(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022154599
(43)【公開日】2022-10-13
(54)【発明の名称】塩素バイパス設備、セメントクリンカ製造装置、セメントクリンカの製造方法、塩素バイパス設備の運転方法、および廃棄物処理方法
(51)【国際特許分類】
C04B 7/43 20060101AFI20221005BHJP
【FI】
C04B7/43
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021057712
(22)【出願日】2021-03-30
(71)【出願人】
【識別番号】521297587
【氏名又は名称】UBE三菱セメント株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100145012
【弁理士】
【氏名又は名称】石坂 泰紀
(72)【発明者】
【氏名】末益 猛
(72)【発明者】
【氏名】藤永 祐太
(72)【発明者】
【氏名】鈴木 祥介
(72)【発明者】
【氏名】大場 康太
(57)【要約】
【課題】粗粉を運搬可能とし、分級部の設置位置の自由度を高めることが可能な技術を提供する。
【解決手段】塩素バイパス設備90は、セメントキルン50の窯尻52、ライジングダクト42またはこれらの間からキルン排ガスを抽気する抽気口21Aと、抽気口21Aから抽気された抽気ガスから原料ダストの粗粉を分離し、原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級部22と、分級部22で分離された粗粉と、含水廃棄物Wとを混合する混合部30と、を有する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
セメントキルンの窯尻、ライジングダクトまたはこれらの間からキルン排ガスを抽気する抽気口と、
前記抽気口から抽気された抽気ガスから原料ダストの粗粉を分離し、前記原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級部と、
前記分級部で分離された粗粉と、含水廃棄物とを混合する混合部と、
を有する、塩素バイパス設備。
【請求項2】
前記含水廃棄物は、汚泥および廃液の少なくとも一方を含む、請求項1に記載の塩素バイパス設備。
【請求項3】
前記分級部から排出された前記導出ガスが流通する流路に対して冷却ガスを導入する冷却ガス導入部と、
前記混合部で発生した蒸気を、前記冷却ガスの一部として前記冷却ガス導入部へ導入する蒸気供給部と、
をさらに有する、請求項1または2に記載の塩素バイパス設備。
【請求項4】
前記冷却ガス導入部は、前記流路の内壁面に沿って旋回流が生じるように前記冷却ガスを導入する、請求項3に記載の塩素バイパス設備。
【請求項5】
前記混合部内の酸素濃度が限界酸素濃度未満となるように、前記混合部内の酸素濃度を管理する酸素濃度管理部をさらに有する、請求項1~4のいずれか一項に記載の塩素バイパス設備。
【請求項6】
請求項1~5のいずれか一項に記載の塩素バイパス設備を有する、セメントクリンカ製造装置。
【請求項7】
請求項6に記載のセメントクリンカ製造装置を用いてセメントクリンカを製造する、セメントクリンカの製造方法。
【請求項8】
セメントキルンの窯尻、ライジングダクトまたはこれらの間からキルン排ガスを得る抽気工程と、
前記抽気工程で得られた抽気ガスから原料ダストの粗粉を分離し、前記原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級工程と、
前記分級工程で分離された前記粗粉と、含水廃棄物とを混合部において混合する混合工程と、
を含む、塩素バイパス設備の運転方法。
【請求項9】
セメントクリンカ製造装置によって廃棄物を処理する方法であって、
セメントキルンの窯尻、ライジングダクトまたはこれらの間からキルン排ガスを得る抽気工程と、
前記抽気工程で得られた抽気ガスから原料ダストの粗粉を分離し、前記原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級工程と、
前記分級工程で分離された前記粗粉と、含水廃棄物とを混合部において混合する混合工程と、
前記混合工程によって得られた混合物を前記セメントキルンへ投入する工程と、
を含む、廃棄物処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、塩素バイパス設備、セメントクリンカ製造装置、セメントクリンカの製造方法、塩素バイパス設備の運転方法、および廃棄物処理方法に関する。
【背景技術】
【0002】
セメントクリンカの製造装置では、各種廃棄物を原料および熱エネルギー源として用いることの取り組みが進められている。このような事情から、セメントキルンに持ち込まれる塩素量は増加する傾向にある。多くのセメントクリンカ製造装置にはセメントキルン内の塩素を低減するために塩素バイパス設備が設置されており、この塩素バイパス設備で抽気された抽気ガスから効率的に塩素を除去する技術が検討されている。特許文献1では、キルン排ガス流路から抽気した抽気ガスの温度を770℃以上に維持した状態で抽気ガスから粗粉を分級装置において分離し、その後、600℃以下に冷却して塩素バイパスダストを分離する技術が提案されている。また、特許文献1では、分離された粗粉をセメントキルン系へ返送することが示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、温度を770℃以上に維持した状態の抽気ガスから分級された粗粉は、非常に高温のダストであるため、取扱いが難しいという問題があった。具体的には、1000℃程度となり得る粗粉を運搬可能な機械輸送または空気輸送の輸送機がないため、粗粉の運搬が難しい。輸送機を用いずにシュート等によって粗粉をセメントキルンへ返送することも考えられるが、この場合、粗粉を適切に移動させるためのシュートの取り付け位置や取り付け角度に条件がある。そのため、分級装置の設置場所に係る制約が大きくなるという問題があった。
【0005】
本開示は上記を鑑みてなされたものであり、粗粉を運搬可能とし、分級部の設置位置の自由度を高めることが可能な技術を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本開示の一側面に係る塩素バイパス設備は、セメントキルンの窯尻、ライジングダクトまたはこれらの間からキルン排ガスを抽気する抽気口と、前記抽気口から抽気された抽気ガスから原料ダストの粗粉を分離し、前記原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級部と、前記分級部で分離された粗粉と、含水廃棄物とを混合する混合部と、を有する。
【0007】
上記の塩素バイパス設備によれば、分級部で分離された粗粉が混合部において含水廃棄物と混合される。このときに、高温の粗粉が含水廃棄物によって冷却されるため、輸送機による運搬が可能となり、分級部の設置位置の自由度が高められる。
【0008】
前記含水廃棄物は、汚泥および廃液の少なくとも一方を含む態様であってもよい。この場合、含水廃棄物と粗粉との混合物がセメントキルンへの返送に適した性状となる。また、高温の粗粉と含水廃棄物を混合させることで含水廃棄物中の水分を揮発させ、セメントキルンの燃費悪化を抑制することができ、さらに揮発した水分のボリューム増によるセメントキルン内のドラフト悪化を抑制できる。したがって、含水廃棄物の投入により生じるセメントキルンの運転変動を抑制でき、含水廃棄物の安定処理が可能になる。
【0009】
前記分級部から排出された前記導出ガスが流通する流路に対して冷却ガスを導入する冷却ガス導入部と、前記混合部で発生した蒸気を、前記冷却ガスの一部として前記冷却ガス導入部へ導入する蒸気供給部と、をさらに有する態様であってもよい。原料ダストの微粉からできるクリンカダストは非常に粒径が小さく、バッグフィルターの目詰まりや流路の閉塞の要因となりやすい。そこで、混合部で生じた蒸気を冷却ガスの一部として利用することで、クリンカダストを粗大化させることができ、バッグフィルターおよび流路等の閉塞を抑制することができる。
【0010】
前記冷却ガス導入部は、前記流路の内壁面に沿って旋回流が生じるように前記冷却ガスを導入してもよい。これにより、生じさせた旋回流がエアーカーテンとなって、クリンカダストが流路内壁に付着しコーチングとなることを抑制することができる。
【0011】
前記混合部内の酸素濃度が限界酸素濃度未満となるように、前記混合部内の酸素濃度を管理する、酸素濃度管理部をさらに有する態様であってもよい。混合部内では、メタン等の可燃性ガスおよび/または粉塵が存在し得る環境であり、ガス爆発や粉塵爆発が生じる可能性がある。そこで、上記のように酸素濃度管理部を有する構成とすることで、混合部における酸素濃度を限界酸素濃度未満にして、ガス爆発や粉塵爆発の発生を防ぐことができる。
【0012】
本開示の一側面に係るセメントクリンカ製造装置は、上述のいずれかの塩素バイパス設備を有する。上記のセメントクリンカ製造装置は、上述の塩素バイパス設備を含むため、粗粉を運搬可能とし、分級部の設置位置の自由度を高めることが可能である。
【0013】
本開示の一側面に係るセメントクリンカの製造方法は、上記のセメントクリンカ製造装置を用いてセメントクリンカを製造する。上記のセメントクリンカの製造方法は、上述の塩素バイパス設備を用いてセメントクリンカを製造するため、粗粉を運搬可能とし、分級部の設置位置の自由度を高めることが可能である。
【0014】
本開示の一側面に係る塩素バイパス設備の運転方法は、セメントキルンの窯尻、ライジングダクトまたはこれらの間からキルン排ガスを得る抽気工程と、前記抽気工程で得られた前記抽気ガスから原料ダストの粗粉を分離し、前記原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級工程と、前記分級工程で分離された前記粗粉と、含水廃棄物とを混合部において混合する混合工程と、を含む。
【0015】
上記の塩素バイパス設備の運転方法によれば、分級工程で分離された粗粉が混合部において含水廃棄物と混合される。このときに、高温の粗粉が含水廃棄物によって冷却されるため、輸送機による運搬が可能となり、分級工程を行う分級部の設置位置の自由度が高められる。
【0016】
本開示の一側面に係る廃棄物処理方法は、セメントクリンカ製造装置によって廃棄物を処理する方法であって、セメントキルンの窯尻、ライジングダクトまたはこれらの間からキルン排ガスを得る抽気工程と、前記抽気工程で得られた前記抽気ガスから原料ダストの粗粉を分離し、前記原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級工程と、前記分級工程で分離された前記粗粉と、含水廃棄物とを混合部において混合する混合工程と、前記混合工程によって得られた混合物を前記セメントキルンへ投入する投入工程と、を含む。
【0017】
上記の廃棄物処理方法によれば、分級工程で分離された粗粉が混合部において含水廃棄物と混合される。このときに、高温の粗粉が含水廃棄物によって冷却されるため、輸送機による運搬が可能となり、分級工程を行う分級部の設置位置の自由度が高められる。さらに、上記のセメントクリンカ製造装置で廃棄物を処理することで、含水廃棄物の投入により生じるセメントキルンの運転変動を抑制できるため、含水廃棄物の安定処理が可能になる。
【発明の効果】
【0018】
本開示によれば、粗粉を運搬可能とし、分級部の設置位置の自由度を高めることが可能な技術が提供される。
【図面の簡単な説明】
【0019】
【
図1】
図1は、一実施形態に係る塩素バイパス設備とこれを備えるセメントクリンカ製造装置を示す図である。
【
図2】
図2は、塩素バイパス設備における粗粉導入部の構成について説明する図である。
【
図3】
図3は、冷却ガス導入部が接続される導出ガスの流路の径方向断面を示す断面図である。
【発明を実施するための形態】
【0020】
以下、場合により図面を参照して、本開示の一実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素または同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、各要素の寸法比率は図示の比率に限られるものではない。
【0021】
図1は、一実施形態に係る塩素バイパス設備とこれを備えるセメントクリンカ製造装置を示す図である。塩素バイパス設備90は、セメントクリンカ製造装置100の予熱仮焼部40のライジングダクト42に接続される。塩素バイパス設備90は、セメントクリンカ製造装置100内の塩素分等の揮発分をクリンカダストとして回収し、セメントクリンカ製造装置100内の塩素分を低減する。なお、セメントクリンカ製造装置100は、制御部10を含んで構成されていてもよい。
【0022】
塩素バイパス設備90は、ライジングダクト42からガスを抽気する抽気口21Aと、抽気口21Aから抽気された、原料ダストを含む抽気ガスが流通する抽気管21とを有する。また、塩素バイパス設備90は抽気ガスから原料ダストの粗粉を分離して、当該粗粉よりも小さい原料ダストの微粉を含む導出を得る分級部22と、導出ガスが流通する流路24と、流路24に旋回流が生じるように冷却ガスを導入する冷却ガス導入部80と、を備える。さらに、塩素バイパス設備90は、分級部22で分級された粗粉を含水廃棄物とを混合する混合部30を有する。
【0023】
抽気口21Aから抽気された抽気ガスは、原料ダストおよびガス状の塩素分を含む。抽気ガスは抽気管21を流通し分級部22に導入される。抽気管21は、抽気プローブと称されるものであってもよい。分級部22に導入される際の抽気ガスの温度は、KClおよびNaCl等の揮発した塩素分が単独で析出し、または原料ダストの表面に析出し、クリンカダストとして分級部22に付着することを抑制する観点から、好ましくは770℃を超え、より好ましくは820℃以上であり、さらに好ましくは860℃以上である。
【0024】
分級部22は、抽気ガスを導入して分級を行うことで、原料ダストの粗粉を分離する。分級部22は例えばサイクロンであってよい。分級部22において、上記の温度範囲の抽気ガスの分級を行うことで、塩素分が気相に含まれている状態で、原料ダストの粗粉を抽気ガスから分離することができる。そのため、揮発した塩素分が単独で析出すること、または原料ダストの表面に析出することによりコーチングが発生し、分級部22が閉塞することが抑制される。また、塩素が析出した原料ダストがセメントキルン側に循環流路で戻ることを抑制することができる。
【0025】
分級部22で抽気ガスから分離される原料ダストの粗粉に塩素分が析出することを抑制する観点から、分級部22において原料ダストの粗粉を分離する際の抽気ガスの温度は、770℃以上にされる。抽気ガスの温度は、好ましくは820℃以上、より好ましくは860℃以上とすることができる。分級部22から導出される導出ガスの温度についても、770℃以上とされる。また、導出ガスの温度は、好ましくは820℃以上、より好ましくは860℃以上とすることができる。
【0026】
なお、分級部22において、燃焼炉からの排ガスを抽気ガスと混合してもよい。この場合、分級部22において、抽気ガスと排ガスとを含む混合ガスが得られる。なお、排ガスを生成する燃焼炉としては、例えば、廃プラスチック脱塩設備における燃焼炉が挙げられる。燃焼炉は、廃プラスチックを含む原料を熱処理して生じる熱分解ガスに含まれるタールを燃焼する炉である。燃焼炉の排ガスを分級部22に導入して抽気ガスと混合する場合、抽気ガス単独の場合と比べて、分級部22において混合されたガスの温度を安定的に高くすることができる。また、燃焼炉からの排ガスと抽気ガスとを合流した場合、分級部22において混合したガスの流速を大きくすることができる。そのため、分級部22における分級性能を向上し、原料ダストの粗粉を、より高い精度で混合ガスから分離することができる。
【0027】
なお、塩素バイパス設備90で抽気ガスに合流する排ガスは廃プラスチック脱塩設備の燃焼炉からの排ガスに限定されず、廃プラスチック脱塩設備の燃焼炉とは異なる燃焼炉からの排ガスであってもよい。例えば、排ガスとして、バイオマスペレット炭化設備に備えられる燃焼炉、アンモニアガス化炉、硫黄燃焼炉、或いは、これらとは異なる燃焼炉または溶融炉からの高温排ガスを用いてもよい。これらの一種の排ガスを単独で用いてもよいし、複数の排ガスを組み合わせて用いてもよい。
【0028】
原料ダストの粗粉の粒径は、例えば、18μm以上であってよく、好ましくは16μm以上であってよく、より好ましくは14μm以上であってもよい。原料ダストの粗粉が14μm以上となるように分級を行うことによって、揮発分を十分に低減することができる。
【0029】
分級部22で抽気ガスから分離された原料ダストの粗粉は、混合部30へ導入される。混合部30は、原料ダストの粗粉を貯留する密閉型の容器である。また、混合部30には、含水廃棄物Wが導入される。混合部30の内部には、粗粉と含水廃棄物を混合するための攪拌羽根31が設けられていてもよい。
【0030】
含水廃棄物は、例えば、含水率が30%以上の廃棄物をいう。含水率が40%~99%であると、粗粉との混合に適している。また、含水廃棄物を構成する廃棄物の種類は特に限定されず、例えば、産業廃棄物、一般廃棄物等のどちらでもよい。また、含水廃棄物は、例えば、汚泥および廃液の少なくとも一方を含んでいてもよい。
【0031】
混合部30での粗粉と含水廃棄物との混合割合は特に限定されないが、例えば、重量比で、粗粉:含水廃棄物が1:99~70:30程度となるように、両者を混合してもよい。分級部22での分級は、上述のように高温の状態で分級されるため、高温の粗粉が混合部30に導入されることになる。一方、含水廃棄物は、水分を含んだ状態であり、その温度は特に限られず、常温でよい。このような含水廃棄物と粗粉とを混合することによって、含水廃棄物中の水分を揮発させることができ、セメントキルンの燃費悪化を抑制することができる。また、上記の割合で混合した場合、粗粉と含水廃棄物の混合物は、分級直後の粗粉と比べて、例えば400℃以下まで温度を低下させることができる。この結果、混合物の取り扱い性が向上する。なお、含水廃棄物が、汚泥および廃液の少なくとも一方を含んでいる場合、含水廃棄物と粗粉との混合物がセメントキルンへの返送に適した性状となる。
【0032】
なお、混合部30では、例えば、含水廃棄物が予め収容された状態で、粗粉を上方の分級部22から落下させることで、混合部30内で両者を混合させる構成としてもよい。この場合、高温の粗粉が混合部30の底面等に直接触れることが防がれ、容器の損傷等を防ぐことができる。
【0033】
また、混合部30には、内部の酸素濃度を管理するセンサ35が設けられていてもよい。センサ35は、内部の酸素濃度を測定している。センサ35による測定結果は制御部10へ送られる。センサ35および制御部10は、混合部30内での酸素濃度が限界酸素濃度未満となるように管理される。酸素濃度の管理において閾値として用いられる限界酸素濃度とは、「粉塵爆発限界酸素濃度」および「ガス爆発限界酸素濃度」である。混合部30内部では汚泥等の含水廃棄物が使用されるため、メタン等の可燃性ガスが発生し、ガス爆発の危険がある。また、粗粉と混合することにより汚泥の乾燥が進みすぎた場合、混合部30内部で粉塵爆発が発生する危険がある。そこで、内部の酸素濃度を監視し、粉塵爆発および/またはガス爆発が発生し得る酸素濃度である限界酸素濃度に酸素濃度が到達しないように監視する。このように、センサ35および制御部10は、酸素濃度管理部としての機能を有する。
【0034】
また、分級部22と混合部30との間に、分級部22からの粗粉を混合部30へ導入するための経路として粗粉導入部23が設けられていてもよい。
図2は、粗粉導入部23を模式的に示したものである。粗粉導入部23は、分級部22の底面と混合部30の上面を接続する上下方向に延びる筒状の部材によって構成される管路から構成されていてもよい。また、粗粉導入部23には、その途中に2つのダンパー25a,25bが設けられていてもよい。この場合、粗粉は、分級部22から2段のダンパー25a,25bを経由して混合部30へ導入される。ダンパー25a,25bは、例えば、制御部10によって制御されてもよいし、制御を行なわない重力ダンパーにしてもよい。
【0035】
なお、ダンパー25a,25bの下方には、それぞれ、ダンパー25a,25bを通過した粗粉を衝突させる衝突部材27a,27bが設けられてもよい。衝突部材27a,27bは、粗粉を分散させる構成であればよく、その形状は特に限定されない。例えば、衝突部材27aのように、棒状の部材(
図2では、棒状の部材の断面を示している)を複数設けてもよい。また、衝突部材27bのように、上方に設けられた頂部から下方へ向かうにつれて径が大きくなる傘状の部材を設けてもよい。また、板状の部材を組み合わせて衝突部材を構成してもよい。このように、衝突部材は、粗粉を分散させる形状を有していればよい。なお、下流側のダンパー25bよりも下方に衝突部材27bを設けておくと、含水廃棄物に対して粗粉が分散した状態が形成されやすくなる。一方、下流側のダンパー25bよりも上方にも衝突部材27aを設けておくことにより、上流から下流へ向けて2つの衝突部材27a,27bを設けられることになり、粗粉が分散しやすい状態を段階的に形成することができる。なお、衝突部材の配置・数は適宜変更することができる。
【0036】
図1に戻り、混合部30で混合された後の混合物は、セメントクリンカの原料となるものであるため、セメントキルン50の窯尻52に導入される。混合物の返送のための流路29としては、例えば機械輸送の輸送機等を用いて輸送してもよい。このように、抽気口21Aから抽気された原料ダストの粗粉と、含水廃棄物との混合物を窯尻52に戻すことによって、原料ダストの粗粉を含む混合物をセメントクリンカの製造に用いることができる。なお、混合物は、窯尻52ではなく、ライジングダクト42、サイクロンC4と窯尻52を接続するシュート、仮焼炉44、またはキルン本体56に戻してもよい。また、流路29を複数設けて混合物を複数箇所に戻してもよい。
【0037】
分級部22から導出される導出ガスには、分級部22で回収されなかった原料ダストの粗粉および微粉が含まれる。また、分級部22に排ガスを導入する場合、この分級部22で回収されなかった原料ダストに含まれるCa分と、排ガス中のHCl等の塩素分が反応して固体状のCaCl2が発生する場合がある。このような塩素分も、塩素バイパス設備90においてクリンカダストとして回収することができる。
【0038】
分級部22において抽気ガスから原料ダストの粗粉を分離することによって得られる、原料ダストの微粉とガス状の塩素分を含む導出ガスは、分級部22に接続された流路24を流通し冷却ガス導入部80で冷却される。冷却ガス導入部80では、円管26で構成される流路24に冷却ガスの流路81が接続され、原料ダストの微粉および塩素分を含む導出ガスが冷却ガスと混合され冷却される。冷却後、導出ガスを含むガスは、流路24を流通し冷却部70に導入される。
【0039】
冷却ガスは、常温の空気でもよいし、また、工場等で発生する200℃以下、好ましくは100℃以下の排気ガスを含むものであってもよい。排気ガスとしては、例えば、セメント製造工場に持ち込まれた下水汚泥等の含水汚泥の受け入れ、貯蔵および発酵時に発生する臭気ガス、後述の吸引部74(
図1参照)および他工程の吸引部から排出される排出ガス等が挙げられる。これらの一種を単独で、または二種以上を組み合わせて用いることができる。
【0040】
一例として、
図1では、上記の冷却ガスの流路81に常温の空気(外気)が導入される構成を示している。また、外気に加えて、混合部30で発生した蒸気が冷却ガスとして一部導入される。すなわち、
図1に示すように、外気を導入する冷却ガスの流路81に対して、混合部30からの蒸気を導入する流路37が接続する。混合部30は所謂密閉型の容器である。また、高温の粗粉が含水廃棄物と混合されることで、水分が蒸発する。その結果、水分を含む蒸気が発生する。この蒸気を流路37を介して流路81に対して導入することで、外気と蒸気が混合した状態で冷却ガスとして冷却ガス導入部80に導入される。すなわち、この流路37と、流路37に対して接続する流路81は、混合部30で発生した蒸気を、冷却ガスの一部として冷却ガス導入部80へ導入する蒸気供給部として機能する。
【0041】
流路81における外気と蒸気の混合比は特に限定されないが、例えば、混合部30からの蒸気は、ある程度高温であると考えられるため、冷却ガスの温度が高くならないように、温度管理の観点から混合比を調整してもよい。
【0042】
冷却ガス導入部80において、導出ガスは冷却ガスと混合され冷却される。冷却後の導出ガスを含むガス(導出ガスと冷却ガスの混合ガス)の温度は、設備の耐熱性の観点から600℃以下であってよく、500℃以下であってもよい。
【0043】
冷却ガス導入部80において、冷却ガスは、原料ダストの微粉および塩素分を含む導出ガスが流通する流路24の内壁面の周方向に沿うように導入される。これによって、流路24に旋回流が生じ、流路24の内壁面にクリンカダストが付着してコーチングが発生することを抑制することができる。このような旋回流は、流路24の外周部にエアーカーテンを形成し、高温の導出ガスから流路24を構成する円管26の内壁面を保護することができる。
【0044】
図3は、冷却ガス導入部が接続される導出ガスの流路24の径方向断面を示す断面図である。原料ダストの粗粉が分離され、塩素分および原料ダストの微粉を含む導出ガスが流通する流路24は円管26によって構成される。
図3に示すような流路24(円管26)の径方向断面で見たときに、冷却ガス導入部80の流路81を形成する流路壁28は、円管26の接線方向と平行方向に伸びるように、円管26に接続されている。円管26に接続された冷却ガス導入部80は、流路81内を流通する冷却ガスGを流路24内に導入する。導入された冷却ガスGは、流路24において導出ガスと合流しながら旋回流SFを形成する。旋回流SFの旋回軸は、円管26で構成される流路24の中心軸Pと一致する。
【0045】
導出ガスは中心軸Pの軸方向に沿って流路24の中央部を流通し、冷却ガスGは流路24を構成する円管26の内壁面26Wに沿って旋回流SFとして流通する。このように、流路24では導出ガスと冷却ガスGの流通路が異なるようにガスを流通させる。導出ガスの流通路と冷却ガスGの流通路の境界では微量のクリンカダストができるが、旋回流SFがエアーカーテンとなって、クリンカダストが内壁面26Wに付着しコーチングとなることを抑制することができる。
【0046】
図1に示すように、塩素バイパス設備90は、冷却ガス導入部80の下流に導出ガスを含むガスを冷却する冷却部70と、導出ガスを含むガスに含まれるダスト(クリンカダスト)を導出ガスを含むガスから回収する回収部72と、導出ガスを吸引する吸引部74とを備える。冷却部70は水冷式または空冷式の熱交換器であってよい。吸引部74としては、シロッコファンおよびターボファンなどの通常の吸引ファンが挙げられる。
【0047】
冷却部70は、冷却ガスGと導出ガスが合流して得られる導出ガスを含むガスを、例えば260℃未満、好ましくは200℃未満に冷却する。この導出ガスを含むガスはクリンカダストを含んでいるため、回収部72に導入される。回収部72は、バグフィルタであってよく、湿式スクラバ等の湿式集塵器であってもよい。回収部72で回収されたクリンカダストは、水洗処理がなされた後、セメント組成物に配合してもよいし、セメント原料として用いてもよい。
【0048】
図1のセメントクリンカ製造装置100は、塩素バイパス設備90と、セメント原料を予熱および仮焼する予熱仮焼部40と、予熱および仮焼されたセメント原料を焼成してセメントクリンカを得るセメントキルン50と、セメントキルン50で得られたセメントクリンカを冷却するクリンカクーラ60とを備える。予熱仮焼部40は、4つのサイクロンC1,C2,C3,C4(プレヒータ)と仮焼炉44とを有する。
【0049】
セメントキルン50の窯尻52と予熱仮焼部40の仮焼炉44とは、ライジングダクト42で接続されている。ライジングダクト42と窯尻52の接続部近傍には、セメントキルン50で発生するキルン排ガスを抽気して、キルン排ガスに含まれるダストを回収する塩素バイパス設備90の抽気口21Aが設けられている。抽気口21Aには、抽気管21が接続されている。セメントクリンカ製造装置100は、塩素バイパス設備90を備えることによって、セメントクリンカ製造装置100内の塩素分を低減することができる。
【0050】
サイクロンC1とサイクロンC2との接続部から導入されるセメント原料は、サイクロンC1、サイクロンC2、サイクロンC3、ライジングダクト42、仮焼炉44、およびサイクロンC4を流通してセメントキルン50の窯尻52に導入される。セメントキルン50では、予熱および仮焼されたセメント原料が、窯尻52とは反対側に設けられたバーナ54の燃焼によって加熱されセメントクリンカとなる。得られたセメントクリンカは、クリンカクーラ60で冷却される。クリンカクーラ60によって冷却された後、セメントクリンカが得られる。
【0051】
制御部10は、上述のように、センサ35において測定された酸素濃度に基づいて、混合部30内の酸素濃度が限界酸素濃度未満となるように管理する酸素濃度管理部としての機能を有する。酸素濃度が限界酸素濃度またはそれ以上になる可能性がある場合、制御部10は、例えば、セメントクリンカ製造装置100を管理する管理者等へ警告するように構成されていてもよい。また、混合部30が内部に散水機構を備えている場合には、制御部10の制御によって、内部に散水を行うことによって酸素濃度を低下させてもよい。また、混合部30が内部に窒素等の不活性ガスを導入するための機構を備えている場合には、制御部10の制御によって、内部に不活性ガスを導入することによって酸素濃度を低下させてもよい。このように、制御部10は、混合部30の内部の酸素濃度を管理する酸素濃度管理部として機能する。
【0052】
また、制御部10は、混合部30に限らず上記のセメントクリンカ製造装置100の各部を制御してもよい。制御部10は、セメントクリンカ製造装置100の各部に設けられた計測部において計測された情報に基づいて、セメントクリンカ製造装置100を制御してもよい。計測部が計測する運転情報としては、温度、圧力、ガスの成分、ガスの流速、ダスト濃度および画像等が挙げられる。塩素バイパスを例として挙げると、具体的には、抽気管21、分級部22および流路24の内部または表面の温度、ライジングダクト42および窯尻52におけるキルン排ガスの温度、抽気口21Aから抽気管21内に流入するキルン排ガスの温度、キルン排ガスおよび抽気ガスの圧力、キルン排ガスおよび抽気ガスのガス成分、キルン排ガスおよび抽気ガスに含まれるダスト濃度、並びに、抽気管21および分級部22内部の画像等が挙げられる。計測部としては、例えば、温度センサ、圧力センサ、ガス成分センサ、流速センサ、およびカメラ等が挙げられる。
【0053】
制御部10は、上記の計測部で計測された運転情報に基づいて、排ガスの流量を調節する制御信号を出力してもよい。制御部は、通常のコンピュータシステムであってよく、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)および入出力インターフェイスなどを備えてよい。
【0054】
なお、制御部10は、燃焼炉からの排ガスの流量についても自動で制御する機能を有してもよい。例えば、分級部22から導出される導出ガスの温度を計測部で計測し、その計測結果に応じて抽気ガスに合流する排ガスの流量が増加するように制御してもよい。これによって、分級部22の温度が下がり過ぎることを回避できる。
【0055】
セメントクリンカ製造装置100は、塩素バイパス設備90を備えるため、安定的に運転することが可能であり、安定的にセメントクリンカを製造することができる。また、原料ダストを有効利用して、セメントクリンカの収量を増やすことができる。また、クリンカダストが低減され、クリンカダストの処理コストを低減することができる。
【0056】
[セメントクリンカの製造方法]
一実施形態に係るセメントクリンカの製造方法は、セメントクリンカ製造装置100を用いて行うことができる。これらの方法は、予熱仮焼部40でセメント原料を予熱および仮焼する予熱仮焼工程と、予熱および仮焼されたセメント原料を、窯尻52からキルン本体56に導入し、セメントクリンカを製造する焼成工程と、焼成工程で発生するキルン排ガスを抽気して抽気ガスを得る抽気工程と、原料ダストを含む抽気ガスから分級部22で原料ダストの粗粉を分離する分級工程と、分級部22から導出される、原料ダストの粗粉が低減された導出ガスが流通する流路に旋回流が生じるように冷却ガスを導入する冷却ガス導入工程と、導出ガスを含むガスを冷却する冷却工程と、冷却工程で冷却された導出ガスを含むガスに含まれるクリンカダストを回収するダスト回収工程とを有していてもよい。また、分級工程で分離された原料ダストの粗粉を混合部30で含水廃棄物と混合する混合工程と、混合工程で得られた混合物をセメントキルン50側に戻す投入工程と、を有してもよい。また、焼成工程で得られたセメントクリンカを、クリンカクーラ60で冷却するクリンカ冷却工程を有してもよい。
【0057】
予熱仮焼工程では、セメント原料がサイクロンC1とサイクロンC2の間の流路から導入される。セメント原料は、サイクロンC1、サイクロンC2およびサイクロンC3を流通して予熱される。その後、仮焼炉44に導入され、仮焼される。仮焼炉44には、石炭等の熱エネルギー源を燃焼するバーナが設けられていてよい。仮焼炉44で仮焼されたセメント原料(仮焼原料)は、サイクロンC4に導入され加熱される。
【0058】
焼成工程では、サイクロンC4で加熱された仮焼原料が窯尻52に導入される。その後、キルン本体56において焼成されセメントクリンカとなる。抽気工程では、焼成工程で発生するキルン排ガスを抽気口21Aから抽気する。分級工程では、塩素分が抽気ガスに気相として含まれている状態で、原料ダストの粗粉を分離することができる。したがって、揮発した塩素分が単独で析出して、または原料ダストの表面に析出することによりコーチングが発生し、分級部22が閉塞することを抑制できる。また、塩素が析出した原料ダストをセメントキルン側に循環流路で戻すことを抑制することができる。
【0059】
混合工程では、分級工程で得られる原料ダストの粗粉と、含水廃棄物が混合される。混合工程を行うことで、分級で得られる高温の粗粉の温度を低下させることができるため、混合物として取扱い性が向上する。また、混合物をセメントキルン50の窯尻52に戻す循環工程を行うことによって、セメントクリンカの生産量を効率よく増やすことができる。また、粗粉と含水廃棄物とを混合させることで含水廃棄物中の水分を揮発させ、セメントキルンの燃費悪化を抑制することができ、さらに揮発した水分のボリューム増によるセメントキルン内のドラフト悪化を抑制できる。したがって、含水廃棄物の投入により生じるセメントキルンの運転変動を抑制できるため、含水廃棄物の安定処理が可能になる。
【0060】
冷却ガス導入工程では、分級部22から導出される導出ガスに冷却ガスを合流させて導出ガスを冷却する。このとき、冷却ガスとして、混合部30で生じた蒸気を、冷却ガスの一部として冷却ガス導入部80へ導入してもよい。
【0061】
また、円管26で構成される導出ガスを含むガスの流路24の内壁面の周方向に沿って冷却ガスを導入することによって、旋回流を生じさせてもよい。これによって、流路24にクリンカダストが付着してコーチングが発生することを抑制できる。冷却ガス導入工程で冷却ガスGを混合することによって冷却された導出ガスを含むガスの温度は、設備の耐熱性の観点から600℃以下であってよく、500℃以下であってもよい。導出ガスがこのように冷却されることによって、揮発した塩素分が単独で析出して、または原料ダストの表面に析出してクリンカダストができる。
【0062】
冷却工程では、例えば熱交換器を備える冷却部70において導出ガスを含むガスを例えば260℃未満、好ましくは200℃未満に冷却する。ダスト回収工程では、回収部72において冷却された導出ガスを含むガスに含まれるダストを回収する。このようにして回収されるダストはクリンカダストと称される。この製造方法によって、塩素バイパス設備90およびセメントクリンカ製造装置100を安定的に運転することができる。また、原料ダストを有効利用して、セメントクリンカを効率よく製造することができる。また、分級工程で原料ダストの粗粉を分離したことでクリンカダストの量が低減され、クリンカダストの処理コストを低減することができる。
【0063】
[バイパス設備の運転方法]
一実施形態に係る塩素バイパス設備の運転方法は、上述の抽気工程、分級工程、混合工程、冷却工程およびダスト回収工程を有してよい。また、上述の投入工程を有していてもよいし、上述のセメントクリンカの製造方法のいずれかの工程をさらに有していてもよい。この運転方法はセメントクリンカ製造装置100に備えらえる塩素バイパス設備90を用いて行うことができる。したがって、各工程の内容は、上述のセメントクリンカの製造方法における内容と同様であってよい。
【0064】
[廃棄物処理方法]
上記のセメントクリンカの製造方法は、廃棄物の処理方法ということもできる。すなわち、一実施形態に係る廃棄物の処理方法は、上述のセメントクリンカ製造装置100において廃棄物を処理する方法であり、上述の投入工程、抽気工程、分級工程、混合工程、および投入工程を含んでいてもよい。さらに、冷却工程およびダスト回収工程を有してよい。また、上述のセメントクリンカの製造方法のいずれかの工程をさらに有していてもよい。
【0065】
[作用]
以上の例によれば、分級部22で分離された粗粉が混合部30において含水廃棄物Wと混合される。このときに、高温の粗粉が含水廃棄物Wによって冷却されるため、輸送機による運搬が可能となり、分級部の設置位置の自由度が高められる。
【0066】
従来から、770℃以上の導出ガスが排出される条件で抽気ガスの分級を行うことが検討されている。このとき、分級によって得られる粗粉も高温となり得る。分級によって得られる粗粉は、予熱仮焼部40へ返送され得る。しかしながら、高温の粗粉は従来の輸送機では輸送が困難であった。具体的には、1000℃程度となり得る粗粉を運搬可能な機械輸送または空気輸送の輸送機がないため、粗粉の運搬が難しいという問題があった。このような課題に対して、輸送機を用いずにシュート等によって粗粉をセメントキルンへ返送することも考えられるが、この場合には、粗粉を確実に返送可能となるようにシュートを設計する必要があり、特に分級部の設置位置やその設計に厳しい条件が課せられることになる。このように、分級後の高温の粗粉の取り扱い性が低いことに由来して、装置の設計が困難であるという課題があった。
【0067】
これに対して、上記の構成とすることで、混合部30において粗粉が含水廃棄物Wと混合される。その結果得られる混合物は、粗粉と比べて冷却されるため、輸送機を利用した運搬が可能な程度の温度となる。したがって、輸送機を用いた運搬を考慮した分級部22の配置を採用することも可能となり、分級部22を含む塩素バイパス設備90について、設計の自由度が高められる。
【0068】
また、含水廃棄物Wは、汚泥および廃液の少なくとも一方を含む場合、含水廃棄物と粗粉との混合物がセメントキルンへの返送に適した性状となる。また、高温の粗粉と含水廃棄物を混合させることで含水廃棄物中の水分を揮発させ、セメントキルンの燃費悪化を抑制することができ、さらに揮発した水分のボリューム増によるセメントキルン内のドラフト悪化を抑制できる。したがって、含水廃棄物の投入により生じるセメントキルンの運転変動を抑制できるため、含水廃棄物の安定処理が可能になる。
【0069】
さらに、上記の例では、分級部22から排出された導出ガスが流通する流路に対して冷却ガスを導入する冷却ガス導入部80と、混合部30で発生した蒸気を、冷却ガスの一部として前記冷却ガス導入部へ導入する蒸気供給部して機能する流路37および流路81と、をさらに有する態様であってもよい。原料ダストの微粉からできるクリンカダストは非常に粒径が小さく、バッグフィルターの目詰まりや流路の閉塞の要因となりやすい。そこで、混合部で生じた蒸気を冷却ガスの一部として利用することで、クリンカダストを粗大化させることができ、バッグフィルターおよび流路等の閉塞を抑制することができる。
【0070】
また、冷却ガス導入部80は、流路の内壁面に沿って旋回流が生じるように冷却ガスを導入してもよい。これにより、生じさせた旋回流がエアーカーテンとなって、クリンカダストが流路内壁に付着しコーチングとなることを抑制することができる。
【0071】
さらに、混合部30内の酸素濃度が限界酸素濃度となるように、混合部30内の酸素濃度を管理する、酸素濃度管理部としてのセンサ35および制御部10をさらに有する態様であってもよい。混合部30内では、メタン等の可燃性ガスおよび/または粉塵が存在し得る環境であり、ガス爆発または粉塵爆発が生じる可能性がある。そこで、上記のように酸素濃度管理部を有する構成とすることで、混合部30におけるガス爆発または粉塵爆発の発生を防ぐことができる。
【0072】
また、上記の例において、セメントクリンカ製造装置100は、上述の塩素バイパス設備90を有する。上記のセメントクリンカ製造装置100は、上述の塩素バイパス設備90を含むため、粗粉を運搬可能とし、分級部の設置位置の自由度を高めることが可能である。
【0073】
また、上記のセメントクリンカの製造方法は、上記のセメントクリンカ製造装置100を用いてセメントクリンカを製造する。上記のセメントクリンカの製造方法は、上述の塩素バイパス設備90を用いてセメントクリンカを製造するため、粗粉を運搬可能とし、分級部の設置位置の自由度を高めることが可能である。
【0074】
上記の塩素バイパス設備90の運転方法は、セメントキルンの窯尻、ライジングダクトまたはこれらの間からキルン排ガスを得る抽気工程と、抽気工程で得られた抽気ガスから原料ダストの粗粉を分離し、原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級工程と、分級工程で分離された前記粗粉と、含水廃棄物とを混合部において混合する混合工程と、を含む。この塩素バイパス設備の運転方法によれば、分級工程で分離された粗粉が混合部において含水廃棄物と混合される。このときに、高温の粗粉が含水廃棄物によって冷却されるため、輸送機による運搬が可能となり、分級工程を行う分級部の設置位置の自由度が高められる。
【0075】
さらに、上記の廃棄物処理方法は、セメントクリンカ製造装置100によって廃棄物を処理する方法であって、前記セメントキルンの窯尻、ライジングダクトまたはこれらの間からキルン排ガスを得る抽気工程と、抽気工程で得られた抽気ガスから原料ダストの粗粉を分離し、原料ダストの微粉を含む770℃以上の温度を有する導出ガスを得る分級工程と、分級工程で分離された前記粗粉と、含水廃棄物とを混合部において混合する混合工程と、混合工程によって得られた混合物をセメントキルンへ投入する投入工程と、を含む。上記の廃棄物処理方法によれば、分級工程で分離された粗粉が混合部において含水廃棄物と混合される。このときに、高温の粗粉が含水廃棄物によって冷却されるため、輸送機による運搬が可能となり、分級工程を行う分級部22の設置位置の自由度が高められる。また、高温の粗粉と含水廃棄物を混合させることで含水廃棄物中の水分を揮発させるため、セメントキルンの燃費悪化を抑制することができ、さらに揮発した水分のボリューム増によるセメントキルン内のドラフト悪化を抑制できる。したがって、含水廃棄物の投入により生じるセメントキルンの運転変動を抑制できるため、上記のセメントクリンカ製造装置100で含水廃棄物の安定処理が可能になる。
【0076】
[変形例]
本明細書における開示はすべての点で例示であって制限的なものではないと考えられるべきである。特許請求の範囲及びその要旨を逸脱しない範囲において、以上の例に対して種々の省略、置換、変更などが行われてもよい。
【0077】
上記実施形態では、抽気口21Aがライジングダクト42に設けられているが、これに限定されない。例えば、抽気口21Aは窯尻52に設けられてもよく、窯尻52とライジングダクト42の間(または境界部)に設けられてもよい。
【0078】
また、燃焼炉から生じる排ガスを用いる場合、抽気ガスとの合流位置は分級部22に限定されない。例えば、分級部22と抽気口21Aの間、例えば、抽気管21内の流路において、抽気ガスと排ガスとが合流して混合ガスとなってもよい。また、別の変形例として、排ガスの流路を分岐して、排ガスを複数箇所に分けて抽気ガスまたは混合ガスと合流するようにしてもよい。この場合、複数の合流部において合流する排ガスの流量を個別に調節可能な構成としてもよい。
【0079】
また、上記実施形態では、制御部10の酸素濃度管理部としての機能として、混合部30における粉塵爆発およびガス爆発の可能性を考慮して酸素濃度を管理する場合について説明した。しかしながら、この構成に代えて、またはこの構成に加えて、混合部30内の粉塵濃度が「爆発下限濃度」未満となるように、粉塵濃度を監視する構成としてもよい。さらに、上記の構成に代えて、または上記の構成に加えて、混合部30における水蒸気爆発の可能性を考慮した構成を設けてもよい。
【0080】
上述の塩素バイパス設備90およびセメントクリンカ製造装置100に関する説明内容は、上述のセメントクリンカの製造方法および塩素バイパス設備の運転方法の説明内容にも適用される。また、上記製造方法および運転方法の説明内容も、上述の塩素バイパス設備90およびセメントクリンカ製造装置100の説明内容に適用される。
【0081】
以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、上記実施形態では、分級部22で分離された原料ダストの粗粉は流路27を介してセメントキルン50側に戻していたがこれに限定されない。例えば、セメント原料のタンクに入れてセメント原料として予熱仮焼部40に供給されてもよい。また、導出ガスの流路24を構成する円管26は水平に配置されずに、水平方向に対して傾斜して配置されてもよい。塩素バイパス設備は、冷却ガス導入部80と冷却部70の間に混合チャンバを有していてもよい。
【符号の説明】
【0082】
10…制御部、21…抽気管、21A…抽気口、22…分級部、24…流路、26…円管、25a,25b…ダンパー、26W…内壁面、27a,27b…衝突部材、28…流路壁、29…流路、30…混合部、31…攪拌羽根、35…センサ、37…流路、40…予熱仮焼部、42…ライジングダクト、44…仮焼炉、50…セメントキルン、52…窯尻、70…冷却部、72…回収部、74…吸引部、80…冷却ガス導入部、81…流路、90…塩素バイパス設備、100…セメントクリンカ製造装置、G…冷却ガス、SF…旋回流、W…含水廃棄物。