(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022157197
(43)【公開日】2022-10-14
(54)【発明の名称】活性エステル、硬化性樹脂組成物、及び、硬化物
(51)【国際特許分類】
C07C 69/83 20060101AFI20221006BHJP
C08G 59/42 20060101ALI20221006BHJP
C07C 39/08 20060101ALI20221006BHJP
C08J 5/24 20060101ALI20221006BHJP
H01L 23/29 20060101ALI20221006BHJP
H05K 3/46 20060101ALN20221006BHJP
【FI】
C07C69/83 CSP
C08G59/42
C07C39/08
C08J5/24 CFC
H01L23/30 R
H05K3/46 T
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021061291
(22)【出願日】2021-03-31
(71)【出願人】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】特許業務法人 ユニアス国際特許事務所
(72)【発明者】
【氏名】矢本 和久
(72)【発明者】
【氏名】青山 和賢
(72)【発明者】
【氏名】秋元 源祐
【テーマコード(参考)】
4F072
4H006
4J036
4M109
5E316
【Fターム(参考)】
4F072AA04
4F072AA07
4F072AB10
4F072AB22
4F072AB30
4F072AD28
4F072AE02
4F072AF15
4F072AF26
4F072AF28
4F072AG03
4F072AG19
4F072AH02
4F072AH04
4F072AH22
4F072AH49
4F072AH50
4F072AJ04
4F072AJ22
4F072AK05
4F072AK14
4F072AL11
4F072AL13
4H006AA01
4H006AB99
4H006BJ50
4H006FC52
4H006FE13
4H006KA14
4H006KC30
4H006KD10
4J036AB07
4J036AC08
4J036AC14
4J036AD07
4J036AD08
4J036AD09
4J036AD11
4J036AD12
4J036AE05
4J036AE07
4J036AF05
4J036AF06
4J036AF07
4J036AF26
4J036AF27
4J036AF33
4J036AG07
4J036DB09
4J036DB15
4J036DB23
4J036DC02
4J036JA07
4J036JA08
4J036KA01
4J036KA03
4M109AA01
4M109CA01
4M109CA21
4M109EA02
4M109EB02
4M109EB03
4M109EB04
4M109EB07
4M109EB12
4M109EB13
5E316AA12
5E316CC06
5E316CC09
5E316DD02
5E316DD03
5E316EE33
5E316FF03
5E316FF07
5E316GG15
5E316GG17
5E316GG28
5E316HH06
(57)【要約】
【課題】得られる硬化物において、高耐熱性、低誘電特性(低誘電率及び低誘電正接)、及び、高弾性率を発現させることのできる活性エステル、前記活性エステルを含む硬化性樹脂組成物、及び、前記硬化性樹脂組成物を用いて得られる硬化物、更には、前記硬化性樹脂組成物を用いた回路基板などを提供すること。
【解決手段】本発明は、芳香環上の隣接する位置に2つの水酸基を有する芳香族化合物(a)、芳香族モノヒドロキシ化合物(b)、並びに、2個以上のカルボキシル基を有する芳香族化合物及び/又はその酸ハロゲン化物もしくはエステル化物(c)、とを反応させて得られることを特徴とする活性エステルに関する。
【選択図】なし
【特許請求の範囲】
【請求項1】
芳香環上の隣接する位置に2つの水酸基を有する芳香族化合物(a)、芳香族モノヒドロキシ化合物(b)、並びに、2個以上のカルボキシル基を有する芳香族化合物及び/又はその酸ハロゲン化物もしくはエステル化物(c)、とを反応させて得られることを特徴とする活性エステル。
【請求項2】
前記芳香族化合物(a)が、下記一般式(1)~(3)からなる群より選択される少なくとも1つの化合物であることを特徴とする請求項1に記載の活性エステル。
【化1】
(上記式中、Rは、それぞれ独立に、炭素原子数1~10の炭化水素基を表し、nは0~4の整数を表し、mは0~2の整数を表す。)
【請求項3】
請求項1又は2に記載の活性エステル、及び、エポキシ樹脂を含有することを特徴とする硬化性樹脂組成物。
【請求項4】
請求項3に記載の硬化性樹脂組成物を硬化反応させて得られることを特徴とする硬化物。
【請求項5】
補強基材、及び、前記補強基材に含浸した請求項3に記載の硬化性樹脂組成物の半硬化物を有することを特徴とするプリプレグ。
【請求項6】
請求項5に記載のプリプレグ、及び、銅箔を積層し、加熱圧着成型して得られることを特徴とする回路基板。
【請求項7】
請求項3に記載の硬化性樹脂組成物を含有することを特徴とするビルドアップフィルム。
【請求項8】
請求項3に記載の硬化性樹脂組成物を含有することを特徴とする半導体封止材。
【請求項9】
請求項8に記載の半導体封止材を加熱硬化した硬化物を含むことを特徴とする半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、活性エステル、前記活性エステルを含有する硬化性樹脂組成物、前記硬化性樹脂組成物より得られる硬化物に関する。
【背景技術】
【0002】
エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、その硬化物において優れた耐熱性と絶縁性を発現することから、半導体や多層プリント基板などの電子部品用途において広く用いられている。
【0003】
これら電子部品用途のなかでも、半導体パッケージ基板では薄型化が進んでいるが、実装時のパッケージ基板の反りが問題となっているため、パッケージ基板の反りを抑制に起因する高耐熱性、及び、高弾性率が求められている。
【0004】
一方、近年、半導体パッケージ基板においても、信号の高速化、高周波数化が進んでいる。高速化、高周波数化された信号に対しても、十分に低い誘電率を維持しつつ、十分に低い誘電正接を発現する硬化物を得ることが可能な硬化性樹脂組成物の提供が望まれている。
【0005】
これらの要求に対して、低誘電率・低誘電正接を実現可能な材料として、活性エステル化合物をエポキシ樹脂用硬化剤として用いる技術が知られている(特許文献1参照)。
【0006】
しかしながら、特許文献1では、低誘電率、低誘電正接の特性においては、近年の要求に対して不十分であり、耐熱性も要求を満たすものではなかった。また、小型化・薄型化に対応するため、高弾性率化が求められている。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
従って、本発明が解決しようとする課題は、得られる硬化物において、高耐熱性、低誘電特性(低誘電率及び低誘電正接)、及び、高弾性率を発現させることのできる活性エステル、前記活性エステルを含む硬化性樹脂組成物、及び、前記硬化性樹脂組成物を用いて得られる硬化物、更には、前記硬化性樹脂組成物を用いた回路基板などを提供することにある。
【課題を解決するための手段】
【0009】
そこで、本発明者は、上記課題を解決すべく、鋭意検討を重ねた結果、硬化性樹脂組成物に特定の活性エステルを用いることで、得られる硬化物が、優れた高耐熱性、低誘電特性(低誘電率及び低誘電正接)、及び、高弾性率を発現することを見出し、本発明を完成するに至った。
【0010】
即ち、本発明は、芳香環上の隣接する位置に2つの水酸基を有する芳香族化合物(a)、芳香族モノヒドロキシ化合物(b)、並びに、2個以上のカルボキシル基を有する芳香族化合物及び/又はその酸ハロゲン化物もしくはエステル化物(c)、とを反応させて得られることを特徴とする活性エステルに関する。
【0011】
本発明の活性エステルは、前記芳香族化合物(a)が、下記一般式(1)~(3)からなる群より選択される少なくとも1つの化合物であることが好ましい。
【化1】
(上記式中、Rは、それぞれ独立に、炭素原子数1~10の炭化水素基を表し、nは0~4の整数を表し、mは0~2の整数を表す。)
【0012】
本発明は、前記活性エステル、及び、エポキシ樹脂を含有する硬化性樹脂組成物に関する。
【0013】
本発明は、前記硬化性樹脂組成物を硬化反応させて得られることを特徴とする硬化物に関する。
【0014】
本発明は、補強基材、及び、前記補強基材に含浸した前記硬化性樹脂組成物の半硬化物を有することを特徴とするプリプレグに関する。
【0015】
本発明は、前記プリプレグ、及び、銅箔を積層し、加熱圧着成型して得られることを特徴とする回路基板に関する。
【0016】
本発明は、前記硬化性樹脂組成物を含有することを特徴とするビルドアップフィルムに関する。
【0017】
本発明は、前記硬化性樹脂組成物を含有することを特徴とする半導体封止材に関する。
【0018】
本発明は、前記半導体封止材を加熱硬化した硬化物を含むことを特徴とする半導体装置に関する。
【発明の効果】
【0019】
本発明によれば、得られる硬化物において優れた高耐熱性、低誘電特性(低誘電率及び低誘電正接)、及び、高弾性率を発現させることのできる活性エステル、前記活性エステルを含む硬化性樹脂組成物、及び、前記硬化性樹脂組成物を用いて得られた硬化物、更には、前記硬化性樹脂組成物を用いた半導体封止材、半導体装置、プレプリグ、回路基板、及び、ビルドアップフィルムなどを提供することができ、有用である。
【発明を実施するための形態】
【0020】
[活性エステル]
本発明は、芳香環上の隣接する位置に2つの水酸基を有する芳香族化合物(a)、芳香族モノヒドロキシ化合物(b)、並びに、2個以上のカルボキシル基を有する芳香族化合物及び/又はその酸ハロゲン化物もしくはエステル化物(c)、とを反応させて得られることを特徴とする活性エステルに関する。
前記活性エステルを用いることにより、高耐熱性、低誘電特性(低誘電率、低誘電正接)、及び、高弾性率の硬化物が得られ、好ましい。このような特性が得られる理由は、必ずしも明らかではないが、前記芳香環上の隣接する位置に2つの水酸基を有する芳香族化合物(a)(例えば、カテコール)を活性エステルの原料に用いることで、前記芳香環上の隣接する位置に2つの水酸基を有する芳香族化合物(a)の2つの水酸基に基づくエステル基が、芳香環(例えば、ベンゼン環)の隣接する位置に形成され、硬化物の架橋点が隣接し、その立体障害で分子運動が阻害されることで高耐熱性、高弾性率が発現される。また、活性エステルは、エポキシ樹脂と反応し、極性基である2級水酸基が無いネットワーク構造を形成することが可能なため、十分に低い誘電率と誘電正接を発現することができる。
【0021】
[芳香環上の隣接する位置に2つの水酸基を有する芳香族化合物(a)]
本発明の活性エステルは、芳香環上の隣接する位置に2つの水酸基を有する芳香族化合物(a)(以下、「芳香族化合物(a)」と称する場合がある。)を反応させて得られることを特徴とする。なお、前記「芳香環上の隣接する位置に2つの水酸基」とは、「芳香環上の隣接する2つの炭素原子に結合する2つの水酸基」を意味する。
【0022】
また、本発明の活性エステルは、前記芳香族化合物(a)が、下記一般式(1)~(3)からなる群より選択される少なくとも1つの化合物であることが好ましい。前記化合物は、芳香環上に水酸基が隣同士に存在するため、得られる活性エステルに含まれるエステル基も隣同士になり、前記活性エステルを用いて得られる硬化物の架橋点が隣接し、その立体障害で分子運動が阻害されることで、高耐熱性、高弾性率を発現することができ、好ましい。
【化2】
【0023】
上記式(1)~(3)中、Rは、それぞれ独立に、炭素原子数1~10の炭化水素基であることが好ましく、前記炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、アリル基、及び、ベンジル基等が挙げられ、特に高耐熱性かつ低誘電正接の観点からは、無置換であることが好ましく、低誘電率の観点からは、ブチル基であることが好ましい。
【0024】
上記式(1)~(3)中、nは0~4の整数であることが好ましく、0~1の整数であることがより好ましい。前記nが、前記範囲内にあることで、高耐熱、低誘電正接、及び、低誘電率となり、好ましい。
【0025】
上記式(1)~(3)中、mは0~2の整数であることが好ましく、0~1の整数であることがより好ましい。前記mが、前記範囲内にあることで、高耐熱、低誘電正接、及び、低誘電率となり、好ましい。
【0026】
また、前記芳香族化合物(a)として、カテコール骨格を含有する化合物(カテコール化合物)を使用することが好ましく、具体的には、カテコールやターシャリーブチルカテコールなどのカテコール化合物であることがより好ましい。得られる硬化物は、高耐熱性、低誘電特性(低誘電率、低誘電正接)、及び、高弾性率化することができ、好ましい。前記活性エステル中に、前記芳香族化合物(a)に基づくカテコール骨格を導入することにより、前記活性エステル中のエステル基が、同一芳香環上で隣接した構造を形成するため、従来の設計に比べて、立体障害が大きくなり、分子運動が抑制され、得られる硬化物は低誘電特性(低誘電率、低誘電正接)となり、かつ、高弾性率化できる。また、前記活性エステルは、エポキシ樹脂と反応し、極性基である2級水酸基のないネットワーク構造を形成することが可能なため、得られる硬化物は、十分に低い誘電率と誘電正接を発現することができる。
【0027】
なお、前記カテコールとは、1位と2位とに水酸基を有するジヒドロキシベンゼンであり、前記カテコールの芳香環上にメチル基などのアルキル基を置換基として有するカテコール化合物であってもよい。
【0028】
また、前記カテコール化合物としては、高耐熱性付与の観点から、芳香環上に置換基を有していないもの(例えば、カテコール)を使用することが好ましい。また、低誘電特性の観点からは、前記カテコール化合物としては、ターシャリーブチル基を有するカテコール(ターシャリーブチルカテコール)などのように、アルキル基の炭素原子数が4~10のカテコール化合物などを使用することが好ましい。前記炭素原子数が4以上であれば、低誘電特性を十分なものとでき、前記炭素原子数が10以下であれば、立体障害による活性エステルの合成時に反応性の低下を防止できるため、好ましい。
【0029】
前記芳香族化合物(a)は、単独で用いてもよく、メチル基等のアルキル基の位置が異なる複数の化合物を併用してもよい。
【0030】
[芳香族モノヒドロキシ化合物(b)]
本発明は、芳香族モノヒドロキシ化合物(b)を反応させて得られることを特徴とする。前記芳香族モノヒドロキシ化合物(b)を使用することにより、得られる活性エステルは、前記芳香族モノヒドロキシ化合物(b)が、活性エステル合成時に末端封止剤となり、分子量分布を制御し、活性エステルの粘度を最適化することができる。
【0031】
前記芳香族モノヒドロキシ化合物(b)は、特に制限されないが、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,4-キシレノール、2,6-キシレノール、ターシャリーブチルフェノール等のアルキルフェノール;o-フェニルフェノール、p-フェニルフェノール、2-ベンジルフェノール、4-ベンジルフェノール、スチレン化フェノール、4-(α-クミル)フェノール等のアラルキルフェノール;α-ナフトール(1-ナフトール)、β-ナフトール(2-ナフトール)等のナフトール化合物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、耐熱性や誘電特性(低誘電特性)に優れる硬化物が得られることから、ターシャリーブチルフェノールやα-ナフトールなどが好ましい。
【0032】
[2個以上のカルボキシル基を有する芳香族化合物及び/又はその酸ハロゲン化物もしくはエステル化物(c)]
本発明は、2個以上のカルボキシル基を有する芳香族化合物及び/又はその酸ハロゲン化物もしくはエステル化物(c)(以下、「芳香族化合物等(c)」と称する場合がある。)を反応させて得られることを特徴とする。前記芳香族化合物等(c)を使用することにより、耐熱性に優れる硬化物が得られ、好ましい。
【0033】
前記芳香族化合物等(c)としては、特に制限されないが、例えば、置換または非置換の芳香環に2個以上のカルボキシル基等を有する化合物が挙げられる。なお、「カルボキシル基等」とは、カルボキシル基;フッ化アシル基、塩化アシル基、臭化アシル基等のハロゲン化アシル基;メチルオキシカルボニル基、エチルオキシカルボニル基等のアルキルオキシカルボニル基;フェニルオキシカルボニル基、ナフチルオキシカルボニル基等のアリールオキシカルボニル基等が挙げられる。なお、ハロゲン化アシル基を有する場合、前記芳香族化合物は酸ハロゲン化物であり、アルキルオキシカルボニル基、アリールオキシカルボニル基を有する場合、前記芳香族化合物はエステル化物となりうる。これらのうち、前記芳香族化合物はカルボキシル基、ハロゲン化アシル基、アリールオキシカルボニル基を有することが好ましく、カルボキシル基、ハロゲン化アシル基を有することがさらに好ましく、カルボキシル基、塩化アシル基、臭化アシル基を有することがさらに好ましい。
【0034】
前記芳香環としては、特に制限されないが、単環芳香環、縮環芳香環、環集合芳香環、アルキレン鎖により連結される芳香環等が挙げられる。
【0035】
前記芳香族化合物等(c)としては、特に制限されないが、イソフタル酸、テレフタル酸、5-アリルイソフタル酸、2-アリルテレフタル酸等のベンゼンジカルボン酸;トリメリット酸、5-アリルトリメリット酸等のベンゼントリカルボン酸;ナフタレン-1,4―ジカルボン酸、ナフタレン-1,5-ジカルボン酸、ナフタレン-2,3-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、3-アリルナフタレン-1,4-ジカルボン酸、3,7-ジアリルナフタレン-1,4-ジカルボン酸等のナフタレンジカルボン酸;2,4,5-ピリジントリカルボン酸等のピリジントリカルボン酸;1,3,5-トリアジン-2,4,6-トリカルボン酸等のトリアジンカルボン酸;これらの酸ハロゲン化物、エステル化物等が挙げられる。これらのうち、ベンゼンジカルボン酸、ベンゼントリカルボン酸であることが好ましく、イソフタル酸、テレフタル酸、イソフタル酸クロリド、テレフタル酸クロリド、1,3,5-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボニルトリクロリドであることがより好ましく、イソフタル酸クロリドやテレフタル酸クロリドなどのビス(クロロカルボニル)ベンゼン、1,3,5-ベンゼントリカルボニルトリクロリドであることがさらに好ましい。
【0036】
上述のうち、得られる硬化物の耐熱性や誘電特性が良好になることや、原料の工業的な入手の容易さや作業性の観点から、芳香環が単環芳香環である芳香族化合物等、芳香環が縮環芳香環である芳香族化合物等であることが好ましく、ベンゼンジカルボン酸、ベンゼントリカルボン酸、ナフタレンジカルボン酸、これらの酸ハロゲン化物であることが好ましく、ベンゼンジカルボン酸、ナフタレンジカルボン酸、これらの酸ハロゲン化物であることがより好ましく、イソフタル酸、テレフタル酸、ナフタレン-1,5-ジカルボン酸、ナフタレン-2,3-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、1,3,5-ベンゼントリカルボン酸、これらの酸ハロゲン化物であることがさらに好ましい。上述の芳香族化合物等(c)は単独で用いても、2種以上を組み合わせて用いてもよい。
【0037】
本発明の活性エステルは、エポキシ樹脂等の硬化剤としての機能を有するものであり、前記活性エステルを使用し得られる硬化物に高耐熱性、低誘電特性(低誘電率、低誘電正接)、及び、高弾性率化を付与することができ、好ましい態様となる。また、前記活性エステルとエポキシ樹脂との反応時において、水酸基の発生を防止または抑制することができ、低誘電特性に優れ、有用である。
【0038】
本発明の活性エステルを用いることにより、低誘電特性を有し、高耐熱性、高弾性率に優れる硬化物が得られ、好ましい態様となる。その理由は、必ずしも明らかではないが、前記活性エステル中に、前記芳香族化合物(a)に基づくカテコール骨格を導入することにより、前記活性エステル中のエステル基が、同一芳香環上で隣接した構造を形成するため、従来の設計に比べて、立体障害が大きくなり、分子運動が抑制され、得られる硬化物は低誘電特性(低誘電率、低誘電正接)となり、かつ高弾性率化できる。また、前記活性エステルは、エポキシ樹脂と反応し、極性基である2級水酸基のないネットワーク構造を形成することが可能なため、十分に低い誘電率と誘電正接を発現させることができる。
【0039】
また、前記活性エステルは、後述するエポキシ樹脂のエポキシ基と反応活性を有するエステル結合を2個以上有するため、硬化物の架橋密度が高くなり、耐熱性が向上しうる。
【0040】
前記活性エステルとしては、後述する硬化性樹脂組成物として調製する際のハンドリング性や、その硬化物の耐熱性、誘電特性とのバランスがより優れる観点から、前記活性エステルの軟化点が200℃以下であることが好ましく、180℃以下であることがより好ましく、160℃以下であることが更に好ましく、140℃以下が特に好ましい。
【0041】
前記芳香族化合物(a)、前記芳香族モノヒドロキシ化合物(b)、及び、前記芳香族化合物等(c)(以下、「原料化合物」と称する場合がある。)との反応としては、特に制限されないが、例えば、前記芳香族化合物(a)、及び、前記芳香族モノヒドロキシ化合物(b)を混合・溶解した後、更に、前記芳香族化合物等(c)を混合・溶解し、アルカリ触媒の存在下、60℃以下の温度条件下で、1~24時間の反応時間で、反応させることが出来る。ここで使用し得るアルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ピリジン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらのなかでも、反応効率が高いことから、水酸化ナトリウム又は水酸化カリウムが好ましい。また、これらの触媒は3~30質量%の水溶液として用いても良い。また、この際、反応効率を高めるため、層間移動触媒を使用しても良い。例えば、アルキルアンモニウム塩、クラウンエーテル等が挙げられる。これらは、それぞれ単独で用いても良いし、2種類以上を併用しても良い。
【0042】
上記反応は、反応制御が容易となることから、有機溶媒中で行うことが好ましい。ここで用いる有機溶媒は、例えば、ペンタン、ヘキサン等の炭化水素溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。
【0043】
前記原料化合物の反応割合は、所望の分子設計に応じて適宜変更することが出来るが、中でも、未反応の末端を削減しつつ、余剰の反応原料を削減する観点から、前記芳香族モノヒドロキシ化合物(b)1モルに対し、前記芳香族化合物(a)が0.5~5モルの範囲が好ましく、1~4モルがより好ましく、2~3モルが更に好ましい。また、前記芳香族モノヒドロキシ化合物(b)1モルに対し、前記芳香族化合物等(c)が0.5~5モルの範囲が好ましく、1~4モルがより好ましく、2~3モルが更に好ましい。
【0044】
反応終了後は、アルカリ触媒の存在下で水溶液を用いる場合には、反応液を静置分液して水層を取り除き、残った有機層を水で洗浄し、水層がほぼ中性(pH7程度)になるまで水洗を繰り返すことにより、絶縁性に悪影響のある無機塩含有量が低減させることにより、本発明の活性エステルを得ることができる。なお、反応終了後は、余剰の前記原料化合物を除去するため、加熱・減圧で乾燥することにより、高純度の活性エステルを得ることができる。
【0045】
本発明の活性エステルの官能基当量は、活性エステル構造中に有する芳香族エステル基の合計を活性エステルの官能基数とした場合、硬化性に優れ、低い誘電率及び誘電正接(低誘電特性)の硬化物が得られることから、100~500g/当量の範囲であることが好ましく、110~400g/当量の範囲であることがより好ましく、120~300g/当量の範囲であることが更により好ましい。
【0046】
本発明の活性エステルの数平均分子量(Mn)は、500~3000であることが好ましく、600~2000であることがより好ましい。数平均分子量(Mn)が500以上であると、誘電特性や耐熱性に優れることから好ましい。一方、数平均分子量(Mn)が3000以下であると、成形性に優れることから好ましい。
【0047】
<硬化性樹脂組成物>
本発明は、前記活性エステル、及び、エポキシ樹脂を含有する硬化性樹脂組成物に関する。前記硬化性樹脂組成物は、前記活性エステルは、エポキシ樹脂(やその他樹脂)の硬化剤としての機能を有するものであり、前記活性エステル、及び、前記エポキシ樹脂を使用し得られる硬化物は、高耐熱性、低誘電特性(低誘電率、低誘電正接)、及び、高弾性率化することができ、好ましい態様となる。また、前記活性エステルとエポキシ樹脂との反応時において、水酸基の発生を防止または抑制することができ、低誘電特性に優れた硬化物を得ることができ、有用である。
【0048】
[エポキシ樹脂]
前記エポキシ樹脂としては、特に制限されないが、例えば、分子中に2個以上のエポキシ基を含み、前記エポキシ基で架橋ネットワークを形成することで硬化させることができる硬化性樹脂であることが好ましい。
【0049】
前記エポキシ樹脂としては、特に制限されないが、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、β-ナフトールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;
フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;
ビスフェノールA型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールBP型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等のビスフェノール型エポキシ樹脂;
ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ビフェニル骨格およびジグリシジルオキシベンゼン骨格を有するエポキシ樹脂等のビフェニル型エポキシ樹脂;
ナフタレン型エポキシ樹脂;
ビナフトール型エポキシ樹脂;ビナフチル型エポキシ樹脂;
ジシクロペンタジエンフェノール型エポキシ樹脂等のジシクロペンタジエン型エポキシ樹脂;
テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂、トリグリシジル-p-アミノフェノール型エポキシ樹脂、ジアミノジフェニルスルホンのグリシジルアミン型エポキシ樹脂等のグリシジルアミン型エポキシ樹脂;
2,6-ナフタレンジカルボン酸ジグリシジルエステル型エポキシ樹脂、ヘキサヒドロ無水フタル酸のグリシジルエステル型エポキシ樹脂等のジグリシジルエステル型エポキシ樹脂;
ジベンゾピラン、ヘキサメチルジベンゾピラン、7-フェニルヘキサメチルジベンゾピラン等のベンゾピラン型エポキシ樹脂等が挙げられる。
これらのエポキシ樹脂のうち、フェノール化合物をエポキシ化して得られる、いわゆるグリシジルエーテル型エポキシ樹脂が好ましく、その中でもノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂であることが、誘電特性の観点からより好ましい。
【0050】
なお、上述のエポキシ樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。
【0051】
前記エポキシ樹脂のエポキシ当量は、120~400g/当量であることが好ましく、150~350g/当量であることがより好ましい。前記エポキシ樹脂のエポキシ当量が120g/当量以上であると、得られる硬化物の誘電特性により優れることから好ましく、一方、エポキシ樹脂のエポキシ当量が400g/当量以下であると、得られる硬化物の耐熱性と誘電正接のバランスに優れることから好ましい。
【0052】
前記エポキシ樹脂の軟化点は、20~200℃であることが好ましく、40~150℃であることがより好ましい。前記エポキシ樹脂の軟化点が20℃以上であると、速硬化性を兼備できることから好ましい。一方、エポキシ樹脂の軟化点が200℃以下であると、成形性に優れることから好ましい。
【0053】
前記エポキシ樹脂の使用量に対する前記活性エステルの使用量の官能基(エステル基)当量比(活性エステル/エポキシ樹脂)は、0.1~5であることが好ましく、0.5~4であることがより好ましい。前記官能基当量比が、前記範囲内であることで、硬化性樹脂組成物の硬化性がより向上し、得られる硬化物の誘電正接がより低くなり、耐熱性がより向上するため、好ましい。
【0054】
本発明の硬化性樹脂組成物は、前記活性エステル、及び、エポキシ樹脂以外にも、本発明の効果を損なわない範囲において、他の硬化剤、他の樹脂、溶媒、添加剤等をさらに含んでいてもよい。
【0055】
[他の硬化剤]
本発明の硬化性樹脂組成物は、前記活性エステルと共に、他の硬化剤を併用してもよい。
【0056】
前記他の硬化剤としては、特に制限されないが、アミン硬化剤、酸無水物硬化剤、フェノール樹脂硬化剤等が挙げられる。
【0057】
前記アミン硬化剤としては、特に制限されないが、ジエチレントリアミン(DTA)、トリエチレンテトラミン(TTA)、テトラエチレンペンタミン(TEPA)、ジプロプレンジアミン(DPDA)、ジエチルアミノプロピルアミン(DEAPA)、N-アミノエチルピペラジン、メンセンジアミン(MDA)、イソフオロンジアミン(IPDA)、1,3-ビスアミノメチルシクロヘキサン(1,3-BAC)、ピペリジン、N,N’-ジメチルピペラジン、トリエチレンジアミン等の脂肪族アミン;m-キシレンジアミン(XDA)、メタンフェニレンジアミン(MPDA)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルスルホン(DDS)、ベンジルメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の芳香族アミン等が挙げられる。
【0058】
前記酸無水物硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物等が挙げられる。
【0059】
前記フェノール樹脂硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、ビスフェノールノボラック樹脂、ビフェニルノボラック樹脂、ジシクロペンタジエン-フェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型樹脂、テトラフェノールエタン型樹脂、アミノトリアジン変性フェノール樹脂等が挙げられる。
【0060】
上述の他の硬化剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
【0061】
[他の樹脂]
本発明の硬化性樹脂組成物は、前記エポキシ樹脂に加えて、他の樹脂を含んでいてもよい。なお、本明細書において、「他の樹脂」とは、エポキシ樹脂以外の樹脂を意味する。
【0062】
前記他の樹脂の具体例としては、特に制限されないが、マレイミド樹脂、ビスマレイミド樹脂、ポリマレイミド樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、シアネートエステル樹脂、ベンゾオキサジン樹脂、トリアジン含有クレゾールノボラック樹脂、シアン酸エステル樹脂、スチレン-無水マレイン酸樹脂、ジアリルビスフェノールやトリアリルイソシアヌレート等のアリル基含有樹脂、ポリリン酸エステル、リン酸エステル-カーボネート共重合体等が挙げられる。これらの他の樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。
【0063】
[溶媒]
本発明の硬化性樹脂組成物は、無溶剤で調製しても構わないし、溶媒を含んでいてもよい。前記溶媒は、硬化性樹脂組成物の粘度を調整する機能等を有する。
【0064】
前記溶媒の具体例としては、特に制限されないが、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等のエステル系溶剤;セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン、エチルベンゼン、メシチレン、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤等が挙げられる。これらの溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。
【0065】
前記溶媒の使用量としては、硬化性樹脂組成物の全質量に対して、10~90質量%であることが好ましく、20~80質量%であることがより好ましい。溶媒の使用量が10質量%以上であると、ハンドリング性に優れることから好ましい。一方、溶媒の使用量が90質量%以下であると、経済性の観点から好ましい。
【0066】
[添加剤]
本発明の硬化性樹脂組成物は、添加剤を含んでいてもよい。前記添加剤としては、硬化促進剤、難燃剤、充填剤等が挙げられる。
【0067】
(硬化促進剤)
前記硬化促進剤としては、特に制限されないが、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、尿素系硬化促進剤等が挙げられる。
【0068】
前記リン系硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィン、トリパラトリルホスフィン、ジフェニルシクロヘキシルホスフィン、トリシクロヘキシルホスフィン等の有機ホスフィン化合物;トリメチルホスファイト、トリエチルホスファイト等の有機ホスファイト化合物;エチルトリフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムクロリド、ブチルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ-p-トリルボレート、トリフェニルホスフィントリフェニルボラン、テトラフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムジシアナミド、ブチルフェニルホスホニウムジシアナミド、テトラブチルホスホニウムデカン酸塩等のホスホニウム塩等が挙げられる。
【0069】
前記アミン系硬化促進剤としては、トリエチルアミン、トリブチルアミン、N,N-ジメチル-4-アミノピリジン(DMAP)、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]-ノネン-5(DBN)等が挙げられる。
【0070】
前記イミダゾール系硬化促進剤としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン等が挙げられる。
【0071】
前記グアニジン系硬化促進剤としては、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-ブチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド等が挙げられる。
【0072】
前記尿素系硬化促進剤としては、3-フェニル-1,1-ジメチル尿素、3-(4-メチルフェニル)-1,1-ジメチル尿素、クロロフェニル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素、3-(3,4-ジクロルフェニル)-1,1-ジメチル尿素等が挙げられる。
【0073】
上述の硬化促進剤のうち、2-エチル-4-メチルイミダゾール、N,N-ジメチル-4-アミノピリジン(DMAP)を用いることが好ましい。
【0074】
なお、上述の硬化促進剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
【0075】
前記硬化促進剤の使用量は、所望の硬化性を得るために適宜調整できるが、前記エポキシ樹脂と前記活性エステルの混合物の合計量100質量部に対して、0.01~5質量部であることが好ましく、0.1~3質量部であることがより好ましい。硬化促進剤の使用量が0.01質量部以上であると、硬化性に優れることから好ましい。一方、硬化促進剤の使用量が5質量部以下であると、絶縁信頼性に優れることから好ましい。
【0076】
(難燃剤)
難燃剤としては、特に制限されないが、無機リン系難燃剤、有機リン系難燃剤、ハロゲン系難燃剤等が挙げられる。
【0077】
前記無機リン系難燃剤としては、特に制限されないが、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等が挙げられる。
【0078】
前記有機リン系難燃剤としては、特に制限されないが、メチルアシッドホスフェート、エチルアシッドホスフェート、イソプロピルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート、ブトキシエチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、ビス(2-エチルヘキシル)ホスフェート、モノイソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート、オレイルアシッドホスフェート、ブチルピロホスフェート、テトラコシルアシッドホスフェート、エチレングリコールアシッドホスフェート、(2-ヒドロキシエチル)メタクリレートアシッドホスフェート等のリン酸エステル;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィンオキシド等ジフェニルホスフィン;10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(1,4-ジオキシナフタレン)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィニルヒドロキノン、ジフェニルホスフェニル-1,4-ジオキシナフタリン、1,4-シクロオクチレンホスフィニル-1,4-フェニルジオール、1,5-シクロオクチレンホスフィニル-1,4-フェニルジオール等のリン含有フェノール;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状リン化合物;前記リン酸エステル、前記ジフェニルホスフィン、前記リン含有フェノールと、エポキシ樹脂やアルデヒド化合物、フェノール化合物と反応させて得られる化合物等が挙げられる。
【0079】
前記ハロゲン系難燃剤としては、特に制限されないが、臭素化ポリスチレン、ビス(ペンタブロモフェニル)エタン、テトラブロモビスフェノールAビス(ジブロモプロピルエーテル)、1,2-ビス(テトラブロモフタルイミド)、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、テトラブロモフタル酸等が挙げられる。
【0080】
上述の難燃剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
【0081】
前記難燃剤の使用量は、エポキシ樹脂100質量部に対して、0.1~50質量部であることが好ましく、1~30質量部であることがより好ましい。難燃剤の使用量が0.1質量部以上であると、難燃性を付与できることから好ましい。一方、難燃剤の使用量が50質量部以下であると、誘電特性を維持しながら難燃性を付与できることから好ましい。
【0082】
(充填剤)
充填剤としては、有機充填剤、無機充填剤が挙げられる。有機充填剤は、伸びを向上させる機能、機械的強度を向上させる機能等を有する。無機充填剤は、熱膨張率の低減や難燃性の付与といった機能を有する。
【0083】
前記有機充填剤としては、特に制限されないが、ポリアミド粒子等が挙げられる。
【0084】
前記無機充填剤としては、特に制限されないが、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、カーボンブラック等が挙げられる。これらのうち、シリカを用いることが好ましい。この際、シリカとしては、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が用いられうる。
【0085】
また、前記充填剤は、必要に応じて表面処理されていてもよい。この際、使用されうる表面処理剤としては、特に制限されないが、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等が使用されうる。表面処理剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、ヘキサメチルジシラザン等が挙げられる。
【0086】
なお、上述の充填剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
【0087】
前記充填剤の使用量は、前記エポキシ樹脂100質量部に対して、0.5~95質量部であることが好ましく、5~80質量部であることがより好ましい。充填剤の使用量が0.5質量部以上であると、充填剤の効果を十分に付与できることから好ましい。一方、配合物の粘度が高くなることで成形性を損なうことがないように、充填剤の使用量が95質量部以下であることが好ましい。
【0088】
<硬化物>
本発明は、前記硬化性樹脂組成物を硬化反応させて得られることを特徴とする硬化物に関する。前記活性エステル自体が、誘電正接が低いことから、前記活性エステルを含有する前記硬化性樹脂組成物から得られる硬化物もまた誘電正接が低くなり、また、得られる硬化物は耐熱性、低誘電特性、及び、反り抑制に起因する高弾性率化を発現させることのでき、好ましい態様となる。
【0089】
前記硬化性樹脂組成物を硬化反応させてなる硬化物を得る方法としては、例えば、加熱硬化する際の加熱温度は、特に制限されないが、100~300℃であり、加熱時間としては、1~24時間であることが好ましい。
【0090】
<硬化性樹脂組成物の用途>
上記硬化性樹脂組成物が用いられる用途としては、プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム等の回路基板用絶縁材料、樹脂注型材料、接着剤、半導体封止材料、半導体装置、プリプレグ、導電ペースト、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、上記複合材料を硬化させてなる成形品等が挙げられる。これら各種用途のうち、プリント配線板材料、回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。さらに、上記の中でも、硬化物が優れた耐熱性、低誘電特性、及び、高弾性率等を有するといった特性を生かし、本発明の硬化性樹脂組成物は、半導体封止材料、半導体装置、プリプレグ、フレキシルブル配線基板、回路基板、及び、ビルドアップフィルム、ビルドアップ基板、多層プリント配線板、繊維強化複合材料、前記複合材料を硬化させてなる成形品に用いることが好ましい。以下に、硬化性樹脂組成物から、前記半導体封止材料などを製造する方法について説明する。
【0091】
1.半導体封止材料
本発明は、前記硬化性樹脂組成物を含有することを特徴とする半導体封止材に関する。上記硬化性樹脂組成物から半導体封止材料を得る方法としては、上記硬化性樹脂組成物、及び硬化促進剤、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ、アルミナ、窒化ケイ素などの高充填化、又は溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30~95質量部の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
【0092】
2.半導体装置
本発明は、前記半導体封止材を加熱硬化した硬化物を含むことを特徴とする半導体装置に関する。上記硬化性樹脂組成物から半導体装置を得る方法としては、上記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50~200℃で2~10時間の間、加熱する方法が挙げられる。
【0093】
3.プリプレグ
本発明は、補強基材、及び、前記補強基材に含浸した前記硬化性樹脂組成物の半硬化物を有することを特徴とするプリプレグに関する。上記硬化性樹脂組成物からプリプレグを得る方法としては、下記有機溶媒を配合してワニス化した硬化性樹脂組成物を、補強基材(紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布など)に含浸したのち、用いた溶媒種に応じた加熱温度、好ましくは50~170℃で加熱することによって、得る方法が挙げられる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。
【0094】
ここで用いる有機溶媒としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、下記のようにプリプレグからプリント回路基板をさらに製造する場合には、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶媒を用いることが好ましく、また、不揮発分が40~80質量%となる割合で用いることが好ましい。
【0095】
4.回路基板
本発明は、前記プリプレグ、及び、銅箔を積層し、加熱圧着成型して得られることを特徴とする回路基板に関する。上記硬化性樹脂組成物からプリント回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下にて、170~300℃で10分~3時間、加熱圧着させる方法が挙げられる。
【0096】
5.フレキシルブル配線基板
上記硬化性樹脂組成物からフレキシルブル配線基板を製造する方法としては、以下に示す3つの工程からなる方法で製造されるものが挙げられる。第1の工程は、活性エステル、エポキシ樹脂、及び有機溶媒を配合した硬化性樹脂組成物を、リバースロールコータ、コンマコータ等の塗布機を用いて、電気絶縁性フィルムに塗布する工程であり、第2の工程は、加熱機を用いて60~170℃で1~15分間の間、硬化性樹脂組成物が塗布された電気絶縁性フィルム加熱し、電気絶縁性フィルムから溶媒を揮発させて、硬化性樹脂組成物をB-ステージ化する工程であり、第3の工程は、硬化性樹脂組成物がB-ステージ化された電気絶縁性フィルムに、加熱ロール等を用いて、接着剤に金属箔を熱圧着(圧着圧力は2~200N/cm、圧着温度は40~200℃が好ましい)する工程である。なお、上記3つの工程を経ることで、十分な接着性能が得られれば、ここで終えても構わないが、完全接着性能が必要な場合は、さらに100~200℃で1~24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の硬化性樹脂組成物膜の厚さは、5~100μmの範囲が好ましい。
【0097】
6.ビルドアップ基板
上記硬化性樹脂組成物からビルドアップ基板を製造する方法としては、以下に示す3つの工程からなる方法で製造されるものが挙げられる。第1の工程は、ゴム、フィラーなどを適宜配合した上記硬化性樹脂組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる工程であり、第2の工程は、その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する工程であり、第3の工程は、このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成する工程である。なお、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行うことが好ましい。第一の工程は、上述の溶液塗布によるもの以外にも、あらかじめ所望の厚さに塗工して乾燥したビルドアップフィルムのラミネートによる方法でも行うことができる。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を製造することも可能である。
【0098】
7.ビルドアップフィルム
本発明は、前記硬化性樹脂組成物を含有するビルドアップフィルムに関する。本発明のビルドアップフィルムを製造する方法としては、上記硬化性樹脂組成物を、支持フィルム上に塗布し、硬化性樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとすることにより製造する方法が挙げられる。
【0099】
硬化性樹脂組成物からビルドアップフィルムを製造する場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール、あるいは、スルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
【0100】
ここで、多層プリント配線板のスルーホールの直径は、通常0.1~0.5mm、深さは通常0.1~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
【0101】
上記した接着フィルムを製造する方法は、具体的には、ワニス状の上記硬化性樹脂組成物を調製した後、支持フィルム(Y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶媒を乾燥させて硬化性樹脂組成物からなる組成物層(X)を形成させることにより製造することができる。
【0102】
形成される組成物層(X)の厚さは、通常、導体層の厚さ以上とすることが好ましい。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚さを有するのが好ましい。
【0103】
なお、本発明における組成物層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
【0104】
上記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
【0105】
支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。
【0106】
上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
【0107】
8.多層プリント配線板
なお、上記のようして得られたフィルムを用いて多層プリント配線板を製造することもできる。そのような多層プリント配線板の製造方法は、例えば、組成物層(X)が保護フィルムで保護されている場合はこれらを剥離した後、組成物層(X)を回路基板に直接、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
【0108】
ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cm2(9.8×104~107.9×104N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
【0109】
9.繊維強化複合材料
上記硬化性樹脂組成物から繊維強化複合材料を製造する方法としては、硬化性樹脂組成物を構成する各成分を均一に混合してワニスを調整し、次いでこれを強化繊維からなる強化基材に含浸した後、重合反応させることにより製造することができる。
【0110】
かかる重合反応を行う際の硬化温度は、具体的には、50~250℃の温度範囲であることが好ましく、特に、50~100℃で硬化させ、タックフリー状の硬化物にした後、更に、120~200℃の温度条件で処理することが好ましい。
【0111】
ここで、強化繊維は、有撚糸、解撚糸、又は無撚糸などいずれでも良いが、解撚糸や無撚糸が、繊維強化プラスチック製部材の成形性と機械強度を両立することから、好ましい。さらに、強化繊維の形態は、繊維方向が一方向に引き揃えたものや、織物が使用できる。織物では、平織り、朱子織りなどから、使用する部位や用途に応じて自由に選択することができる。具体的には、機械強度や耐久性に優れることから、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられ、これらの2種以上を併用することもできる。これらの中でもとりわけ成形品の強度が良好なものとなる点から炭素繊維が好ましく、かかる、炭素繊維は、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。中でも、容易に高強度の炭素繊維が得られるポリアクリロニトリル系のものが好ましい。ここで、ワニスを強化繊維からなる強化基材に含浸して繊維強化複合材料とする際の強化繊維の使用量は、該繊維強化複合材料中の強化繊維の体積含有率が40~85%の範囲となる量であることが好ましい。
【0112】
10.繊維強化樹脂成形品
上記硬化性樹脂組成物から繊維強化樹脂成形品を製造する方法としては、型に繊維骨材を敷き、上記ワニスを多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材にワニスを含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有するワニスをシート状にしたものを金型で圧縮成型するSMCプレス法、繊維を敷き詰めた合わせ型に上記ワニスを注入するRTM法などにより、強化繊維に上記ワニスを含浸させたプリプレグを製造し、これを大型のオートクレーブで焼き固める方法などが挙げられる。なお、上記で得られた繊維強化樹脂成形品は、強化繊維と硬化性樹脂組成物の硬化物とを有する成形品であり、具体的には、繊維強化樹脂成形品中の強化繊維の量は、40~70質量%の範囲であることが好ましく、強度の点から50~70質量%の範囲であることが特に好ましい。
【0113】
11.その他
上記で半導体封止材料等を製造する方法について説明したが、硬化性樹脂組成物からその他の硬化物を製造することもできる。その他の硬化物の製造方法としては、一般的な硬化性樹脂組成物の硬化方法に準拠することにより製造することができる。例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよい。
【実施例0114】
以下に、本発明を実施例、及び、比較例により具体的に説明するが、なお、以下に得られた活性エステルの軟化点、及び、GPCチャート、前記活性エステルを含有する硬化性組成物より得られた硬化物の耐熱性(ガラス転移温度)、誘電特性(誘電率、誘電正接)、弾性率に関しては、以下の条件等にて測定・評価した。
【0115】
<活性エステルの軟化点>
JIS K7234(環球法)に準拠して、以下に得られた活性エステルの軟化点(℃)を測定した。
【0116】
<GPC測定>
以下の測定装置、測定条件を用いて測定し、以下に示す合成例・実施例等で得られた活性エステルのGPCチャートを得た。前記GPCチャートの結果より、原料ピークの減少及び消失から、目的生成物(活性エステル)が生成していることを確認した。
測定装置 :東ソー株式会社製「HLC-8320 GPC」
カラム:東ソー株式会社製ガードカラム「HXL-L」+東ソー株式会社製「TSK-GEL G2000HXL」+東ソー株式会社製「TSK-GEL G2000HXL」+東ソー株式会社製「TSK-GEL G3000HXL」+東ソー株式会社製「TSK-GEL G4000HXL」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準:前記「GPCワークステーション EcoSEC-WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A-500」
東ソー株式会社製「A-1000」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」
東ソー株式会社製「F-40」
東ソー株式会社製「F-80」
東ソー株式会社製「F-128」
試料:以下に示す実施例等で得られた活性エステルの固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)を使用した。
【0117】
[実施例1]
活性エステル(A-1)の合成
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにカテコール220g(2.0モル)とα-ナフトール144g(1.0モル)とトルエン2061gを仕込み、系内を減圧窒素置換し溶解させた。次いで、イソフタル酸クロライド505g(2.5モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、テトラブチルアンモニウムブロマイド1.0gを溶解させ、窒素ガスパージを施しながら、系内を60℃以下に制御して、20質量%水酸化ナトリウム水溶液1030gを3時間かけて滴下した。次いでこの条件下で1時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、加熱減圧下乾燥して下記構造式で示される、活性エステル(A-1)を652g得た。
この活性エステル(A-1)のエステル基当量は137g/当量、軟化点は118℃、原料の仕込み比からの理論平均繰り返し単位数nは、4であった。
なお、前記繰り返し単位数nとしては、好ましくは、1~10であり、より好ましくは、2~8であり、さらに好ましくは、3~5である。前記繰り返し単位数nが前記範囲内であることで、高耐熱、低誘電率、及び、低誘電正接となり、好ましい。
【化3】
【0118】
[実施例2]
活性エステル(A-2)の合成
実施例1のカテコール220g(2.0モル)をターシャリーブチルカテコール332g(2.0モル)に変更した以外は、実施例1と同様にして、活性エステル(A-2)を759g得た。
この活性エステル(A-2)のエステル基当量は160g/当量、軟化点は128℃、原料の仕込み比からの理論平均繰り返し単位数nは、4であった。
【化4】
【0119】
[実施例3]
活性エステル(A-3)の合成
実施例1のカテコール220g(2.0モル)をターシャリーブチルカテコール332g(2.0モル)に、α-ナフトール144g(1.0モル)をパラターシャリーブチルフェノール150g(1.0モル)に変更した以外は、実施例1と同様にして、活性エステル(A-3)を765g得た。
この活性エステル(A-3)のエステル基当量は161g/当量、軟化点は124℃、原料の仕込み比からの理論平均繰り返し単位数nは、4であった。
【化5】
【0120】
[比較例1]
活性エステル(A-4)の合成
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにジシクロペンタジエンとフェノールの重付付加反応樹脂(水酸基当量:165g/当量、軟化点85℃)165gとα-ナフトール72g(0.5モル)とトルエン630gを仕込み、系内を減圧窒素置換し溶解させた。次いで、イソフタル酸クロライド152g(0.75モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、テトラブチルアンモニウムブロマイド0.6gを溶解させ、窒素ガスパージを施しながら、系内を60℃以下に制御して、20質量%水酸化ナトリウム水溶液315gを3時間かけて滴下した。次いでこの条件下で1時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン層に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、熱減圧下乾燥して活性エステル(A-4)を合成した。
この活性エステル(A-4)のエステル基当量は223g/当量、軟化点は150℃であった。
【0121】
[実施例4~6、及び、比較例2]
エポキシ樹脂として、ビスフェノールA型エポキシ樹脂(DIC(株)製「850-S」、エポキシ当量:188g/当量)、硬化剤として上記活性エステル(A-1)~(A-4)、硬化触媒としてN,N-ジメチル-4-アミノピリジン(DMAP)を用い、下記表1に示す組成で配合して硬化性組成物を得た。
得られた各硬化性組成物これを11cm×9cm×2.4mm、及び、11cm×9cm×1.6mmの型枠に流し込み、プレスで180℃の温度で20分間成型した後、型枠から成型物を取り出し、次いで、175℃5時間硬化させて、評価サンプル(硬化物)を得た。
【0122】
<耐熱性(ガラス転移温度)>
得られた厚さ2.4mmの硬化物を幅5mm、長さ54mmのサイズに切り出し、これを試験片として、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、レクタンギュラーテンション法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化と粘弾性率変化の比が最大となる(tanδが最も大きい)温度をガラス転移温度(Tg)(℃)として、耐熱性を評価した。
【0123】
<誘電特性(誘電率、誘電正接)>
得られた厚さ1.6mmの硬化物を幅2mm、長さ10mmのサイズに切り出し、これを試験片として、アジレント・テクノロジー株式会社製ネットワークアナライザ「E8362C」を用い、空洞共振法にて、加熱真空乾燥後、23℃、湿度50%の室内に24時間保管した試験片の1GHzでの誘電率、誘電正接を測定した。
【0124】
<弾性率>
得られた厚さ2.4mmの硬化物を幅10mm、長さ80mmのサイズに切り出し、これを試験片として、万能試験機((株)島津製作所製「AGI」)を用いて、室温での曲げ弾性率を求めた。なお、n=3で測定し、平均値を用いた。また、試験片の膜厚及び幅は、5点測定し、平均値を計算値に用いた。
【0125】
【0126】
上記表1の評価結果より、実施例4~6において、所望の活性エステルを使用したことで、高耐熱性、低誘電特性(特に、低誘電正接)、及び、高弾性率に優れることが確認できた。一方、比較例2においては、所望の活性エステルを使用しなかったため、全ての評価について、実施例より劣ることが確認された。