービームが生成される。なお、単結晶炭化珪素は、9μm~11μmに吸収帯を有している。
【0039】
ハウジング44は、レーザービーム照射ユニット42を構成する光学系の一部を収容しており、レーザー発振器から放射されたパルスレーザービームを端部の照射ヘッド46へと導く。照射ヘッド46には、レーザービーム照射ユニット42を構成する光学系の別の一部が収容されている。例えば、この照射ヘッド46は、ハウジング44から導かれるパルスレーザービームの進路をミラー等の光学素子で下向きに変え、集光用のレンズでチャックテーブル26側の所定の高さの位置に集光する。
【0040】
照射ヘッド46のX1軸方向の一方側の領域には、ハウジング44に固定されたカメラ(撮像ユニット)48が配置されている。カメラ48は、例えば、可視光に感度を持つCMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサやCCD(Charge Coupled Device)イメージセンサ等の2次元光センサを含んでおり、チャックテーブル26によって保持される単結晶炭化珪素基板11等を撮像する際に使用される。
【0041】
レーザービーム照射ユニット42のハウジング44及び照射ヘッド46は、上述したカメラ48とともに、鉛直移動機構32によってZ1軸方向に移動する。つまり、鉛直移動機構32は、照射ヘッド46に設けられている光学素子やレンズ等の構成要素を、チャックテーブル26の保持面26aに対して概ね垂直な方向に移動させる。
【0042】
なお、本実施形態では、レーザー発振器が基台4に固定されている場合を例に挙げて説明したが、レーザー発振器は、ハウジング44等とともに鉛直移動機構32によって支持され、Z1軸方向に移動できるように構成されても良い。また、照射ヘッド46の内部のレンズのみを独立してZ1軸方向に移動させることができるように、照射ヘッド46にアクチュエーター等が設けられても良い。
【0043】
基台4の上部は、各構成要素を収容できるカバー(不図示)によって覆われている。このカバーの側面には、ユーザーインターフェースとなるタッチスクリーン(入出力装置)50が配置されている。例えば、単結晶炭化珪素基板11を加工する際に適用される種々の条件は、このタッチスクリーン50に入力される。なお、表示装置(出力装置)と入力装置とが一体になったタッチスクリーン50の代わりに、液晶ディスプレイ等の表示装置(出力装置)と、キーボードやマウス等の入力装置と、をそれぞれ設けても良い。
【0044】
水平移動機構6、鉛直移動機構32、レーザービーム照射ユニット42、カメラ48、タッチスクリーン50等の構成要素は、それぞれ、制御ユニット52に接続されている。制御ユニット52は、単結晶炭化珪素基板11の加工に必要な一連の工程に合わせて、上述した各構成要素を制御する。
【0045】
制御ユニット52は、例えば、CPU(Central Processing Unit)等の処理装置と、DRAM(Dynamic Random Access Memory)等の主記憶装置と、ハードディスクドライブやフラッシュメモリ等の補助記憶装置と、を含むコンピュータによって構成される。補助記憶装置に記憶されるソフトウェアに従い処理装置等を動作させることによって、制御ユニット52の機能が実現される。ただし、制御ユニット52は、ハードウェアのみによって実現されても良い。
【0046】
単結晶炭化珪素基板11の第1の面11aにパルスレーザービームを照射する際には、まず、上述したレーザー加工装置2のチャックテーブル26によって単結晶炭化珪素基板11の第2の面11b側を保持する。具体的には、例えば、単結晶炭化珪素基板11の第2の面11bに貼付されているテープ21をチャックテーブル26の保持面26aに接触させるように、単結晶炭化珪素基板11をチャックテーブル26に載せる。
【0047】
そして、チャックテーブル26の保持面26aに吸引源の負圧を作用させる。これにより、単結晶炭化珪素基板11の第2の面11b側がテープ21を介してチャックテーブル26に保持され、第1の面11aが上方に露出する。なお、テープ21に貼付されているフレーム23は、4個のクランプ28で固定される。
図4は、単結晶炭化珪素基板11がチャックテーブル26に載せられる様子を示す斜視図である。なお、
図4では、説明の便宜上、テープ21、フレーム23、及びクランプ28等が省略されている。
【0048】
チャックテーブル26によって単結晶炭化珪素基板11の第2の面11b側を保持した後には、この単結晶炭化珪素基板11の露出した第1の面11aに、炭酸ガスを媒質として生成されるパルスレーザービーム(波長が9μm~11μmのパルスレーザービーム)を照射する。
図5は、単結晶炭化珪素基板11にパルスレーザービーム31が照射される様子を示す斜視図である。なお、
図5でも、テープ21、フレーム23、及びクランプ28等が省略されている。
【0049】
具体的には、例えば、照射ヘッド46の直下に位置するパルスレーザービーム31の照射予定領域46aが、単結晶炭化珪素基板11の第1の面11a上に配置されるように、チャックテーブル26と照射ヘッド46との位置の関係を水平移動機構6等で調整する。そして、レーザー発振器で生成されたパルスレーザービーム31を、この照射予定領域46aに向けて放射する。これにより、第1の面11aの照射予定領域46aと重なる部分(被照射領域)に、パルスレーザービーム31が照射される。
【0050】
上述のように、本実施形態では、単結晶炭化珪素基板11に吸収される波長のパルスレーザービーム31が使用される。よって、第1の面11aの被照射領域に照射されたパルスレーザービーム31の大部分は、単結晶炭化珪素基板11で吸収され、熱へと変換される。これにより、単結晶炭化珪素基板11の被照射領域を含む部位が急速に加熱され、その後、急速に冷却される。
【0051】
レーザービーム照射ユニット42のレーザー発振器は、所定の繰り返し周波数でパルスレーザービーム31を生成できるように構成されている。そのため、レーザー発振器でパルスレーザービーム31を生成しながら水平移動機構6を動作させ、パルスレーザービーム31の照射予定領域46aを第1の面11aに対して移動させれば、この第1の面11a上の異なる複数の部分(被照射領域)にパルスレーザービーム31を照射できる。
【0052】
図6は、パルスレーザービーム31の被照射領域11cの例を示す平面図であり、
図7は、パルスレーザービーム31により加熱された部位11dの例を示す断面図である。
図6及び
図7に示すように、本実施形態では、あるタイミングで単結晶炭化珪素基板11に照射されるパルスレーザービーム31の第1の面11a上の被照射領域11cと、次のタイミングで単結晶炭化珪素基板11に照射されるパルスレーザービーム31の第1の面11a上の被照射領域11cと、の一部を重ねる。
【0053】
つまり、パルスレーザービーム31の第1の面11a上の被照射領域11cと、次に照射されるパルスレーザービーム31の第1の面11a上の被照射領域11cと、の一部が重なるように、パルスレーザービーム31の繰り返し周波数や被照射領域11cの大きさ等に応じて、パルスレーザービーム31の照射予定領域46aを第1の面11a上で移動させる。これにより、被照射領域11cを含む加熱された部位11dを、単結晶炭化珪素基板11の残りの部位11eから剥離させて除去できる。
【0054】
図8は、加熱された部位11dが除去された単結晶炭化珪素基板11の例を示す断面図である。上述の方法で加熱された部位11dが良好に剥離されるのは、各部位11dの熱膨張及び熱収縮、並びに、隣接する被照射領域11cの部分的な重なりに起因する熱勾配が、部位11dと部位11eとの境界に沿うクラックの発生を促進させるためと推測される。このように、加熱された部位11dを除去して単結晶炭化珪素基板11を実質的に薄くすることで、後の研削により除去すべき量を少なくできる。
【0055】
なお、単結晶炭化珪素基板11は、c軸15に対して垂直なc面19に沿って劈開し易いという性質を備えている。そのため、上述したクラックは、主に単結晶炭化珪素基板11のc面19に沿う方向に伸展している考えられる。したがって、加熱された部位11dは、部位11eとの境界において主にc面19に沿って分離される、と言い換えることもできる。
【0056】
パルスレーザービーム31の照射にかかる条件は、単結晶炭化珪素基板11から除去すべき量(厚み)に応じて任意に設定、変更され得る。ただし、パルスレーザービーム31の照射によって加熱される部位11dが大きくなり過ぎると、この部位11dと残りの部位11eとの境界でクラックが発生し難くなる。よって、この部位11dの深さが第1の面11aから30μm未満となる条件で、パルスレーザービーム31を単結晶炭化珪素基板11に照射することが望ましい。
【0057】
一方、部位11dが小さくなり過ぎると、後の研削により除去すべき量を十分に少なくすることができず、単結晶炭化珪素基板11にパルスレーザービームを照射する意義が低下する。よって、この部位11dの深さが第1の面11aから2μm以上となる条件で、パルスレーザービーム31を単結晶炭化珪素基板11に照射することが望ましい。
【0058】
より具体的には、パルスレーザービーム31の出力を、例えば、120W~130Wに設定し、繰り返し周波数を、例えば、1kHz~200kHzに設定する。また、第1の面11aに対して照射予定領域46aを移動させる速度を、例えば、200mm/sに設定し、被照射領域11cの大きさ(直径)を、例えば、100μm~200μmに設定する。このような条件を適用した場合には、第1の面11aから20μm程度の深さの部位11dを単結晶炭化珪素基板11から除去できる。
【0059】
例えば、単結晶炭化珪素基板11の第1の面11aの概ね全体にパルスレーザービーム31を照射し、単結晶炭化珪素基板11の全体が実質的に薄くなると、パルスレーザービーム31の照射を終了する。なお、本実施形態では、第1の面11aに対して照射予定領域46aを直線的に移動させているが、第1の面11aに対して照射予定領域46aを曲線的に移動させても良い。例えば、螺旋状の軌跡を描くように照射予定領域46aを移動させることもできる。
【0060】
パルスレーザービーム31を単結晶炭化珪素基板11の第1の面11a側に照射し、加熱された部位11dを除去した後には、この単結晶炭化珪素基板11の第1の面11a側を研削する(研削ステップ)。
図9は、本実施形態で使用される研削装置102を示す斜視図である。なお、以下の説明で用いられるX2軸方向(前後方向)、Y2軸方向(左右方向)、及びZ2軸方向(鉛直方向)は、互いに垂直である。
【0061】
図9に示すように、研削装置102は、各構成要素が搭載される基台104を備えている。基台104の後端には、柱状の支持構造106が設けられている。基台104の上面には、X2軸方向に長い開口部104aが形成されている。開口部104a内には、ボールネジ式のX2軸移動機構108が配置されている。
【0062】
X2軸移動機構108は、X2軸移動テーブル(不図示)を備えており、このX2軸移動テーブルをX軸方向に移動させる。X2軸移動テーブルの上方には、第1カバー110aが配置されている。第1カバー110aの前後には、蛇腹状の第2カバー110bが接続されている。これにより、X2軸移動機構108の上部は、第1カバー110aと第2カバー110bとで覆われている。開口部104aの前方には、研削の条件等を入力する際に使用される操作パネル112が設けられている。
【0063】
X2軸移動テーブルの上部には、単結晶炭化珪素基板11の保持に使用されるチャックテーブル(保持テーブル)114が、第1カバー110aの上方で露出するように設けられている。チャックテーブル114の上面の一部は、例えば、多孔質材で形成され、単結晶炭化珪素基板11を保持するための保持面114aとして機能する。保持面114aは、例えば、円錐の側面に相当する形状を持ち、チャックテーブル114の内部に設けられた流路(不図示)等を介して真空ポンプ等の吸引源(不図示)に接続されている。
【0064】
チャックテーブル114は、モーター等の回転駆動源(不図示)に連結されており、円錐の頂点に相当する保持面114aの頂点が回転の中心となるように、Z2軸方向に対して平行な回転軸、又はZ2軸方向に対して僅かに傾いた回転軸の周りに回転する。また、チャックテーブル114は、上述したX2軸移動機構108によって、X2軸移動テーブルとともにX2軸方向に移動する。
【0065】
支持構造106の前面には、Z2軸移動機構116が設けられている。Z2軸移動機構116は、Z2軸方向に対して概ね平行な一対のZ2軸ガイドレール118を備えており、このZ2軸ガイドレール118には、Z2軸移動プレート120がスライドできる態様で取り付けられている。Z2軸移動プレート120の後面側(裏面側)には、ボールネジを構成するナット部(不図示)が設けられており、このナット部には、Z2軸ガイドレール118に対して概ね平行なネジ軸122が回転できる態様で連結されている。
【0066】
ネジ軸122の一端部には、Z2軸パルスモーター124が接続されている。Z2軸パルスモーター124によってネジ軸122を回転させることにより、Z2軸移動プレート120はZ2軸ガイドレール118に沿ってZ2軸方向に移動する。Z2軸移動プレート120の前面(表面)には、前方に突出する支持具126が設けられている。
【0067】
支持具126には、単結晶炭化珪素基板11を研削するための研削ユニット128が支持されている。研削ユニット128は、支持具126に固定されるスピンドルハウジング130を含んでいる。スピンドルハウジング130には、回転軸となるスピンドル132が回転できる状態で収容されている。
【0068】
スピンドル132の下端部は、スピンドルハウジング130の外部に露出している。このスピンドル132の下端部には、円盤状のマウント134が設けられている。マウント134の外周部には、このマウント134を厚さの方向に貫通する複数の穴(不図示)が設けられており、各穴には、ボルト136等が挿入される。マウント134の下面には、マウント134と概ね直径が等しい円盤状の研削ホイール138が、ボルト136等によって固定されている。
【0069】
研削ホイール138は、ステンレスやアルミニウム等でなる円盤状(円環状)のホイール基台140(
図10)を備えている。ホイール基台140は、互いに概ね平行な上面と下面とを有し、その中央には、ホイール基台140を上面から下面まで貫通する円形の開口部が形成されている。また、ホイール基台140の内部には、純水等の液体(加工液)を下方に供給するための流路が設けられている。
【0070】
ホイール基台140の下面には、樹脂や金属等の結合剤にダイヤモンドやcBN(cubic Boron Nitride)等の砥粒を分散させてなる研削用の複数の砥石142が環状に配列されている。砥石142を構成する結合剤の種類(材質)や、砥粒の材質、大きさ等は、求められる平坦度等に合わせて、単結晶炭化珪素基板11を適切に研削できるように調整される。
【0071】
単結晶炭化珪素基板11の第1の面11a側を研削する際には、まず、上述した研削装置102のチャックテーブル114によって単結晶炭化珪素基板11の第2の面11b側を保持する。具体的には、例えば、単結晶炭化珪素基板11の第2の面11bに貼付されているテープ21をチャックテーブル114の保持面114aに接触させるように、単結晶炭化珪素基板11をチャックテーブル114に載せる。
【0072】
そして、チャックテーブル114の保持面114aに吸引源の負圧を作用させる。これにより、単結晶炭化珪素基板11の第2の面11b側がテープ21を介してチャックテーブル114に保持され、第1の面11aが上方に露出する。なお、単結晶炭化珪素基板11をチャックテーブル114に載せる前には、単結晶炭化珪素基板11の外縁に沿ってテープ21を切断し、単結晶炭化珪素基板11をフレーム23から分離しておくと良い。
【0073】
チャックテーブル114によって単結晶炭化珪素基板11の第2の面11b側を保持した後には、この単結晶炭化珪素基板11の露出した第1の面11a側に砥石142を接触させて、単結晶炭化珪素基板11を研削する。
図10は、単結晶炭化珪素基板11が研削される様子を示す斜視図である。
【0074】
具体的には、まず、X2軸移動機構108を動作させて、チャックテーブル114を研削ホイール138の直下に移動させる。次に、チャックテーブル114と研削ホイール138とを所定の方向にそれぞれ所定の回転数で回転させる。チャックテーブル114の回転数は、例えば、10rpm~300rpmであり、研削ホイール138の回転数は、例えば、1000rpm~7000rpmである。ただし、チャックテーブル114の回転数及び研削ホイール138の回転数は、これらに限定されない。
【0075】
そして、ホイール基台140の流路等を通じてチャックテーブル114上の単結晶炭化珪素基板11に液体(加工液)を供給しながら、単結晶炭化珪素基板11の第1の面11a側に砥石142を押し当てるように、研削ホイール138を所定の速度で下降させる。これにより、
図10に示すように、砥石142によって単結晶炭化珪素基板11の第1の面11a側を削り取るように加工して、単結晶炭化珪素基板11を薄くできる。
【0076】
研削ホイール138を下降させる速度は、例えば、0.1μm/s~5.0μm/sであり、液体の供給量は、例えば、1.0L/min~10.0L/minである。ただし、研削ホイール138を下降させる速度及び液体の供給量は、これらに限定されない。単結晶炭化珪素基板11が所定の仕上げ厚みまで加工されたタイミングで、研削ホイール138の下降を停止させて、単結晶炭化珪素基板11の研削を終了する。
【0077】
本実施形態にかかる単結晶炭化珪素基板の加工方法では、単結晶炭化珪素基板11にパルスレーザービーム31を照射する際に、パルスレーザービーム31の被照射領域11cが部分的に重なるようにパルスレーザービーム31の照射予定領域46aを移動させ、パルスレーザービーム31の照射により単結晶炭化珪素基板11の被照射領域11cを含む部位11dを加熱することで、加熱された部位11dを単結晶炭化珪素基板11の残りの部位11eから剥離させて除去している。
【0078】
そのため、後の研削により除去すべき量(厚み)を少なくして、砥石142の消耗を小さく抑えることができる。また、パルスレーザービーム31の照射の条件を変更するだけで、単結晶炭化珪素基板11の除去される部位11dの大きさを容易に調整できる。すなわち、除去すべき量が少ない場合(除去すべき厚みが小さい場合)にも、本実施形態にかかる単結晶炭化珪素基板の加工方法を採用できる。
【0079】
更に、パルスレーザービーム31の照射に伴う加熱の影響で、単結晶炭化珪素基板11の加熱された部位11dが自然に剥離されるので、パルスレーザービーム31を照射した後に、剥離のための力を単結晶炭化珪素基板11に加えて、加熱された部位11dを剥離する必要がない。よって、レーザービームを照射した後に力を加える必要のある従来の方法に比べて、加工に要するコストを低く抑えられる。
【0080】
なお、本発明は、上述した実施形態の記載に制限されず種々変更して実施可能である。例えば、上述した実施形態では、レーザー加工装置2と研削装置102との双方を用いて単結晶炭化珪素基板11を加工しているが、レーザー加工装置2の機能と研削装置102の機能とを併せ持つ複合装置を用いて単結晶炭化珪素基板11を加工しても良い。
【0081】
また、上述した実施形態では、単結晶炭化珪素基板11の第1の面11a側の全体を加工する例について説明したが、単結晶炭化珪素基板11の一部のみを加工する場合にも、本発明は有効である。例えば、デバイス領域の反対側に位置する第1の面11a側の領域に対してのみ、パルスレーザービーム31を照射し、その後、パルスレーザービーム31が照射された第1の面11a側の領域のみを研削することもできる。この場合には、円盤状の薄板部と、薄板部を囲む環状の厚板部とが形成されることになる。
【0082】
その他、上述した実施形態や変形例にかかる構造、方法等は、本発明の目的の範囲を逸脱しない限りにおいて変更して実施できる。
【符号の説明】
【0083】
11 :単結晶炭化珪素基板
11a :第1の面
11b :第2の面
11c :被照射領域
11d :部位
11e :部位
13a :第1のオリエンテーションフラット
13b :第2のオリエンテーションフラット
15 :c軸
17 :垂線
19 :c面
21 :テープ
23 :フレーム
31 :パルスレーザービーム
2 :レーザー加工装置
4 :基台
6 :水平移動機構
8 :Y1軸ガイドレール
10 :Y1軸移動プレート
12 :ネジ軸
14 :Y1軸パルスモーター
16 :X1軸ガイドレール
18 :X1軸移動プレート
20 :ネジ軸
22 :X1軸パルスモーター
24 :テーブル基台
26 :チャックテーブル
26a :保持面
28 :クランプ
30 :支持構造
32 :鉛直移動機構
34 :Z1軸ガイドレール
36 :Z1軸移動プレート
38 :Z1軸パルスモーター
40 :支持具
42 :レーザービーム照射ユニット
44 :ハウジング
46 :照射ヘッド
46a :照射予定領域
48 :カメラ
50 :タッチスクリーン
52 :制御ユニット
102 :研削装置
104 :基台
104a :開口部
106 :支持構造
108 :X2軸移動機構
110a :第1カバー
110b :第2カバー
112 :操作パネル
114 :チャックテーブル
114a :保持面
116 :Z2軸移動機構
118 :Z2軸ガイドレール
120 :Z2軸移動プレート
122 :ネジ軸
124 :Z2軸パルスモーター
126 :支持具
128 :研削ユニット
130 :スピンドルハウジング
132 :スピンドル
134 :マウント
136 :ボルト
138 :研削ホイール
140 :ホイール基台
142 :砥石