(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022164656
(43)【公開日】2022-10-27
(54)【発明の名称】測定プローブ、測定システム及び測定プローブにおける方法
(51)【国際特許分類】
G01R 1/067 20060101AFI20221020BHJP
G01R 15/00 20060101ALI20221020BHJP
G01R 21/06 20060101ALI20221020BHJP
【FI】
G01R1/067 D
G01R15/00 500
G01R21/06 D
【審査請求】未請求
【請求項の数】10
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022068311
(22)【出願日】2022-04-18
(31)【優先権主張番号】63/176,041
(32)【優先日】2021-04-16
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】17/721,294
(32)【優先日】2022-04-14
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】391002340
【氏名又は名称】テクトロニクス・インコーポレイテッド
【氏名又は名称原語表記】TEKTRONIX,INC.
(74)【代理人】
【識別番号】100090033
【弁理士】
【氏名又は名称】荒船 博司
(74)【代理人】
【識別番号】100093045
【弁理士】
【氏名又は名称】荒船 良男
(72)【発明者】
【氏名】ジョシュア・ジェイ・オブライエン
(72)【発明者】
【氏名】ジョサイヤ・エイ・バートレット
【テーマコード(参考)】
2G011
2G025
【Fターム(参考)】
2G011AC11
2G011AC31
2G025AB05
(57)【要約】
【課題】複数の測定を同時により簡単に行う。
【解決手段】試験測定装置140用の試験信号を生成する測定プローブ100は、DUT130の少なくとも第1試験ポイント及び第2試験ポイントに接続されるように構成されたプローブ・ヘッドと、DUTの第1試験ポイントと第2試験ポイントとの間に流れる電流を求めるように構成された測定プローブ内の電流検出部と、第1試験ポイントからの電圧信号又は第2試験ポイントからの電圧信号を、選択された電圧試験信号として装置140に配信させる第1セレクタブル信号経路と、電流検出部の出力からの電流信号を、選択された電流試験信号として測定装置に配信させる第2セレクタブル信号経路とを有する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
測定装置用に試験信号を生成する測定プローブであって、
被試験デバイス(DUT)の少なくとも第1試験ポイント及び第2試験ポイントに接続されるように構成されたプローブ・ヘッドと、
上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に流れる電流を求めるように構成された上記測定プローブ内の電流検出部と、
上記第1試験ポイントからの電圧信号又は上記第2試験ポイントからの電圧信号を、選択された電圧試験信号として上記測定装置に配信させる第1セレクタブル信号経路と、
上記電流検出部の出力部からの電流信号を、選択された電流試験信号として測定装置に配信させる第2セレクタブル信号経路と
を具える測定プローブ。
【請求項2】
上記選択された電圧試験信号と上記選択された電流試験信号とが同時に上記測定装置に供給される請求項1の測定プローブ。
【請求項3】
ユーザが、上記選択された電圧試験信号及び上記選択された電流試験信号のいずれかを選択して、上記測定装置に供給する請求項1の測定プローブ。
【請求項4】
上記第1セレクタブル信号から上記第2セレクタブル信号に切り替える際に、上記プローブ・ヘッドと上記DUTとの間の接続を壊す必要がない請求項3の測定プローブ。
【請求項5】
上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に結合されたデバイスに出入りする電力量を求めるように構成された上記測定プローブ内の電力検出部と、
該電力検出部の出力部からの電力信号を、選択された電流試験信号として上記測定装置に配信させる第3セレクタブル信号経路と
を更に具える請求項1の測定プローブ。
【請求項6】
測定信号を受けるように構成された測定装置と、
該測定装置用に上記測定信号を生成する測定プローブと
を具え、該測定プローブが
被試験デバイス(DUT)の少なくとも第1試験ポイント及び第2試験ポイントに接続されるように構成されたプローブ・ヘッドと、
上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に流れる電流を求めるように構成された上記測定プローブ内の電流検出部と、
上記第1試験ポイントからの電圧信号又は上記第2試験ポイントからの電圧信号を、選択された電圧試験信号として上記測定装置に配信させる第1セレクタブル信号経路と、
上記電流検出部の出力部からの電流信号を、選択された電流試験信号として上記測定装置に配信させる第2セレクタブル信号経路と
を有する測定システム。
【請求項7】
上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に結合されたデバイスに出入りする電力量を求めるように構成された上記測定プローブ内の電力検出部と、
該電力検出部の出力部からの電力信号を、選択された電流試験信号として上記測定装置に配信させる第3セレクタブル信号経路と
を更に具える請求項6の測定システム。
【請求項8】
測定装置による試験用信号を生成する測定プローブであって、DUTの抵抗の電圧ソース側の第1試験ポイントに結合されると共に上記DUTの上記抵抗の負荷側の第2試験ポイントに結合される上記測定プローブにおける方法であって、
上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間の上記抵抗に流れる抵抗電流を示す信号を生成する処理と、
上記抵抗電流、上記第1試験ポイントからの電圧信号又は上記第2試験ポイントからの電圧信号のいずれかを上記測定装置による上記試験用信号として上記測定装置に配信する処理と
を具える測定プローブにおける方法。
【請求項9】
上記抵抗に出入りする電力を示す電力信号を生成する処理と、
上記抵抗電流、上記電力信号、上記第1試験ポイントからの電圧信号又は上記第2試験ポイントからの電圧信号のいずれかを上記測定装置による上記試験用信号として上記測定装置に配信する処理と
を更に具える請求項8の測定プローブにおける方法。
【請求項10】
ユーザから上記測定装置による所望の試験用信号の選択を受ける処理と、
ユーザが選択した上記試験用信号を上記測定装置に供給する処理と
を更に具える請求項9の測定プローブにおける方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、試験測定システムに関し、特に、試験測定システムにおいて使用するための試験測定プローブに関する。
【背景技術】
【0002】
測定プローブは、試験測定装置と組み合わせて使用され、被試験デバイス(DUT)の特定の部分をプロービング又は選択する。例えば、開発中の基板であるDUT上の様々な接触ポイントに測定プローブの電圧プローブ・チップを接触させて、これらのポイントの電圧を測定することができる。直流(DC)電圧や低周波信号などの一部の信号の測定には、測定試験プローブを手で操作するので十分であるが、他の信号では、プローブ・チップをDUT上の試験ポイントに直接はんだ付けして、DUTと試験プローブ間の良好な電気的接触を確保することで測定の質を高めても良く、これによって、測定精度が向上する。
【0003】
シングルエンド測定は、接地(グラウンド)を基準に信号特性を測定するが、差動測定は、DUTの2つの信号ライン又は試験ポイント間で行われる測定である。ソース又は負荷で測定される電圧はシングルエンド測定であり、ソース及び負荷の間の電圧差を同時に測定する測定は差動測定である。プローブは、負荷を通過する電流を測定するためにも使用される。現在、DUT内の試験ポイントの電圧と電流の両方を測定するには、電圧測定がシングルエンドか差動かに応じて、複数のプローブ・チップをDUTにはんだ付けする必要がある(1つは電流用、1つ又は2つが電圧用)。試験システムにプローブが1つしかない場合には、プローブを試験ポイント間で移動させる。
【先行技術文献】
【特許文献】
【0004】
【非特許文献】
【0005】
【非特許文献1】「P7700 Series TriMode Probes Datasheet」、テクトロニクス社、[オンライン]、[2022年4月18日検索]、インターネット<https://www.tek.com/en/datasheet/trimode(tm)-probe-family>
【発明の概要】
【発明が解決しようとする課題】
【0006】
同時に測定を行うには、2つのプローブが必要である。複数のプローブが必要になると、試験システムのコストが増加し、試験シーケンス中にプローブを移動させると、試験の実行に必要な時間が長くなる。
【0007】
本開示技術の実施形態は、既存の試験システムにおけるこれら及び他の制約に対処する。
【課題を解決するための手段】
【0008】
本開示技術の実施形態には、マルチモード測定プローブがあり、これは、被試験デバイス(DUT)から試験信号を取り込み、測定装置用に任意の個数の様々な試験信号を生成する。プローブ・チップとDUTとの間の接続を変更又は再配置することなく、様々な測定を行うことができる。以下に説明するように、ユーザは、適切なモードを選択することによって、電圧、電流又は電力を測定できる。測定プローブに電力モードがあると、接続された試験測定装置は、電力しきい値に基づいてトリガ・イベントを生成したり、パワー・コンポーネントを含む事前定義された条件を満たすことができる。
【0009】
本開示技術の実施形態の態様、特徴及び効果は、添付の図面を参照した実施形態の以下の説明から明らかになるであろう。
【図面の簡単な説明】
【0010】
【
図1】
図1は、本開示技術の実施形態による複数選択可能な測定モードを有する測定プローブを含む測定システムを示す機能ブロック図である。
【
図2】
図2は、本開示技術の実施形態による
図1の測定プローブの一例を示す機能ブロック図である。
【
図3】
図3は、本発明の実施形態による位相調整を含む測定プローブの構成要素の機能ブロック図である。
【
図4】
図4は、本発明の実施形態による、他の測定に加えて、コモン・モード測定を含む測定プローブの構成要素の機能ブロック図である。
【
図5】
図5は、本発明の実施形態による、電圧及び電流測定を同時に提供するように構成された測定プローブの構成要素の機能ブロック図である。
【発明を実施するための形態】
【0011】
図1は、実施形態によるマルチモード試験測定プローブ100の構成の一部を示す機能ブロック図である。
図1において、測定プローブ100は、被試験測定装置140と被試験デバイス(DUT)130との間に接続されている。
図1に例示されるように、測定プローブ100には、概して、プローブ・チップ104と、1つ以上のプローブ・ケーブル110及び111と、補償ボックス120がある。
【0012】
上述したように、プローブ・チップ104は、測定プローブ100の一部分であり、測定プローブ100をDUT130に物理的に接続し、分析対象のDUT130から信号105を取得する。プローブ・チップ104は、以下で更に詳細に説明する。プローブ・ケーブル110及び111は、典型的には、ある程度の長さ、概して、1メートル以上であり、DUT130から取得した信号105を、プローブ・チップ104と補償ボックス120との間で伝導する。
【0013】
補償ボックス120は、測定プローブ100の一部であり、概して、装置インタフェース124を介して、装置140に接続される。装置インタフェース124は、プローブ100を装置140に機械的及び電気的に接続するための機械的及び電気的接続部を有していても良い。補償ボックス120又は「コンプボックス(compbox)」は、試験測定産業における標準用語であり、プローブ・ケーブル110及び111と、装置インタフェース124との間の電子回路又はコンポーネントを指し、これらは、多くの場合、ハウジング又はボックスに収容される。補償ボックス120内の回路又はデバイスは、プローブ・チップ104やケーブル110及び111の様々な電気的特性を補償するために使用できる。補償ボックス120は、また、測定モード・セレクタ122を含み、これを通して、ユーザは、以下に説明するように、多種多様な測定モードを選択できる。補償ボックス120は、装置インタフェース124を介して装置140と通信する。いくつかの実施形態では、装置インタフェースが、I2C通信を使用するが、他の実施形態では、通信が、データ・バス、例えば、ユニバーサル・シリアル・バス(USB)での通信によって行われる。装置インタフェース124ついては、他の通信方法も同様に可能である。後述するように、ユーザは、測定モード・セレクタ122を含む測定プローブ100の動作を、測定プローブ100及び装置140のいずれか一方又は両方を介して制御できる。
【0014】
補償ボックス120は、ボタン(buttons)若しくはライト(lights)又はその両方の形態のようなユーザ・インタフェース126があっても良く、これにより、ユーザは、測定プローブ100又は試験測定装置140の設定又は機能を監視及び制御できる。例えば、ユーザ・インタフェース126には、メニュー・ボタンがあり、ユーザが押すと、装置140上にメニュー・オプションが現れ、これにより、ユーザは、測定プローブに様々なモードを設定できる。あるいは、ユーザ・インタフェース126上のボタンを押すと、選択されたオプションの隣のライトが光るなどにより、特定の選択されたものが示されても良い。これに代えて、以下に説明するように、ユーザは、装置140のユーザ・インタフェースを用いて、測定モード・セレクタ122を含む測定プローブ100の動作を制御しても良い。
【0015】
装置140は、オシロスコープなど、測定プローブに接続される任意のタイプの試験測定装置であっても良い。装置140には、1つ以上の入力部142があり、これは、任意の電気信号媒体であってもよく、測定プローブ100からの測定又は試験のための信号を受け入れるための試験インタフェースとして機能しても良い。入力部142は、チャンネル毎に別々であってもよく、ここで、各チャンネルは、測定又は試験のために別々の信号を受信するように構成され、装置140は、ユーザの指示に従って、各チャンネルを独立して管理するように又はチャンネルを組み合わせるように構成される。
【0016】
装置140には、1つ以上のプロセッサ144がある。図を簡単にするために、1つのプロセッサ144のみが
図1に示されているが、当業者であればわかるように、単一のプロセッサ144ではなく、様々なタイプの複数のプロセッサが組み合わされて使用されても良い。1つ以上のプロセッサ144は、メモリ146と連動して動作し、メモリ146が、1つ以上のプロセッサを制御するための命令、又は、試験信号の測定若しくは装置140の一般的な動作に関連するデータ若しくはその他のデータを記憶しても良い。メモリ146は、プロセッサ・キャッシュ、ランダム・アクセス・メモリ(RAM)、読み取り専用メモリ(ROM)、ソリッド・ステート・メモリ、ハード・ディスク・ドライブ、その他の任意のメモリ形式として実装されても良い。
【0017】
ユーザからの入力を受け、出力をユーザに送るためのユーザ・インタフェース148が、装置140に結合されるか又は装置140と一体化される。ユーザ・インタフェース148は、キーボード、マウス、タッチスクリーン又はユーザが装置140をインタラクティブに操作するために利用可能な他の任意の操作装置を含んでも良い。ユーザ・インタフェース148の表示部/出力部は、ユーザの入力を受け入れ、装置の出力を提供するタッチスクリーン・ディスプレイであっても良い。あるいは、表示部/出力部は、ユーザ・インタフェース148と連動して動作する出力のみのディスプレイであっても良い。ユーザ・インタフェース148の表示部/出力部は、本願で説明するように、試験結果又は他の結果をユーザに表示するためのデジタル画面、コンピュータ・モニタ又は他の任意のモニタであっても良い。ユーザ・インタフェース148は、また、1つ以上のデータ出力部を有していても良く、これは、視覚的表示と相関していても、していなくても良い。ユーザ・インタフェース148からのデータ出力は、ローカル・エリア・ネットワークなどのデータ・ネットワークに送信することができ、これは、データを表示するためのホスト・コンピュータに結合されても良い。ユーザ・インタフェース148は、また、ホスト・コンピュータによってインターネットを介してアクセス可能なクラウド・ネットワークなどのリモート・ネットワークにデータを送信しても良い。装置140の構成要素は、装置140と一体化されているものとして描かれているが、当業者であればわかるように、これらの構成要素の任意のものが、装置140の外部にあって、有線や無線の通信媒体や他の機構などの任意の従来の方法で試験装置140に結合されても良い。
【0018】
装置140は、概して、1つ以上の測定ユニット150を有していても良い。このような測定ユニットは、入力部142を介して受信された信号の特性(例えば、電圧、アンペア数、振幅など)を測定できる任意の構成要素を含む。装置140は、また、測定プローブ100から受信された入力信号を処理するために一般的に使用されるような、受信した信号を波形に変換する処理のための、調整回路(conditioning circuits)、アナログ・デジタル・コンバータ、その他の回路などの追加のハードウェアやプロセッサを含んでも良い。装置140の特定の構成要素が
図1に描かれているが、DUTからの試験信号のタイプ及び特性に応じて、多くの追加構成要素が装置内に存在しても良い。
【0019】
図2は、本発明の実施形態による、ユーザによって選択可能な複数のモードを有する測定プローブ200を示す機能ブロック図である。測定プローブ100と同様に、測定プローブ200には、DUTの1つ以上の試験ポイントに接続するためのプローブ・チップ220がある。
図2において、センス抵抗R
Sは、DUT(
図2では図示せず)内の試験される負荷を表す。センス抵抗R
Sは、後述するように、DUT内の電流を測定するための電流シャントを表すこともある。プローブ・チップには、第1接続ポイント225からセンス抵抗の第1端に結合された第1リード215があり、一方、第2リード217は、第2接続ポイント227からセンス抵抗の第2端に結合される。リード線215に結合された第1端は、本願ではソース側、(+)又はV
Aと呼び、DUT内のソース電圧(source voltage)に接続されていると仮定する。リード線217に結合された第2端は、本願では負荷側、(-)又はV
Bと呼び、DUT内の試験されている負荷に結合されていると仮定する。プローブ・チップ220には、また、2つの接地リード線211及び213もあり、これらはそれぞれDUTの接地ノード(ground nodes)201及び203に結合される。概して、リード線211、213、215、217は、DUT内の所定の位置にはんだ付けされ、測定プローブ200への良好な電気的接続を保証する。
【0020】
プローブ・チップ220には、ケーブル232に送られる前にセンス抵抗R
Sのソース側からの電圧信号V
Aを増幅するように構成された増幅器221がある。同様に、増幅器222は、ケーブル236に送られる前に、センス抵抗R
Sの負荷側からの電圧信号V
Bを増幅するように構成されている。増幅器221及び222は、例えば、定格で12~48ボルト及び1GHz~8GHzの帯域幅としても良いが、DUTの測定パラメータに応じて変化させることができる。実装形態に応じて、プローブ・チップ220は、
図2に図示されていない他の信号調節回路を含んでもよい。いくつかの試験環境では、増幅器221、222が、増幅器ではなく減衰器として構成され、ケーブル232、236に渡す前に、検出された信号の振幅を減少させるように構成される。
【0021】
ケーブル232、236は、増幅された電圧信号VA及びVBを、測定プローブ200のプローブ・チップ220から補償ボックス240に伝送する。ケーブル232、236は、それぞれ、シールドされた同軸ケーブルであっても良く、これらは、それぞれ電圧信号VA及びVBを伝送すると共に、ノード201、203の接地基準電位を伝送する。いくつかの実施形態では、1つの接地のみ(リード線211又は213)が、プローブ・チップ220で使用され、接地基準電位が単一の接地ノードから両方のケーブル232、236へ伝送される。一般的な測定プローブは、ソース(信号源)又は負荷のいずれかからの電圧を測定するシングルエンド・プローブか又は、ソースと負荷の間の電圧差を測定する差動プローブのどちらかである。
【0022】
しかしながら、本発明の実施形態は、
図2の測定プローブ200のように、ソース電圧及び負荷電圧を独立して伝送する。ソース電圧と負荷電圧を分離しておくことで、補償ボックス内の回路は検出した電圧信号に対して測定動作を実行でき、以下で詳しく説明するように、測定装置に送信するいくつかの異なる信号の1つを選択するようにユーザが制御できる。具体的には、測定プローブ200の出力は、ソース電圧V
A、負荷電圧V
B、センス抵抗を流れる電流及びDUTの負荷に供給される電力又はDUTの負荷から受ける電力を表す信号を提供できる。なお、これら回路及びモード・セレクタは、補償ボックス内にあるものとして図示されているが、他の実施形態では、これらの回路は、測定プローブ200内のどこにあってもよく、補償ボックス内に収容されている必要はない。
【0023】
マルチモード電流プローブ200のアクティブな出力をどの測定にするかの選択は、マルチプレクサ270を制御することによって行われ、その出力は、
図1の試験測定装置140などの測定装置に供給される。ユーザは、上述のようにマルチプレクサ270を制御するのに、マルチプレクサ270に制御信号を送信するが、これは、
図1のユーザ・インタフェース126ような補償ボックスのユーザ・インタフェース上のボタン又は構成要素(element)を押すか、又は、試験測定装置140上で選択を行い、これが、
図1のインタフェース124のような装置インタフェースを介して電流プローブに伝達されるかのいずれかによる。マルチプレクサ270の出力を選択する他の方法もあり得る。
【0024】
マルチプレクサ270の選択オプション(1)は、マルチモード測定プローブ200の出力としてソース電圧VAを選択する。同様に、マルチプレクサ270のオプション(4)を選択すると、負荷電圧VBを測定プローブ200の出力として選択する。マルチプレクサ270のオプション(1)への流れをたどると、ソース電圧VAは、マルチプレクサ270に供給される前に、増幅器241及び減衰器245によって処理されることがわかる。別の実施形態では、ソース電圧VAが、測定プローブ200の出力として装置に供給されるのに望ましい増幅又は減衰のレベルに応じて、補償ボックス240に入るときと減衰器245を出るときの間の経路の途中のどこかで選択されても良い。測定のために装置に送る前に相当の増幅を必要とする傾向がある電流と比較して、ソース電圧VAなどの電圧は、概して、装置によって容易に感知されるため、測定プローブで多くの利得又は増幅を必要としていない。
【0025】
差動増幅器243は、数式1に示す電流と電圧の関係によって、センス抵抗RSを流れる電流量を求めるように構成される。
【0026】
数式1
IRS=(VA-VB)/RSENSE
ここで、
(VA-VB)=ソースと負荷の間の瞬時電圧差(instantaneous voltage difference)
RSENSE=センス抵抗RSの抵抗値
【0027】
センス抵抗RSの値は、非常に小さいことがあるため、上述のように、回路内の電流の測定は、通常、回路内の電圧の測定よりも多くの利得を必要とする。そこで、小さな抵抗値を補償するため、ソース電圧VA及び負荷電圧VBは、反転差動増幅器243に提供される前に、増幅器241、242によって増幅される。反転差動増幅器243は、数式1の割り算機能を実現する。増幅器241、242で必要とされる利得の量は、状況に応じて実装して良い。いくつかの実施形態では、増幅器241、242は、デジタル・アナログ・コンバータ(DAC)と同様にモデル化されてもよく、可変利得減衰器として動作する。
【0028】
上記の数式1によれば、ソースと負荷との間の瞬時電圧差以外で、反転差動増幅器243が利用する他の唯一の変数は、R
SENSEの値であり、これは、DUTが使用するセンス抵抗R
Sの抵抗値である。ユーザは、DUTが使用するセンス抵抗R
Sの大きさを知っているので、本発明の実施形態は、
図2に示すように、センス抵抗R
Sに使用する値をユーザから受ける。この値は、上述のユーザ・インタフェースの1つを使用して、セットアップ中に又は後で、測定プローブ200に伝達されても良い。そして、差動増幅器243は、センス抵抗R
Sの値を受けた後、増幅器241、242の出力からの電圧差情報と、ユーザからの抵抗値情報とを用いて、差動増幅器243の出力に、瞬時電流値(instantaneous current value)I
RSを生成する。
図2を再度参照すると、瞬時電流値I
RSは、マルチプレクサ270のオプション(3)を選択することによって、測定プローブ200の出力として選択することができ、また、後述するように、乗算器(multiplier)260にも提供される。
【0029】
測定プローブ200の乗算器260のコンポーネントは、DUTの負荷によって消費又は供給される瞬時電力(instantaneous power)を求めるために使用されても良い。電気回路における電力と電流の関係を数式2に示す。
【0030】
数式2a
PS=ソースの電力(Power at source)=VA*((VA-VB)/RSENSE)
【0031】
数式2b
PL=負荷の電力(Power at load)=VB*((VA-VB)/RSENSE)
【0032】
これらの数式は、上記の数式1から次のように単純化できる。
【0033】
数式3a
ソースの電力=VA*IRS
【0034】
数式4a
負荷の電力=VB*IRS
【0035】
以上の説明から、IRSが差動増幅器243の出力であるとわかる。そこで、数式3aに従ってソースの電力(Power at source)を求めるために、乗算器260において、電圧VAが、差動増幅器243の出力と乗算される。そして、数式3bに従って負荷の電力(Power at load)を求めるために、電圧VBが、差動増幅器243の出力と乗算される。しかし、増幅器241、242は、電圧信号VA及びVBを、差動増幅器243に供給される前に増幅したことを思い出してほしい。このため、これらの増幅された電圧信号は、選択マルチプレクサ250に供給される前に、減衰器245、246によって減衰される。
【0036】
選択マルチプレクサ250は、ソース又は負荷のどちらの電力の測定値を、測定プローブ200の出力とし、そして、マルチプレクサ270のオプション(2)を選択することによって測定装置に送りたいかを決めるために、ユーザによって制御されても良い。VAを選択することにより、減衰器245の出力が、マルチプレクサ250から乗算器260に渡され、ユーザは、乗算器260の出力が、数式3aにより、ソースの電力を表すようにする。VBを選択することにより、減衰器246の出力が、マルチプレクサ250から乗算器260に渡され、ユーザは、乗算器260の出力が、数式3bにより、負荷の電力を表すようにする。ソースの電力と負荷の電力の差は、センス抵抗RSによって失われる電力量を示す。乗算器260は、アナログ信号を乗算することで知られるギルバート乗算器(Gilbert multiplier)又は他の乗算器として構成されても良い。
【0037】
上述のように、増幅器241、242は、試験されるDUTのタイプに応じて異なる形態をとっても良い。例えば、高電圧のDUTの利得レベルは、低電圧で動作するDUTとは、相対的に異なる。同様に、減衰器245、246も、状況に応じて実装して良い。一実施形態では、減衰器245、246によって減衰される信号レベルは、システムセットアップ中又は測定が行われている間のいずれかで、ユーザによって制御可能である。一実施形態では、減衰器245、246は、受信信号に様々なレベルの抵抗を加えることによって実装されても良い。いくつかの実施形態では、減衰器245、246が、切り替え可能な抵抗の構造体(switchable resistance structure)であっても良い。
【0038】
図2の測定プローブ200は、装置に単一の測定値の出力のみ(即ち、マルチプレクサ270の出力)を提供するものとして図示されているが、本発明の実施形態は、上述の複数の測定値の中の任意のもの又は全部を同時に測定装置の異なるチャンネルに出力することもできる。例えば、測定プローブ200は、チャンネル1にソース電圧V
Aを出力すると共に、チャンネル2に瞬時電流I
RSを同時に出力できる。測定装置において、追加で2つのチャンネルを利用できるのなら、負荷電圧V
Bをチャンネル3に出力し、電力レベルP
L又はP
Sのいずれかをチャンネル4に出力することもできる。
【0039】
上述したように、本発明の実施形態によれば、DUTにおけるプローブ・チップの接続を変更する必要なしに、上述した複数の試験信号の中の任意のものを測定プローブ200で選択することが可能になる。言い換えると、DUTについての電圧測定、電流測定及び電力測定を、複数のプローブを必要とせず、DUTの別の試験ポイントへとプローブの接続を変更することなく、行うことができる。
【0040】
図3は、本発明の実施形態による位相調整を含む測定プローブの構成要素の機能ブロック図である。具体的には、補償ボックス340の構成要素は、
図2の補償ボックス240と類似しており、そのため、同一又は類似の構成要素の説明は、簡単のため省略する。補償ボックス340は、上述した測定プローブの他の要素と組み合わせて使用されても良い。
【0041】
図3の補償ボックス340と
図2に示す補償ボックス240との主な違いは、位相調整部342の存在である。位相調整部342は、乗算器260で組み合わせる前に、マルチプレクサ250から出力される電圧の位相を、差動増幅器243から出力される電流に調整するために、一部の測定プローブで存在しても良い。回路によっては、電流が電圧より進んでいたり、遅れていたりすることがある。位相調整部342は、位相差を補償し、電流信号及び電圧信号を乗算器260に渡す前に整合させる。電流を電圧に整合させることにより、乗算器260の出力における電力測定の精度が向上する。
図3に例示されるように、位相調整の角度は、上述の方法を用いて、ユーザによって提供されても良い。他の実施形態では、位相調整部342が使用する位相角の調整は、既知のソースを用いた校正プロセスによって、製造中に決定されても良い。
【0042】
図4は、本発明の実施形態による、他の測定に加えて、コモン・モード測定を行う能力を含む測定プローブの構成要素の機能ブロック図である。
図4に例示するように、補償ボックス440の構成要素は、
図2の補償ボックス240の構成要素と類似しており、同一又は類似の構成要素の説明は、簡単のため省略する。補償ボックス440は、上述した測定プローブの他の要素と組み合わせて使用されても良い。
図4の補償ボックス440と
図2に示す補償ボックス240との主な違いは、コモン・モード電圧部444の存在である。
図4に示す実施形態では、ソース電圧V
Aと負荷電圧V
Bとの間のコモン・モード電圧は、数式4に示すものと定義される。
【0043】
数式4
VCM=(VA+VB)/2
【0044】
コモン・モード電圧部444は、数式4の機能を実行し、その出力端にコモン・モード電圧VCMを生じる。コモン・モード電圧部444への入力は、必要な減衰量に応じて、減衰器245、246のどちら側からでも行うことができる。このコモン・モード電圧部444の出力のコモン・モード電圧VCMは、マルチプレクサ448へのもう1つ別の入力の選択肢として供給され、VA及びVBに加えて、もう1つ別のオプションの出力信号としてユーザによって選択されても良い。乗算器260への入力としてコモン・モード電圧VCMを使用すると、ソース電力及び負荷電力の平均の電力測定値を生成し、これは、DUTにおける双方向の電力使用量を調査する際に有用であろう。ユーザは、今や、マルチプレクサ270から出力される3つの異なる電力信号「ソース電力、負荷電力及びコモン・モード電力(ソース電力と負荷電力の平均)」の中から選択しても良いことに留意されたい。ユーザは、マルチプレクサ448を用いて所望の選択をすることによって、乗算器260によって生成される特定の電力信号を選択する。
【0045】
図5は、本発明の実施形態による、電圧及び電流測定値を同時に供給するように構成された測定プローブの構成要素の機能ブロック図である。補償ボックス540は、上述した測定プローブの他の要素と組み合わせて使用されても良い。
図2の補償ボックス240と比較して、
図5に示す補償ボックス540は、より少ない構成要素を有する。注目すべきことに、マルチプレクサ250及び乗算器260は除去され、従って、
図2の乗算器260から出力される電力信号は、補償ボックス540の出力を決定するマルチプレクサ570で選択可能ではなくなっている。代わりに、
図5の補償ボックス540に図示される構成要素を含む測定プローブは、上述したように、ソース電圧V
A、負荷電圧V
B又は差動増幅器243によって求められる電流I
RSを表す信号を生成する。
【0046】
図5に示すような補償ボックス540と
図2に示すようなプローブ・チップ220とで作られた測定プローブは、プローブ・チップのいずれのリード線も変更することなく、電圧信号又は電流信号のいずれかを測定装置に出力できる。そして、上述したように、補償ボックス540からマルチプレクサ570を省略又はバイパスすることにより、電源電圧V
A、負荷電圧V
B及び電流I
RSを同時に、測定装置の3つのチャンネルに同時に配信できる。あるいは、マルチプレクサ570が、ソース電圧V
Aと負荷電圧V
Bとの間で選択するように構成され、差動増幅器243からの出力が専用のチャンネルに配信された場合では、ユーザは、第1チャンネルについてソース電圧V
A又は負荷電圧V
Bのいずれかを選択することができ、同時に、電流I
RSを測定装置の別のチャンネルに供給する。
【0047】
本開示技術の態様は、特別に作成されたハードウェア、ファームウェア、デジタル・シグナル・プロセッサ又はプログラムされた命令に従って動作するプロセッサを含む特別にプログラムされた汎用コンピュータ上で動作できる。本願における「コントローラ」又は「プロセッサ」という用語は、マイクロプロセッサ、マイクロコンピュータ、ASIC及び専用ハードウェア・コントローラ等を意図する。本開示技術の態様は、1つ又は複数のコンピュータ(モニタリング・モジュールを含む)その他のデバイスによって実行される、1つ又は複数のプログラム・モジュールなどのコンピュータ利用可能なデータ及びコンピュータ実行可能な命令で実現できる。概して、プログラム・モジュールとしては、ルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含み、これらは、コンピュータその他のデバイス内のプロセッサによって実行されると、特定のタスクを実行するか、又は、特定の抽象データ形式を実現する。コンピュータ実行可能命令は、ハードディスク、光ディスク、リムーバブル記憶媒体、ソリッド・ステート・メモリ、RAMなどのコンピュータ可読記憶媒体に記憶しても良い。当業者には理解されるように、プログラム・モジュールの機能は、様々な実施例において必要に応じて組み合わせられるか又は分散されても良い。更に、こうした機能は、集積回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)などのようなファームウェア又はハードウェア同等物において全体又は一部を具体化できる。特定のデータ構造を使用して、本開示技術の1つ以上の態様をより効果的に実施することができ、そのようなデータ構造は、本願に記載されたコンピュータ実行可能命令及びコンピュータ使用可能データの範囲内と考えられる。
【0048】
開示された態様は、場合によっては、ハードウェア、ファームウェア、ソフトウェア又はこれらの任意の組み合わせで実現されても良い。開示された態様は、1つ以上のプロセッサによって読み取られ、実行され得る1つ又は複数のコンピュータ可読媒体によって運搬されるか又は記憶される命令として実現されても良い。そのような命令は、コンピュータ・プログラム・プロダクトと呼ぶことができる。本願で説明するコンピュータ可読媒体は、コンピューティング装置によってアクセス可能な任意の媒体を意味する。限定するものではないが、一例としては、コンピュータ可読媒体は、コンピュータ記憶媒体及び通信媒体を含んでいても良い。
【0049】
コンピュータ記憶媒体とは、コンピュータ読み取り可能な情報を記憶するために使用することができる任意の媒体を意味する。限定するものではないが、例としては、コンピュータ記憶媒体としては、ランダム・アクセス・メモリ(RAM)、読み出し専用メモリ(ROM)、電気消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリやその他のメモリ技術、コンパクト・ディスク読み出し専用メモリ(CD-ROM)、DVD(Digital Video Disc)やその他の光ディスク記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置やその他の磁気記憶装置、及び任意の技術で実装された任意の他の揮発性又は不揮発性の取り外し可能又は取り外し不能の媒体を含んでいても良い。コンピュータ記憶媒体としては、信号そのもの及び信号伝送の一時的な形態は除外される。
実施例
【0050】
以下では、本願で開示される技術の理解に有益な実施例が提示される。この技術の実施形態は、以下で記述する実施例の1つ以上及び任意の組み合わせを含んでいても良い。
【0051】
実施例1は、測定装置のために試験信号を生成するための測定プローブであって、被試験デバイス(DUT)の少なくとも第1試験ポイント及び第2試験ポイントに接続されるように構成されたプローブ・ヘッドと、上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に流れる電流を求めるように構成された上記測定プローブ内の電流検出部と、上記第1試験ポイントからの電圧信号又は上記第2試験ポイントからの電圧信号を、選択された電圧試験信号として上記測定装置に配信させる第1セレクタブル信号経路と、上記電流検出部の出力部からの電流信号を、選択された電流試験信号として測定装置に配信させる第2セレクタブル信号経路とを具える。
【0052】
実施例2は、実施例1による測定プローブであって、上記選択された電圧試験信号と上記選択された電流試験信号とが同時に測定装置に供給される。
【0053】
実施例3は、先行する実施例のいずれかによる測定プローブであって、ユーザが、上記選択された電圧試験信号及び上記選択された電流試験信号のいずれかを選択して、上記測定装置に供給する。
【0054】
実施例4は、実施例3による測定プローブであって、第1セレクタブル信号から第2セレクタブル信号に切り替える際に上記プローブ・ヘッドと上記DUTとの間の接続を壊す必要がない。
【0055】
実施例5は、先行する実施例のいずれかによる測定プローブであって、上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に結合されたデバイスに出入りする電力量を求めるように構成された上記測定プローブ内の電力検出部と、該電力検出部の出力部からの電力信号を、選択された電流試験信号として上記測定装置に配信させる第3セレクタブル信号経路とを更に具える。
【0056】
実施例6は、実施例5による測定プローブであって、上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に結合された上記デバイスがシャント抵抗である。
【0057】
実施例7は、実施例5による測定プローブであって、上記電力検出部は、乗算器であって、上記電流検出部の出力信号と上記第1試験ポイントからの上記電圧信号又は上記第2試験ポイントからの上記電圧信号とを乗算して電力信号を生成するように構成される。
【0058】
実施例8は、実施例7による測定プローブであって、上記電力検出部は、上記電流検出部の出力信号に、上記第1試験ポイントからの上記電圧信号と上記第2試験ポイントからの電圧信号の平均を乗算してコモン・モード電力信号を生成するように更に構成される。
【0059】
実施例9は、実施例5による測定プローブであって、上記電力検出部への複数の入力信号の位相角度のずれを低減するよう構成された位相整合部(phase aligner)を更に具える。
【0060】
実施例10は、測定システムであって、測定信号を受けるように構成された測定装置と、該測定装置用に上記測定信号を生成するための測定プローブとを具え、該測定プローブが被試験デバイス(DUT)の少なくとも第1試験ポイント及び第2試験ポイントに接続されるように構成されたプローブ・ヘッドと、上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に流れる電流を求めるように構成された上記測定プローブ内の電流検出部と、上記第1試験ポイントからの電圧信号又は上記第2試験ポイントからの電圧信号を、選択された電圧試験信号として上記測定装置に配信させる第1セレクタブル信号経路と、上記電流検出部の出力部からの電流信号を、選択された電流試験信号として上記測定装置に配信させる第2セレクタブル信号経路とを有する。
【0061】
実施例11は、実施例10による測定システムであって、上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に結合されたデバイスに出入りする電力量を求めるように構成された上記測定プローブ内の電力検出部と、該電力検出部の出力部からの電力信号を選択された電流試験信号として上記測定装置に配信させる第3セレクタブル信号経路とを更に具える。
【0062】
実施例12は、実施例11による測定システムであって、上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間に結合された上記デバイスがシャント抵抗である。
【0063】
実施例13は、実施例11による測定システムであって、上記電力検出部は、上記電流検出部の出力信号と上記第1試験ポイントからの上記電圧信号又は上記第2試験ポイントからの上記電圧信号とを乗算して電力信号を生成するように構成される乗算器を有する。
【0064】
実施例14は、実施例11による測定システムであって、上記電力検出部への複数の入力信号の位相角度のずれを低減するよう構成された位相整合部(phase aligner)を更に具える。
【0065】
実施例15は、測定装置による試験用信号を生成する測定プローブであって、DUTの抵抗の電圧ソース(voltage source:電圧源)側の第1試験ポイントに結合されると共に上記DUTの上記抵抗の負荷側の第2試験ポイントに結合される上記測定プローブにおける方法であって、上記DUTの上記第1試験ポイントと上記第2試験ポイントとの間の上記抵抗に流れる抵抗電流を示す信号を生成する処理と、上記抵抗電流、上記第1試験ポイントからの電圧信号又は上記第2試験ポイントからの電圧信号のいずれかを上記測定装置による上記試験用信号として上記測定装置に配信する処理とを具える方法。
【0066】
実施例16は、実施例方法15による方法であって、上記抵抗に出入りする電力を示す電力信号を生成する処理と、上記抵抗電流、上記電力信号、上記第1試験ポイントからの電圧信号又は上記第2試験ポイントからの電圧信号のいずれかを上記測定装置による上記試験用信号として上記測定装置に配信する処理とを更に具える。
【0067】
実施例17は、実施例16による方法であって、上記電圧信号の少なくとも1つと、上記抵抗電流とを同時に上記測定装置に供給する処理を更に具える。
【0068】
実施例18は、実施例方法16による方法であって、ユーザから上記測定装置による所望の試験用信号の選択を受ける処理と、ユーザが選択した上記試験用信号を上記測定装置に供給する処理とを更に具える。
【0069】
実施例19は、実施例方法15による方法であって、上記抵抗電流を示す信号を生成する処理が、上記DUTから検出された電圧をユーザ提供の抵抗値で割り算する処理を含む。
【0070】
実施例20は、実施例16による方法であって、電力信号を生成する処理が、上記抵抗電流を示す信号に上記DUTから検出された電圧信号を乗算する処理を含む。
【0071】
特許請求の範囲、要約及び図面を含め、本明細書に開示される全ての特徴と、開示される全ての方法又は処理における全ての工程は、互いに少なくとも一部分が排他的でない限り、任意に組み合わせても良い。特許請求の範囲、要約及び図面を含め、本明細書に開示される特徴の夫々は、特に明記されていない限り、同じ、等価又は類似の目的に寄与する代替の特徴で置き換えても良い。
【0072】
加えて、本願の説明は、特定の特徴に言及している。本明細書における開示には、これらの特定の特徴の全ての可能な組み合わせが含まれると理解すべきである。ある特定の特徴が特定の態様又は実施例に関連して開示される場合、その特徴は、可能である限り、他の態様及び実施例との関連においても利用できる。
【0073】
また、本願において、2つ以上の定義されたステップ又は工程を有する方法に言及する場合、これら定義されたステップ又は工程は、状況的にそれらの可能性を排除しない限り、任意の順序で又は同時に実行しても良い。
【0074】
説明の都合上、本発明の具体的な実施例を図示し、説明してきたが、本発明の要旨と範囲から離れることなく、種々の変更が可能なことが理解できよう。従って、本発明は、添付の請求項以外では、限定されるべきではない。
【符号の説明】
【0075】
100 マルチモード試験測定プローブ
104 プローブ・チップ
105 DUTからの信号
110 プローブ・ケーブル
111 プローブ・ケーブル
120 補償ボックス
122 測定モード・セレクタ
124 装置インタフェース
126 ユーザ・インタフェース
130 被試験デバイス(DUT)
140 試験測定装置
142 入力部
144 プロセッサ
146 メモリ
148 ユーザ・インタフェース
150 測定ユニット
200 測定プローブ
201 第1接地ノード
203 第2接地ノード
211 第1接地リード線
213 第2接地リード線
215 第1リード線
217 第2リード線
220 プローブ・チップ
225 第1接続ポイント
227 第2接続ポイント
221 第1アンプ
222 第2アンプ
232 第1ケーブル
236 第2ケーブル
240 補償ボックス
241 第1アンプ
242 第2アンプ
243 差動アンプ
245 第1減衰器
246 第2減衰器
250 マルチプレクサ
260 マルチプレクサ
270 マルチプレクサ
340 補償ボックス
342 位相調整部
440 補償ボックス
444 コモン・モード電圧部
448 マルチプレクサ
540 補償ボックス
570 マルチプレクサ
RS センス抵抗
【外国語明細書】