(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022187002
(43)【公開日】2022-12-15
(54)【発明の名称】抗腫瘍T細胞応答増強剤
(51)【国際特許分類】
A61K 39/395 20060101AFI20221208BHJP
A61P 35/00 20060101ALI20221208BHJP
A61K 31/7068 20060101ALI20221208BHJP
A61P 43/00 20060101ALI20221208BHJP
【FI】
A61K39/395 D
A61P35/00
A61K31/7068
A61P43/00 121
A61K39/395 N
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022172859
(22)【出願日】2022-10-28
(62)【分割の表示】P 2021074601の分割
【原出願日】2011-05-27
(31)【優先権主張番号】P 2010122951
(32)【優先日】2010-05-28
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000003311
【氏名又は名称】中外製薬株式会社
(71)【出願人】
【識別番号】504173471
【氏名又は名称】国立大学法人北海道大学
(74)【代理人】
【識別番号】100102978
【弁理士】
【氏名又は名称】清水 初志
(74)【代理人】
【識別番号】100102118
【弁理士】
【氏名又は名称】春名 雅夫
(74)【代理人】
【識別番号】100160923
【弁理士】
【氏名又は名称】山口 裕孝
(74)【代理人】
【識別番号】100119507
【弁理士】
【氏名又は名称】刑部 俊
(74)【代理人】
【識別番号】100142929
【弁理士】
【氏名又は名称】井上 隆一
(74)【代理人】
【識別番号】100148699
【弁理士】
【氏名又は名称】佐藤 利光
(74)【代理人】
【識別番号】100128048
【弁理士】
【氏名又は名称】新見 浩一
(74)【代理人】
【識別番号】100129506
【弁理士】
【氏名又は名称】小林 智彦
(74)【代理人】
【識別番号】100205707
【弁理士】
【氏名又は名称】小寺 秀紀
(74)【代理人】
【識別番号】100114340
【弁理士】
【氏名又は名称】大関 雅人
(74)【代理人】
【識別番号】100121072
【弁理士】
【氏名又は名称】川本 和弥
(72)【発明者】
【氏名】西村 孝司
(57)【要約】
【課題】癌患者の免疫機能を増強することで、優れた抗腫瘍効果を有する新規な癌治療剤を提供。
【解決手段】担癌生体にIL-6阻害剤、および/または、ゲムシタビン若しくはその塩を投与することにより優れた抗腫瘍T細胞の応答増強効果が得られることを見出した。さらにIL-6阻害剤とゲムシタビン若しくはその塩とを併用することにより相乗的なT細胞応答が増強され、優れた抗腫瘍効果が得られる抗腫瘍T細胞応答増強用組成物。
【選択図】なし
【特許請求の範囲】
【請求項1】
抗インターロイキン6(IL-6)受容体抗体を含有する、担癌生体の抗腫瘍T細胞応答増強用組成物であって、当該組成物は、抗IL-6受容体抗体、および、ゲムシタビン若しくはその塩を併用して投与されることを特徴とし、当該癌が頭頚部癌である、組成物。
【請求項2】
抗IL-6受容体抗体、および、ゲムシタビン若しくはその塩を含有する、請求項1に記載の抗腫瘍T細胞応答増強用組成物。
【請求項3】
前記抗IL-6受容体抗体がキメラ抗体、ヒト化抗体またはヒト抗体である、請求項1または2に記載の組成物。
【請求項4】
前記抗IL-6受容体抗体がTocilizumabである、請求項1~3のいずれかに記載の組成物。
【請求項5】
前記ゲムシタビン若しくはその塩がゲムシタビン塩酸塩である、請求項1~4のいずれかに記載の組成物。
【請求項6】
担癌生体における抗腫瘍T細胞応答の抗IL-6受容体抗体およびゲムシタビン若しくはその塩の併用による増強に使用するための剤の製造における抗IL-6受容体抗体の使用であって、当該癌が頭頚部癌である、使用。
【請求項7】
前記剤が、抗IL-6受容体抗体、およびゲムシタビン若しくはその塩を含有する剤である、請求項6に記載の使用。
【請求項8】
前記抗IL-6受容体抗体がキメラ抗体、ヒト化抗体またはヒト抗体である、請求項6または7に記載の使用。
【請求項9】
前記抗IL-6受容体抗体がTocilizumabである、請求項6~8のいずれかに記載の使用。
【請求項10】
前記ゲムシタビン若しくはその塩がゲムシタビン塩酸塩である、請求項6~9のいずれかに記載の使用。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、抗腫瘍T細胞応答増強用組成物に関する。さらに詳しくは、本発明は、インターロイキン6(IL-6)阻害剤、および/または、ゲムシタビン若しくはその塩を含有する抗腫瘍T細胞応答増強用組成物、若しくは、IL-6阻害剤とゲムシタビン若しくはその塩とを併用して投与することを特徴とする、IL-6阻害剤を含む抗腫瘍T細胞応答増強用組成物に関する。
【背景技術】
【0002】
IL-6はB 細胞刺激因子2 (BSF2)あるいはインターフェロンβ2 とも呼称されたサイトカインである。IL-6は、B リンパ球系細胞の活性化に関与する分化因子として発見され(非特許文献1)、その後、種々の細胞の機能に影響を及ぼす多機能サイトカインであることが明らかになった(非特許文献2)。IL-6は、T リンパ球系細胞の成熟化を誘導することが報告されている(非特許文献3)。
【0003】
IL-6は、細胞上で二種の蛋白質を介してその生物学的活性を伝達する。一つは、IL-6が結合する分子量約80kDのリガンド結合性蛋白質のIL-6受容体である (非特許文献4, 非特許文献5)。IL-6受容体は、細胞膜を貫通して細胞膜上に発現する膜結合型の他に、主にその細胞外領域からなる可溶性IL-6受容体としても存在する。
【0004】
特許文献1には、抗IL-6R(IL-6受容体)抗体の種種の形態、例えばヒト型化抗IL-6R抗体、キメラ抗IL-6R抗体、などが記載されている。特許文献2には、抗IL-6R抗体などのIL-6アンタゴニストを活性成分とする慢性関節リウマチ治療剤および滑膜細胞増殖抑制剤が記載されている。特許文献3には、プラズマサイトーシス、高イムノグロブリン血症、貧血、腎炎、悪液質、リウマチ、キャッスルマン病、メサンギウム増殖性腎炎、などのIL-6の生産に起因する疾患の治療について記載されている。特許文献4には、抗IL-6R抗体を有効成分とする、感作T細胞関与疾患、例えば多発性硬化症、ブドウ膜炎、慢性甲状腺炎、遅延性過敏症、接触性皮膚炎、アトピー性皮膚炎などの予防・治療剤が記載されている。
【0005】
特許文献5には、抗IL-6R抗体を有効成分とする、全身性エリテマトーデス治療剤が記載されている。特許文献6には、抗IL-6R抗体を有効成分とするクローン病の治療剤が記載されている。特許文献7には、抗IL-6R抗体を有効成分とする膵炎の治療剤が記載されている。特許文献8には、抗IL-6R抗体を有効成分とする乾癬の治療剤が記載されている。さらに、特許文献9には、抗IL-6R抗体を有効成分とする小児慢性関節炎の治療剤が記載されている。特許文献10には、抗IL-6R抗体を有効成分とする細胞の神経浸潤抑制剤が記載され、ヒト膵癌神経浸潤を抑制できることが記載されている。
【0006】
ゲムシタビン(塩酸塩)(ジェムザール(登録商標))は、リボヌクレオチドリダクターゼの阻害およびDNAへの取り込みに対するdCTPとの競合により、DNA合成を阻害するシトシン類縁体である。現在、膵臓癌などのいくつかの癌に対する治療剤として使用されている。放射線治療との併用剤としても使用されているが、膵臓癌患者の長期生存に有意の改善は達成されていない。また、他の有効な併用療法について、いくつかの試みがなされているが、生存率の改善についての報告はない。
なお、本出願の発明に関連する先行技術文献情報を以下に示す。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】Hirano, T. et al., Nature (1986) 324, 73-76
【非特許文献2】Akira, S. et al., Adv. in Immunology (1993) 54, 1-78
【非特許文献3】Lotz, M. et al., J. Exp. Med. (1988)167, 1253-1258
【非特許文献4】Taga, T. et al., J. Exp. Med. (1987) 166, 967-981
【非特許文献5】Yamasaki, K. et al., Science (1987) 241, 825-828
【特許文献】
【0008】
【特許文献1】WO92/19759
【特許文献2】WO96/11020
【特許文献3】WO96/12503
【特許文献4】WO98/42377
【特許文献5】WO98/42377
【特許文献6】WO99/47170
【特許文献7】WO00/10607
【特許文献8】WO02/3492
【特許文献9】WO02/080969
【特許文献10】WO2009/148148
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、癌患者の免疫機能を増強することで、優れた抗腫瘍効果を有する新規な癌治療剤を提供することにある。
【課題を解決するための手段】
【0010】
本発明者らは、上記課題を解決するために鋭意研究した結果、担癌生体において異常増殖する未熟ミエロイド細胞(ImC)による免疫抑制が、IL-6阻害剤、および/または、ゲムシタビン若しくはその塩を投与することによって改善され、T細胞応答が増強されることを見出し、本発明を完成した。さらにはIL-6阻害剤とゲムシタビン若しくはその塩とを併用することにより、相乗的なT細胞応答が増強され、優れた抗腫瘍効果が得られることを見出した。
【0011】
すなわち、本発明は、より具体的には以下の〔1〕~〔17〕を提供するものである。
〔1〕インターロイキン6(IL-6)阻害剤、および/または、ゲムシタビン若しくはその塩を含有する、担癌生体の抗腫瘍T細胞応答増強用組成物。
〔2〕IL-6阻害剤、および、ゲムシタビン若しくはその塩を併用して投与することを特徴とする、〔1〕に記載の抗腫瘍T細胞応答増強用組成物。
〔3〕前記IL-6阻害剤がIL-6受容体に結合する物質である、〔1〕または〔2〕に記載の組成物。
〔4〕前記IL-6受容体に結合する物質が抗IL-6受容体抗体である、〔3〕に記載の組成物。
〔5〕前記抗IL-6受容体抗体がキメラ抗体、ヒト化抗体またはヒト抗体である、〔4〕に記載の組成物。
〔6〕前記ゲムシタビン若しくはその塩がゲムシタビン塩酸塩である〔1〕~〔5〕に記載の組成物。
〔7〕IL-6阻害剤、および/または、ゲムシタビン若しくはその塩を担癌生体に投与する工程を含む、抗腫瘍T細胞応答を増強する方法。
〔8〕前記IL-6阻害剤がIL-6受容体に結合する物質である〔7〕に記載の方法。
〔9〕前記IL-6受容体に結合する物質が抗IL-6受容体抗体である〔8〕に記載の方法。
〔10〕前記抗IL-6受容体抗体がキメラ抗体、ヒト化抗体またはヒト抗体である〔9〕に記載の方法。
〔11〕前記ゲムシタビン若しくはその塩がゲムシタビン塩酸塩である〔7〕~〔10〕に記載の方法。
〔12〕担癌生体における抗腫瘍T細胞応答の増強に使用するための、IL-6阻害剤。
〔13〕IL-6阻害剤およびゲムシタビン若しくはその塩の併用により抗腫瘍T細胞応答を増強することを特徴とする、〔12〕に記載の阻害剤。
〔14〕前記IL-6阻害剤がIL-6受容体に結合する物質である〔13〕に記載の阻害剤。
〔15〕前記IL-6受容体に結合する物質が抗IL-6受容体抗体である〔14〕に記載の阻害剤。
〔16〕前記抗IL-6受容体抗体がキメラ抗体、ヒト化抗体またはヒト抗体である〔15〕に記載の阻害剤。
〔17〕前記ゲムシタビン若しくはその塩がゲムシタビン塩酸塩である〔13〕~〔16〕に記載の阻害剤。
【図面の簡単な説明】
【0012】
【
図1】メチルコラントレン誘発偏平上皮癌細胞株CMC-1を接種したBALB/cマウスにGEM(ジェムザール:塩酸ゲムシタビン)を投与した際の抗腫瘍効果を測定した結果を示す図である。
【
図2】CMC-1を接種した担癌マウスにGEM(ジェムザール:塩酸ゲムシタビン)を接種した後の脾臓内の各細胞群の絶対数をフローサイトメトリーにて解析した結果を示す図である。
【
図3】CMC-1を接種した担癌マウスにサイクロフォスファミド、5-FU、GEMを投与後に脾臓内CD8
+細胞を取得し、抗CD3抗体で刺激後の増殖能を評価した結果を示す図である。
【
図4】CMC-1を接種した担癌マウスにGEMを投与後、腫瘍径を計測した結果を示す図である。
【
図5】マウス肺癌細胞株 LLCに卵白アルブミン (OVA)遺伝子を導入したLLC-OVAを接種したC57BL6マウスに、GEMを投与後、OVA特異的CD8
+細胞傷害性T細胞の割合をフローサイトメトリーにて評価した結果を示す図である。
【
図6】メチルコラントレン誘発線維芽肉腫細胞株CMC-G4を接種したBALB/cマウスの血清中IL-6濃度を測定した結果を示す図である。
【
図7】CMC-G4を接種した担癌マウスに抗IL-6R抗体を投与した後の脾臓細胞を抗CD3抗体あるいはコンカナバリンA (ConA)で刺激した際のIFN-γ濃度をELISAにて測定した結果を示す図である。
【
図8】CMC-G4を接種した担癌マウスに抗IL-6R抗体を投与後、腫瘍径を計測した結果を示す図である。
【
図9】CMC-G4を接種した担癌マウスにGEMおよび抗IL-6R抗体を併用投与後、腫瘍径を計測した結果を示す図である。
【発明を実施するための形態】
【0013】
本発明において「IL-6阻害剤」とは、IL-6によるシグナル伝達を遮断し、IL-6の生物学的活性を阻害する物質である。IL-6阻害剤の具体的な例として、IL-6に結合する物質、IL-6受容体に結合する物質、gp130に結合する物質などを挙げることができる。また、IL-6阻害剤としては、IL-6による細胞内シグナルとして重要なSTAT3リン酸化を阻害する物質、例えばAG490などを挙げることができる。IL-6阻害剤には、特に限定されないが、抗IL-6抗体、抗IL-6受容体抗体、抗gp130抗体、IL-6改変体、可溶性IL-6受容体改変体、IL-6部分ペプチド、IL-6受容体部分ペプチド、これらと同様の活性を示す低分子化合物などが含まれる。
【0014】
IL-6阻害剤の好ましい態様として、IL-6受容体阻害剤、特に抗IL-6受容体抗体を挙げることができる。
【0015】
本発明で用いられる抗体の由来は特に限定されるものではないが、好ましくは哺乳動物由来であり、より好ましくはヒト由来の抗体を挙げることができる。
【0016】
本発明で使用される抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として得ることができる。本発明で使用される抗体として、特に哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来のモノクローナル抗体としては、ハイブリドーマに産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主に産生されるものがある。通常、この抗体はIL-6、IL-6受容体、gp130等と結合することにより、IL-6の生物学的活性の細胞内への伝達を遮断する。
【0017】
モノクローナル抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。すなわち、IL-6受容体、IL-6、gp130等を感作抗原として使用して、これを通常の免疫方法に従って免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリーニングすることによって作製できる。
【0018】
具体的には、モノクローナル抗体を作製するには次のようにすればよい。例えば、抗IL-6受容体抗体を作製する場合、抗体取得の感作抗原として使用されるヒトIL-6受容体は、欧州特許出願公開番号EP 325474に、マウスIL-6受容体は日本特許出願公開番号特開平3-155795に開示されたIL-6受容体遺伝子/アミノ酸配列を用いることによって得られる。
【0019】
IL-6受容体蛋白質は、細胞膜上に発現しているものと細胞膜より離脱しているもの(可溶性IL-6受容体)(Yasukawa, K. et al., J. Biochem. (1990) 108, 673-676)との二種類がある。可溶性IL-6受容体は細胞膜に結合しているIL-6受容体の実質的に細胞外領域から構成されており、細胞膜貫通領域あるいは細胞膜貫通領域と細胞内領域が欠損している点で膜結合型IL-6受容体と異なっている。IL-6受容体蛋白質は、本発明で用いられる抗IL-6受容体抗体の作製の感作抗原として使用されうる限り、いずれのIL-6受容体を使用してもよい。
【0020】
IL-6受容体の遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転換させた後、その宿主細胞中または、培養上清中から目的のIL-6受容体蛋白質を公知の方法で精製し、この精製IL-6受容体蛋白質を感作抗原として用いればよい。また、IL-6受容体を発現している細胞やIL-6受容体蛋白質と他の蛋白質との融合蛋白質を感作抗原として用いてもよい。
【0021】
同様に、IL-6を抗体取得の感作抗原として用いる場合には、ヒトIL-6は、Eur. J. Biochem (1987) 168, 543-550 、J. Immunol.(1988)140, 1534-1541 、あるいはAgr. Biol. Chem. (1990)54, 2685-2688に開示されたIL-6遺伝子/アミノ酸配列を用いることによって得られる。また、抗gp130抗体取得の感作抗原としは、欧州特許出願公開番号EP 411946に開示されたgp130遺伝子/アミノ酸配列を用いることができる。
【0022】
感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター等が使用される。
【0023】
感作抗原を動物に免疫するには、公知の方法に従って行われる。例えば、一般的方法として、感作抗原を哺乳動物の腹腔内または、皮下に注射することにより行われる。具体的には、感作抗原をPBS(Phosphate-Buffered Saline )や生理食塩水等で適当量に希釈、懸濁したものを所望により通常のアジュバント、例えば、フロイント完全アジュバントを適量混合し、乳化後、哺乳動物に4-21日毎に数回投与するのが好ましい。また、感作抗原免疫時に適当な担体を使用することができる。
【0024】
このように免疫し、血清中に所望の抗体レベルが上昇するのを確認した後に、哺乳動物から免疫細胞が取り出され、細胞融合に付される。細胞融合に付される好ましい免疫細胞としては、特に脾細胞が挙げられる。
【0025】
前記免疫細胞と融合される他方の親細胞としての哺乳動物のミエローマ細胞は、すでに、公知の種々の細胞株、例えば、P3X63Ag8.653(Kearney, J. F. et al. J. Immunol. (1979) 123, 1548-1550)、P3X63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7) 、NS-1(Kohler. G. and Milstein, C. Eur. J. Immunol.(1976) 6, 511-519)、MPC-11(Margulies. D. H. et al., Cell (1976) 8, 405-415)、SP2/0 (Shulman, M. et al., Nature (1978) 276, 269-270)、FO(de St. Groth, S. F. et al., J. Immunol. Methods (1980) 35, 1-21)、S194(Trowbridge, I. S. J. Exp. Med. (1978) 148, 313-323)、R210(Galfre, G. et al., Nature (1979) 277, 131-133)等が適宜使用される。
【0026】
前記免疫細胞とミエローマ細胞の細胞融合は基本的には公知の方法、例えば、ミルシュタインらの方法(Kohler. G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46)等に準じて行うことができる。
【0027】
より具体的には、前記細胞融合は例えば、細胞融合促進剤の存在下に通常の栄養培養液中で実施される。融合促進剤としては例えば、ポリエチレングリコール(PEG)、センダイウィルス(HVJ)等が使用され、さらに所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。
【0028】
免疫細胞とミエローマ細胞との使用割合は、例えば、ミエローマ細胞に対して免疫細胞を1~10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用可能であり、さらに、牛胎児血清(FCS)等の血清補液を併用することもできる。
【0029】
細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め、37℃程度に加温したPEG溶液、例えば、平均分子量1000~6000程度のPEG溶液を通常、30~60%(w/v)の濃度で添加し、混合することによって目的とする融合細胞(ハイブリドーマ)が形成される。続いて、適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等を除去できる。
【0030】
当該ハイブリドーマは、通常の選択培養液、例えば、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択される。当該HAT培養液での培養は、目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、通常数日~数週間継続する。ついで、通常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニングおよびクローニングが行われる。
【0031】
また、ヒト以外の動物に抗原を免疫して上記ハイブリドーマを得る他に、ヒトリンパ球をin vitroで所望の抗原蛋白質または抗原発現細胞で感作し、感作Bリンパ球をヒトミエローマ細胞、例えばU266と融合させ、所望の抗原または抗原発現細胞への結合活性を有する所望のヒト抗体を得ることもできる(特公平1-59878参照)。さらに、ヒト抗体遺伝子のレパートリーを有するトランスジェニック動物に抗原または抗原発現細胞を投与し、前述の方法に従い所望のヒト抗体を取得してもよい(国際特許出願公開番号WO 93/12227、WO 92/03918、WO 94/02602、WO 94/25585、WO 96/34096、WO 96/33735参照)。
【0032】
このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、通常の培養液中で継代培養することが可能であり、また、液体窒素中で長期保存することが可能である。
【0033】
当該ハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリドーマを通常の方法に従い培養し、その培養上清として得る方法、あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖させ、その腹水として得る方法などが採用される。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の方法は、抗体の大量生産に適している。
【0034】
例えば、抗IL-6受容体抗体産生ハイブリドーマの作製は、特開平3-139293に開示された方法により行うことができる。PM-1抗体産生ハイブリドーマをBALB/cマウスの腹腔内に注入して腹水を得、この腹水からPM-1抗体を精製する方法や、本ハイブリドーマを適当な培地、例えば、10%ウシ胎児血清、5%BM-Condimed H1(Boehringer Mannheim製)含有RPMI1640培地、ハイブリドーマSFM培地(GIBCO-BRL製)、PFHM-II培地(GIBCO-BRL製)等で培養し、その培養上清からPM-1抗体を精製する方法で行うことができる。
【0035】
本発明には、モノクローナル抗体として、抗体遺伝子をハイブリドーマからクローニングし、適当なベクターに組み込んで、これを宿主に導入し、遺伝子組換え技術を用いて産生させた組換え型抗体を用いることができる(例えば、Borrebaeck C. A. K. and Larrick J. W. THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990参照)。
【0036】
具体的には、目的とする抗体を産生する細胞、例えばハイブリドーマから、抗体の可変(V)領域をコードするmRNAを単離する。mRNAの単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299 )、AGPC法(Chomczynski, P. et al., Anal. Biochem. (1987)162, 156-159)等により全RNAを調製し、mRNA Purification Kit (Pharmacia製)等を使用してmRNAを調製する。また、QuickPrep mRNA Purification Kit(Pharmacia製)を用いることによりmRNAを直接調製することができる。
【0037】
得られたmRNAから逆転写酵素を用いて抗体V領域のcDNAを合成する。cDNAの合成は、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit等を用いて行うことができる。また、cDNAの合成および増幅を行うには5'-Ampli FINDER RACE Kit(Clontech製)およびPCRを用いた5'-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA(1988)85, 8998-9002;Belyavsky, A. et al., Nucleic Acids Res.(1989)17, 2919-2932)を使用することができる。得られたPCR産物から目的とするDNA断片を精製し、ベクターDNAと連結する。さらに、これより組換えベクターを作成し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とするDNAの塩基配列を公知の方法、例えば、デオキシ法により確認する。
【0038】
目的とする抗体のV領域をコードするDNAが得られれば、これを所望の抗体定常領域(C領域)をコードするDNAと連結し、これを発現ベクターへ組み込む。または、抗体のV領域をコードするDNAを、抗体C領域のDNAを含む発現ベクターへ組み込んでもよい。
【0039】
本発明で使用される抗体を製造するには、後述のように抗体遺伝子を発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させることができる。
【0040】
本発明では、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗体等を使用できる。これらの改変抗体は、既知の方法を用いて製造することができる。
【0041】
キメラ抗体は、前記のようにして得た抗体V領域をコードするDNAをヒト抗体C領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させることにより得られる(欧州特許出願公開番号EP 125023、国際特許出願公開番号WO 92-19759参照)。この既知の方法を用いて、本発明に有用なキメラ抗体を得ることができる。
【0042】
ヒト化抗体は、再構成(reshaped)ヒト抗体またはヒト型化抗体とも称され、ヒト以外の哺乳動物、例えばマウス抗体の相補性決定領域(CDR)をヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知られている(欧州特許出願公開番号EP 125023、国際特許出願公開番号WO 92-19759参照)。
【0043】
具体的には、マウス抗体のCDRとヒト抗体のフレームワーク領域(FR; framework region)を連結するように設計したDNA配列を、末端部にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドからPCR法により合成する。得られたDNAをヒト抗体C領域をコードするDNAと連結し、次いで発現ベクターに組み込んで、これを宿主に導入し産生させることにより得られる(欧州特許出願公開番号EP 239400、国際特許出願公開番号WO 92-19759参照)。
【0044】
CDRを介して連結されるヒト抗体のFRは、相補性決定領域が良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよい(Sato, K.et al., Cancer Res. (1993) 53, 851-856)。
【0045】
キメラ抗体、ヒト化抗体には、通常、ヒト抗体C領域が使用される。ヒト抗体重鎖C領域としては、Cγなどが挙げられ、例えば、Cγ1、Cγ2、Cγ3またはCγ4を使用することができる。ヒト抗体軽鎖C領域としては、例えば、κまたはλを挙げることができる。また、抗体またはその産生の安定性を改善するために、ヒト抗体C領域を修飾してもよい。
【0046】
キメラ抗体はヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来のC領域からなり、またヒト化抗体はヒト以外の哺乳動物由来抗体の相補性決定領域とヒト抗体由来のフレームワーク領域およびC領域からなり、これらはヒト体内における抗原性が低下しているため、医薬品として使用される抗体として有用である。
【0047】
本発明に使用されるヒト化抗体の好ましい具体例としては、ヒト化PM-1抗体が挙げられる(国際特許出願公開番号WO 92-19759参照)。
【0048】
また、ヒト抗体の取得方法としては先に述べた方法のほか、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現させ、抗原に結合するファージを選択することもできる。選択されたファージの遺伝子を解析すれば、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。抗原に結合するscFvのDNA配列が明らかになれば、当該配列を含む適当な発現ベクターを作製し、ヒト抗体を取得することができる。これらの方法は既に周知であり、WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, WO 95/15388を参考にすることができる。
【0049】
前記のように構築した抗体遺伝子は、公知の方法により発現させることができる。哺乳類細胞を用いた場合、常用される有用なプロモーター、発現される抗体遺伝子、その3'側下流にポリAシグナルを機能的に結合させたDNAあるいはそれを含むベクターにより発現させることができる。例えばプロモーター/エンハンサーとしては、ヒトサイトメガロウィルス前期プロモーター/エンハンサー(human cytomegalovirus immediate early promoter/enhancer)を挙げることができる。
【0050】
また、その他に本発明で使用される抗体発現に使用できるプロモーター/エンハンサーとして、レトロウィルス、ポリオーマウィルス、アデノウィルス、シミアンウィルス40(SV40)等のウィルスプロモーター/エンハンサーやヒトエロンゲーションファクター1α(HEF1α)などの哺乳類細胞由来のプロモーター/エンハンサーを用いればよい。
【0051】
例えば、SV40プロモーター/エンハンサーを使用する場合、Mulliganらの方法(Mulligan, R. C. et al., Nature (1979) 277, 108-114) 、また、HEF1αプロモーター/エンハンサーを使用する場合、Mizushimaらの方法(Mizushima, S. and Nagata, S. Nucleic Acids Res. (1990) 18, 5322)に従えば容易に実施することができる。
【0052】
宿主として原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、大腸菌(E.coli)、枯草菌が知られている。
【0053】
大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配列、発現させる抗体遺伝子を機能的に結合させて発現させることができる。例えばプロモーターとしては、lacZプロモーター、araBプロモーターを挙げることができる。lacZプロモーターを使用する場合、Wardらの方法(Ward, E. S. et al., Nature (1989) 341, 544-546;Ward, E. S. et al. FASEB J. (1992) 6, 2422-2427)、araBプロモーターを使用する場合、Betterらの方法(Better, M. et al. Science (1988) 240, 1041-1043)に従えばよい。
【0054】
抗体分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379-4383)を使用すればよい。ペリプラズムに産生された抗体を分離した後、抗体の構造を適切にリフォールド(refold)して使用する(例えば、WO96/30394を参照)。
【0055】
複製起源としては、SV40、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることができ、さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドホスホトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。
【0056】
本発明で使用される抗体の製造のために、任意の産生系を使用することができる。抗体製造のための産生系は、in vitroおよびin vivoの産生系がある。in vitroの産生系としては、真核細胞を使用する産生系や原核細胞を使用する産生系が挙げられる。
【0057】
宿主として真核細胞を使用する場合、動物細胞、植物細胞、または真菌細胞を用いる産生系がある。動物細胞としては、(1)哺乳類細胞、例えば、CHO、COS、ミエローマ、BHK(baby hamster kidney)、HeLa、Veroなど、(2)両生類細胞、例えば、アフリカツメガエル卵母細胞、あるいは(3)昆虫細胞、例えば、sf9、sf21、Tn5などが知られている。植物細胞としては、ニコチアナ・タバクム(Nicotiana tabacum)由来の細胞が知られており、これをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス(Saccharomyces)属、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)、糸状菌、例えばアスペルギルス属(Aspergillus)属、例えばアスペルギルス・ニガー(Aspergillus niger)などが知られている。
【0058】
これらの細胞に、目的とする抗体遺伝子を形質転換により導入し、形質転換された細胞をin vitroで培養することにより抗体が得られる。培養は、公知の方法に従い行う。例えば、培養液として、DMEM、MEM、RPMI1640、IMDMを使用することができ、牛胎児血清(FCS)等の血清補液を併用することもできる。また、抗体遺伝子を導入した細胞を動物の腹腔等へ移すことにより、in vivoにて抗体を産生してもよい。
【0059】
一方、in vivoの産生系としては、動物を使用する産生系や植物を使用する産生系が挙げられる。動物を使用する場合、哺乳類動物、昆虫を用いる産生系などがある。
【0060】
哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシなどを用いることができる(Vicki Glaser, SPECTRUM Biotechnology Applications, 1993)。また、昆虫としては、カイコを用いることができる。植物を使用する場合、例えばタバコを用いることができる。
【0061】
これらの動物または植物に抗体遺伝子を導入し、動物または植物の体内で抗体を産生させ、回収する。例えば、抗体遺伝子をヤギβカゼインのような乳汁中に固有に産生される蛋白質をコードする遺伝子の途中に挿入して融合遺伝子として調製する。抗体遺伝子が挿入された融合遺伝子を含むDNA断片をヤギの胚へ注入し、この胚を雌のヤギへ導入する。胚を受容したヤギから生まれるトランスジェニックヤギまたはその子孫が産生する乳汁から所望の抗体を得る。トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい(Ebert, K.M. et al., Bio/Technology (1994) 12, 699-702)。
【0062】
また、カイコを用いる場合、目的の抗体遺伝子を挿入したバキュロウィルスをカイコに感染させ、このカイコの体液より所望の抗体を得る(Maeda, S. et al., Nature (1985) 315, 592-594)。さらに、タバコを用いる場合、目的の抗体遺伝子を植物発現用ベクター、例えばpMON530に挿入し、このベクターをAgrobacterium tumefaciensのようなバクテリアに導入する。このバクテリアをタバコ、例えばNicotiana tabacumに感染させ、本タバコの葉より所望の抗体を得る(Julian, K.-C. Ma et al., Eur. J. Immunol.(1994)24, 131-138)。
【0063】
上述のようにin vitroまたはin vivoの産生系にて抗体を産生する場合、抗体重鎖(H鎖)または軽鎖(L鎖)をコードするDNAを別々に発現ベクターに組み込んで宿主を同時形質転換させてもよいし、あるいはH鎖およびL鎖をコードするDNAを単一の発現ベクターに組み込んで、宿主を形質転換させてもよい(国際特許出願公開番号WO 94-11523参照)。
【0064】
本発明で使用される抗体は、本発明に好適に使用され得るかぎり、抗体の断片やその修飾物であってよい。例えば、抗体の断片としては、Fab、F(ab')2、FvまたはH鎖とL鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)が挙げられる。
【0065】
具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し抗体断片を生成させるか、または、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる(例えば、Co, M.S. et al., J. Immunol. (1994) 152, 2968-2976、Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 476-496 、Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 497-515 、Lamoyi, E., Methods in Enzymology (1989) 121, 652-663 、Rousseaux, J. et al., Methods in Enzymology (1989) 121, 663-66、Bird, R. E. et al., TIBTECH (1991) 9, 132-137参照)。
【0066】
scFvは、抗体のH鎖V領域とL鎖V領域を連結することにより得られる。このscFvにおいて、H鎖V領域とL鎖V領域はリンカー、好ましくは、ペプチドリンカーを介して連結される(Huston, J. S. et al.、Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883)。scFvにおけるH鎖V領域およびL鎖V領域は、上記抗体として記載されたもののいずれの由来であってもよい。V領域を連結するペプチドリンカーとしては、例えばアミノ酸12-19残基からなる任意の一本鎖ペプチドが用いられる。
【0067】
scFvをコードするDNAは、前記抗体のH鎖または、H鎖V領域をコードするDNA、およびL鎖または、L鎖V領域をコードするDNAを鋳型とし、それらの配列のうちの所望のアミノ酸配列をコードするDNA部分を、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにペプチドリンカー部分をコードするDNAおよびその両端を各々H鎖、L鎖と連結されるように規定するプライマー対を組み合わせて増幅することにより得られる。
【0068】
また、一旦scFvをコードするDNAが作製されれば、それらを含有する発現ベクター、および該発現ベクターにより形質転換された宿主を常法に従って得ることができ、また、その宿主を用いて常法に従って、scFvを得ることができる。
【0069】
これら抗体の断片は、前記と同様にしてその遺伝子を取得し発現させ、宿主により産生させることができる。本発明でいう「抗体」にはこれらの抗体の断片も包含される。
【0070】
抗体の修飾物として、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を使用することもできる。本発明でいう「抗体」にはこれらの抗体修飾物も包含される。このような抗体修飾物を得るには、得られた抗体に化学的な修飾を施すことによって得ることができる。これらの方法はこの分野においてすでに確立されている。
【0071】
前記のように産生、発現された抗体は、細胞内外、宿主から分離し均一にまで精製することができる。本発明で使用される抗体の分離、精製はアフィニティークロマトグラフィーにより行うことができる。アフィニティークロマトグラフィーに用いるカラムとしては、例えば、プロテインAカラム、プロテインGカラムが挙げられる。プロテインAカラムに用いる担体として、例えば、HyperD、POROS、SepharoseF.F.等が挙げられる。その他、通常のタンパク質で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。
【0072】
例えば、上記アフィニティークロマトグラフィー以外のクロマトグラフィー、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせれば、本発明で使用される抗体を分離、精製することができる。クロマトグラフィーとしては、例えば、イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲルろ過等が挙げられる。これらのクロマトグラフィーはHPLC(High performance liquid chromatography)に適用し得る。また、逆相HPLC(reverse phase HPLC)を用いてもよい。
【0073】
上記で得られた抗体の濃度測定は吸光度の測定またはELISA等により行うことができる。すなわち、吸光度の測定による場合には、PBS(-)で適当に希釈した後、280nmの吸光度を測定し、1mg/mlを1.35ODとして算出する。また、ELISAによる場合は以下のように測定することができる。すなわち、0.1M重炭酸緩衝液(pH9.6)で1μg/mlに希釈したヤギ抗ヒトIgG(TAG製)100μlを96穴プレート(Nunc製)に加え、4℃で一晩インキュベーションし、抗体を固相化する。ブロッキングの後、適宜希釈した本発明で使用される抗体または抗体を含むサンプル、あるいは標品としてヒトIgG(CAPPEL製)100μlを添加し、室温にて1時間インキュベーションする。
【0074】
洗浄後、5000倍希釈したアルカリフォスファターゼ標識抗ヒトIgG(BIO SOURCE製)100μlを加え、室温にて1時間インキュベートする。洗浄後、基質溶液を加えインキュベーションの後、MICROPLATE READER Model 3550(Bio-Rad製)を用いて405nmでの吸光度を測定し、目的の抗体の濃度を算出する。
【0075】
抗IL-6抗体の具体的な例としては、特に限定されないが、MH166(Matsuda, T. et al., Eur. J. Immunol. (1998) 18, 951-956)やSK2抗体(Sato K et al., 第21回日本免疫学会総会、学術記録 (1991) 21, 166)などを挙げることができる。
【0076】
抗IL-6受容体抗体の具体的な例としては、特に限定されないが、MR16-1抗体(Tamura, T. et al. Proc. Natl. Acad. Sci. USA (1993) 90, 11924-11928)、PM-1抗体 (Hirata, Y. et al., J. Immunol. (1989) 143, 2900-2906)、AUK12-20抗体、AUK64-7抗体あるいはAUK146-15抗体(国際特許出願公開番号WO 92-19759)などが挙げられる。これらのうちで、ヒトIL-6受容体に対する好ましいモノクローナル抗体としてはPM-1抗体が例示され、またマウスIL-6受容体に対する好ましいモノクローナル抗体としてはMR16-1抗体が挙げられるが、これに限定されない。また、ヒト化抗IL-6受容体抗体の好ましい例としては、ヒト化PM-1抗体(Tocilizumab、MRA)を挙げることができる。ヒト化抗IL-6受容体抗体の他の好ましい例としてはWO2009/041621に記載された抗体を挙げることができる。さらに、抗IL-6受容体抗体の他の好ましい態様として、ヒト化PM-1抗体(Tocilizumab、MRA)が認識するエピトープと同じエピトープを認識する抗IL-6受容体抗体を挙げることができる。
【0077】
抗gp130抗体の具体的な例としては、特に限定されないが、AM64抗体(日本公開公報 特開平3-219894)、4B11抗体、2H4抗体(アメリカ特許公報 US5571513)、B-P8抗体(日本公開公報 特開平8-291199)などが挙げられる。
【0078】
本発明で使用されるIL-6改変体は、IL-6受容体との結合活性を有し、且つIL-6の生物学的活性を伝達しない物質である。即ち、IL-6改変体はIL-6受容体に対しIL-6と競合的に結合するが、IL-6の生物学的活性を伝達しないため、IL-6によるシグナル伝達を遮断する。
【0079】
IL-6改変体は、IL-6のアミノ酸配列のアミノ酸残基を置換することにより変異を導入して作製される。IL-6改変体のもととなるIL-6はその由来を問わないが、抗原性等を考慮すれば、好ましくはヒトIL-6である。具体的には、IL-6のアミノ酸配列を公知の分子モデリングプログラム、例えば、WHATIF(Vriend et al., J. Mol. Graphics (1990) 8, 52-56 )を用いてその二次構造を予測し、さらに置換されるアミノ酸残基の全体に及ぼす影響を評価することにより行われる。適切な置換アミノ酸残基を決定した後、ヒトIL-6遺伝子をコードする塩基配列を含むベクターを鋳型として、通常行われるPCR法によりアミノ酸が置換されるように変異を導入することにより、IL-6改変体をコードする遺伝子が得られる。これを必要に応じて適当な発現ベクターに組み込み、前記組換え型抗体の発現、産生および精製方法に準じてIL-6改変体を得ることができる。
【0080】
IL-6改変体の具体例としては、Brakenhoff et al., J. Biol. Chem. (1994) 269, 86-93 、およびSavino et al., EMBO J. (1994) 13, 1357-1367 、WO 96-18648 、WO96-17869に開示されているIL-6改変体を挙げることができる。
【0081】
IL-6受容体部分ペプチドはIL-6受容体のアミノ酸配列においてIL-6とIL-6受容体との結合に係わる領域の一部または全部のアミノ酸配列からなるペプチドである。このようなペプチドは、通常10~80、好ましくは20~50、より好ましくは20~40個のアミノ酸残基からなる。
【0082】
IL-6受容体部分ペプチドはIL-6受容体のアミノ酸配列において、IL-6とIL-6受容体との結合に係わる領域を特定し、その特定した領域の一部または全部のアミノ酸配列に基づいて通常知られる方法、例えば遺伝子工学的手法またはペプチド合成法により作製することができる。
【0083】
IL-6受容体部分ペプチドを遺伝子工学的手法により作製するには、所望のペプチドをコードするDNA配列を発現ベクターに組み込み、前記組換え型抗体の発現、産生および精製方法に準じて得ることができる。
【0084】
IL-6受容体部分ペプチドをペプチド合成法により作製するには、ペプチド合成において通常用いられている方法、例えば固相合成法または液相合成法を用いることができる。
【0085】
具体的には、続医薬品の開発第14巻ペプチド合成 監修矢島治明廣川書店1991年に記載の方法に準じて行えばよい。固相合成法としては、例えば有機溶媒に不溶性である支持体に合成しようとするペプチドのC末端に対応するアミノ酸を結合させ、α-アミノ基および側鎖官能基を適切な保護基で保護したアミノ酸をC末端からN末端方向の順番に1アミノ酸ずつ縮合させる反応と樹脂上に結合したアミノ酸またはペプチドのα-アミノ基の該保護基を脱離させる反応を交互に繰り返すことにより、ペプチド鎖を伸長させる方法が用いられる。固相ペプチド合成法は、用いられる保護基の種類によりBoc法とFmoc法に大別される。
【0086】
このようにして目的とするペプチドを合成した後、脱保護反応およびペプチド鎖の支持体からの切断反応をする。ペプチド鎖との切断反応には、Boc法ではフッ化水素またはトリフルオロメタンスルホン酸を、またFmoc法ではTFAを通常用いることができる。Boc法では、例えばフッ化水素中で上記保護ペプチド樹脂をアニソール存在下で処理する。次いで、保護基の脱離と支持体からの切断をしペプチドを回収する。これを凍結乾燥することにより、粗ペプチドが得られる。一方、Fmoc法では、例えばTFA中で上記と同様の操作で脱保護反応およびペプチド鎖の支持体からの切断反応を行うことができる。
【0087】
得られた粗ペプチドは、HPLCに適用することにより分離、精製することができる。その溶出にあたり、蛋白質の精製に通常用いられる水-アセトニトリル系溶媒を使用して最適条件下で行えばよい。得られたクロマトグラフィーのプロファイルのピークに該当する画分を分取し、これを凍結乾燥する。このようにして精製したペプチド画分について、マススペクトル分析による分子量解析、アミノ酸組成分析、またはアミノ酸配列解析等により同定する。
【0088】
本発明において「ゲムシタビン若しくはその塩」は、2’-デオキシ-2’,2’-ジフルオロシチジンまたはその塩を意味し、DNA鎖に取り込まれ、DNAの伸長を阻害することにより核酸合成を阻害する機能を有する。ゲムシタビンの塩としては特に塩酸ゲムシタビン(ジェムザール(登録商標))が好ましい。
【0089】
本発明のIL-6阻害剤、および、ゲムシタビン若しくはその塩は、担癌生体において異常増殖する免疫抑制機能を有する未熟ミエロイド細胞(ImC)を選択的に除去、あるいは、その免疫抑制機能を抑制し、抗腫瘍T細胞の応答増強に使用することが可能である。対象となる担癌生体の癌種は特に限定されず、膵癌、胃癌、前立腺癌、頭頚部癌、乳癌、肺癌、大腸癌、卵巣癌など如何なる癌種でもよい。
【0090】
本発明において「抗腫瘍T細胞の応答増強」とは、CD8+T細胞の細胞数の増加や活性の増強、インターフェロンγの産生量増加をも意味する。あるいは、本発明の「抗腫瘍T細胞の応答増強」効果によって抗腫瘍効果が得られることから、腫瘍組織の体積の減少も本発明の効果の一部と考えることができる。
【0091】
本発明においてIL-6阻害剤とゲムシタビン若しくはその塩とを「併用して投与する」とは、これらの薬剤を同時に、連続して、あるいは、一方を先に投与した後、時間をおいて投与してもよい。抗IL-6阻害剤とゲムシタビン若しくはその塩とを併用して投与する場合、その投与量は投与対象の体重、年齢、症状等により適宜調整することが可能である。
【0092】
上記投与方法、投与間隔、投与量は、本発明の効果同様の治療効果を示す投与方法、投与間隔、投与量を適宜選択することができる。例えば各薬剤の血中濃度を測定することにより上記好ましい例と同様の効果を示す投与方法、投与間隔、投与量を選択することが可能であり、上記例と同等の血中濃度を達成する投与方法、投与間隔、投与量も本発明に含まれる。
【0093】
本発明の組成物または薬剤が投与される対象は哺乳動物である。哺乳動物は、好ましくはヒトである。
【0094】
本発明の組成物または薬剤は、医薬品の形態で投与することが可能であり、経口的または非経口的に全身あるいは局所的に投与することができる。例えば、点滴などの静脈内注射、筋肉内注射、腹腔内注射、皮下注射、坐薬、注腸、経口性腸溶剤などを選択することができ、患者の年齢、症状により適宜投与方法を選択することができる。有効投与量は、一回につき体重1kgあたり0.01mgから100mgの範囲で選ばれる。あるいは、患者あたり1~1000mg、好ましくは5~50mgの投与量を選ぶことができる。好ましい投与量、投与方法は、例えば抗IL-6受容体抗体の場合には、血中にフリーの抗体が存在する程度の量が有効投与量であり、具体的な例としては、体重1kgあたり1ヶ月(4週間)に0.5mgから40mg、好ましくは1mgから20mgを1回から数回に分けて、例えば2回/週、1回/週、1回/2週、1回/4週などの投与スケジュールで点滴などの静脈内注射、皮下注射などの方法で、投与する方法などである。投与スケジュールは、患者の状態の観察および血液検査値の動向を観察しながら2回/週あるいは1回/週から1回/2週、1回/3週、1回/4週のように投与間隔を延ばしていくなど調整することも可能である。
【0095】
本発明においてIL-6阻害剤とゲムシタビン若しくはその塩とを併用して投与する場合、その投与量は投与対象の体重、年齢、症状等により適宜調整することが可能であるが、例えばIL-6阻害剤が抗IL-6R抗体である場合の投与量は、例えば、0.1~100mg/kg/週またはこれと同等の血中濃度を示す投与量であり、好ましくは1~50mg/kg/週またはこれと同等の血中濃度を示す投与量であり、さらに好ましくは5~20mg/kg/週またはこれと同等の血中濃度を示す投与量である。また、例えば免疫抑制剤が塩酸ゲムシタビンである場合、その投与量は、例えば、10~10000mg/m2/週またはこれと同等の血中濃度を示す投与量であり、好ましくは100~5000mg/m2/週またはこれと同等の血中濃度を示す投与量であり、さらに好ましくは500~1500mg/m2/週またはこれと同等の血中濃度を示す投与量である。
【0096】
本発明の組成物または薬剤には、保存剤や安定剤等の製剤上許容しうる担体が添加されていてもよい。製剤上許容しうる担体とは、上記の薬剤とともに投与可能な材料を意味する。製剤上許容される材料としては、例えば、滅菌水や生理食塩水、安定剤、賦形剤、緩衝剤、防腐剤、界面活性剤、キレート剤(EDTA等)、結合剤等を挙げることができる。
【0097】
本発明において、界面活性剤としては非イオン界面活性剤を挙げることができ、例えばソルビタンモノカプリレート、ソルビタンモノラウレート、ソルビタンモノパルミテート等のソルビタン脂肪酸エステル;グリセリンモノカプリレート、グリセリンモノミリステート、グリセリンモノステアレート等のグリセリン脂肪酸エステル;デカグリセリルモノステアレート、デカグリセリルジステアレート、デカグリセリルモノリノレート等のポリグリセリン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル;ポリオキシエチレンソルビットテトラステアレート、ポリオキシエチレンソルビットテトラオレエート等のポリオキシエチレンソルビット脂肪酸エステル;ポリオキシエチレングリセリルモノステアレート等のポリオキシエチレングリセリン脂肪酸エステル;ポリエチレングリコールジステアレート等のポリエチレングリコール脂肪酸エステル;ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシプロピレンプロピルエーテル、ポリオキシエチレンポリオキシプロピレンセチルエーテル等のポリオキシエチレンポリオキシプロピレンアルキルエーテル;ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル;ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油(ポリオキシエチレン水素ヒマシ油)等のポリオキシエチレン硬化ヒマシ油;ポリオキシエチレンソルビットミツロウ等のポリオキシエチレンミツロウ誘導体;ポリオキシエチレンラノリン等のポリオキシエチレンラノリン誘導体;ポリオキシエチレンステアリン酸アミド等のポリオキシエチレン脂肪酸アミド等のHLB6~18を有するもの、等を典型的例として挙げることができる。
【0098】
また、界面活性剤としては陰イオン界面活性剤も挙げることができ、例えばセチル硫酸ナトリウム、ラウリル硫酸ナトリウム、オレイル硫酸ナトリウム等の炭素原子数10~18のアルキル基を有するアルキル硫酸塩;ポリオキシエチレンラウリル硫酸ナトリウム等の、エチレンオキシドの平均付加モル数が2~4でアルキル基の炭素原子数が10~18であるポリオキシエチレンアルキルエーテル硫酸塩;ラウリルスルホコハク酸エステルナトリウム等の、アルキル基の炭素原子数が8~18のアルキルスルホコハク酸エステル塩;天然系の界面活性剤、例えばレシチン、グリセロリン脂質;スフィンゴミエリン等のフィンゴリン脂質;炭素原子数12~18の脂肪酸のショ糖脂肪酸エステル等を典型的例として挙げることができる。
【0099】
本発明の組成物または薬剤には、これらの界面活性剤の1種または2種以上を組み合わせて添加することができる。本発明の製剤で使用する好ましい界面活性剤は、ポリソルベート20,40,60または80などのポリオキシエチレンソルビタン脂肪酸エステルであり、ポリソルベート20および80が特に好ましい。また、ポロキサマー(プルロニックF-68(登録商標)など)に代表されるポリオキシエチレンポリオキシプロピレングリコールも好ましい。
【0100】
界面活性剤の添加量は使用する界面活性剤の種類により異なるが、ポリソルベート20またはポリソルベート80の場合では、一般には0.001~100mg/mLであり、好ましくは0.003~50mg/mLであり、さらに好ましくは0.005~2mg/mLである。
【0101】
本発明において緩衝剤としては、リン酸、クエン酸緩衝液、酢酸、リンゴ酸、酒石酸、コハク酸、乳酸、リン酸カリウム、グルコン酸、カプリル酸、デオキシコール酸、サリチル酸、トリエタノールアミン、フマル酸等 他の有機酸等、あるいは、炭酸緩衝液、トリス緩衝液、ヒスチジン緩衝液、イミダゾール緩衝液等を挙げることができる。
【0102】
また溶液製剤の分野で公知の水性緩衝液に溶解することによって溶液製剤を調製してもよい。緩衝液の濃度は一般には1~500mMであり、好ましくは5~100mMであり、さらに好ましくは10~20mMである。
【0103】
また、本発明の組成物または薬剤は、その他の低分子量のポリペプチド、血清アルブミン、ゼラチンや免疫グロブリン等の蛋白質、アミノ酸、多糖および単糖等の糖類や炭水化物、糖アルコールを含んでいてもよい。
【0104】
本発明においてアミノ酸としては、塩基性アミノ酸、例えばアルギニン、リジン、ヒスチジン、オルニチン等、またはこれらのアミノ酸の無機塩(好ましくは、塩酸塩、リン酸塩の形、すなわちリン酸アミノ酸)を挙げることができる。遊離アミノ酸が使用される場合、好ましいpH値は、適当な生理的に許容される緩衝物質、例えば無機酸、特に塩酸、リン酸、硫酸、酢酸、蟻酸またはこれらの塩の添加により調整される。この場合、リン酸塩の使用は、特に安定な凍結乾燥物が得られる点で特に有利である。調製物が有機酸、例えばリンゴ酸、酒石酸、クエン酸、コハク酸、フマル酸等を実質的に含有しない場合あるいは対応する陰イオン(リンゴ酸イオン、酒石酸イオン、クエン酸イオン、コハク酸イオン、フマル酸イオン等)が存在しない場合に、特に有利である。好ましいアミノ酸はアルギニン、リジン、ヒスチジン、またはオルニチンである。さらに、酸性アミノ酸、例えばグルタミン酸およびアスパラギン酸、およびその塩の形(好ましくはナトリウム塩)あるいは中性アミノ酸、例えばイソロイシン、ロイシン、グリシン、セリン、スレオニン、バリン、メチオニン、システイン、またはアラニン、あるいは芳香族アミノ酸、例えばフェニルアラニン、チロシン、トリプトファン、または誘導体のN-アセチルトリプトファンを使用することもできる。
【0105】
本発明において、多糖および単糖等の糖類や炭水化物としては、例えばデキストラン、グルコース、フラクトース、ラクトース、キシロース、マンノース、マルトース、スクロース、トレハロース、ラフィノース等を挙げることができる。
【0106】
本発明において、糖アルコールとしては、例えばマンニトール、ソルビトール、イノシトール等を挙げることができる。
【0107】
本発明の組成物または薬剤を注射用の水溶液とする場合には、例えば生理食塩水、ブドウ糖やその他の補助薬(例えば、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)を含む等張液と混合することができる。また該水溶液は、適当な溶解補助剤(例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、PEG等)、非イオン性界面活性剤(ポリソルベート80、HCO-50)等)と併用してもよい。
【0108】
所望によりさらに希釈剤、溶解補助剤、pH調整剤、無痛化剤、含硫還元剤、酸化防止剤等を含有してもよい。
【0109】
本発明において、含硫還元剤としては、例えば、N-アセチルシステイン、N-アセチルホモシステイン、チオクト酸、チオジグリコール、チオエタノールアミン、チオグリセロール、チオソルビトール、チオグリコール酸およびその塩、チオ硫酸ナトリウム、グルタチオン、並びに炭素原子数1~7のチオアルカン酸等のスルフヒドリル基を有するもの等を挙げることができる。
【0110】
また、本発明において酸化防止剤としては、例えば、エリソルビン酸、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、α-トコフェロール、酢酸トコフェロール、L-アスコルビン酸およびその塩、L-アスコルビン酸パルミテート、L-アスコルビン酸ステアレート、亜硫酸水素ナトリウム、亜硫酸ナトリウム、没食子酸トリアミル、没食子酸プロピルあるいはエチレンジアミン四酢酸二ナトリウム(EDTA)、ピロリン酸ナトリウム、メタリン酸ナトリウム等のキレート剤を挙げることができる。
【0111】
また、必要に応じ、マイクロカプセル(ヒドロキシメチルセルロース、ゼラチン、ポリ[メチルメタクリル酸]等のマイクロカプセル)に封入したり、コロイドドラッグデリバリーシステム(リポソーム、アルブミンミクロスフェア、マイクロエマルジョン、ナノ粒子およびナノカプセル等)とすることもできる("Remington's Pharmaceutical Science 16th edition", Oslo Ed., 1980等参照)。さらに、組成物または薬剤を徐放化する方法も公知であり、本発明に適用し得る(Langer et al., J.Biomed.Mater.Res. 1981, 15: 167-277; Langer, Chem. Tech. 1982, 12: 98-105; 米国特許第3,773,919号; 欧州特許出願公開(EP)第58,481号; Sidman et al., Biopolymers 1983, 22: 547-556; EP第133,988号)。
【0112】
使用される製剤上許容しうる担体は、剤型に応じて上記の中から適宜あるいは組み合わせて選択されるが、これらに限定されるものではない。
【0113】
本発明の組成物または薬剤が投与される対象は、本発明の組成物または薬剤を投与する生物体、該生物体の体内の一部分をいう。生物体は、特に限定されるものではないが、動物(例えば、ヒト、家畜動物種、野生動物)を含む。
【0114】
また、生物体の体内の一部分については特に限定されないが、好ましくは疾患部位などを挙げることができる。
【0115】
本発明において、「投与する」とは、経口的、あるいは非経口的に投与することが含まれる。経口的な投与としては、経口剤という形での投与を挙げることができ、経口剤としては、顆粒剤、散剤、錠剤、カプセル剤、溶剤、乳剤、あるいは懸濁剤等の剤型を選択することができる。
【0116】
非経口的な投与としては、注射剤という形での投与を挙げることができ、注射剤としては、皮下注射剤、筋肉注射剤、あるいは腹腔内注射剤等を挙げることができる。また、本発明の薬剤を、処置を施したい領域に局所的に投与することもできる。例えば、手術中の局所注入、カテーテルの使用により投与することも可能である。
【0117】
本発明の方法を実践する際に、本発明の薬剤は、他の薬剤(例えば、他の癌細胞治療剤や癌ワクチン)と共に薬学的組成物の一部として投与されてもよい。一つの態様において、本発明の薬剤および他の薬剤は、実質的に同時に投与されてもよい。
なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
【実施例0118】
本発明を実施例によりさらに詳しく説明するが、本発明はこれに限定されない。種々の変更、修飾が当業者には可能であり、これらの変更、修飾も本発明に含まれる。
【0119】
〔実施例1〕塩酸ゲムシタビン(GEM)による抗腫瘍効果-1
メチルコラントレン誘発偏平上皮癌細胞株 CMC-1 (2x10
6)をBALB/cマウスに皮内接種し、5日後よりGEM (ジェムザール:塩酸ゲムシタビン)(120 mg/kg)を1週間毎に腹腔内投与した。腫瘍の増殖を2日毎に計測し、GEMによる抗腫瘍効果を評価した。その結果を
図1に示した。
CMC-1接種後30日の担癌マウスにGEMを接種し、48時間後、脾臓内の各細胞群の絶対数をフローサイトメトリーにて解析した。その結果を
図2に示した。CMC-1接種後30日の担癌マウスにサイクロフォスファミド (CY)(60 mg/kg)、フルオロ-5-ウラシル(5-FU) (120 mg/kg)、GEMを腹腔内投与した。48時間後、脾臓内CD8
+細胞を単離し、固層化抗CD3抗体 (2 μg/ml)にて60時間刺激後の増殖能を
3H取り込み試験にて評価した。その結果を
図3に示した。
これらの結果から、GEMが免疫抑制細胞を排除し、担癌生体のCD8
+T細胞に対して優れた増殖促進効果を有することが示された。当該効果は、CYや5-FUでは確認することができなかった。また、腫瘍増殖抑制効果を有することも確認することができた。
【0120】
〔実施例2〕塩酸ゲムシタビン(GEM)による抗腫瘍効果-2
CMC-1(2x10
6)をBALB/cマウスに皮内接種後、5日後よりGEM (120 mg/kg)を1週間毎に腹腔内投与、抗CD8抗体 (250 μg)を3日毎に静脈内投与し、腫瘍径を2日毎に計測した。その結果を
図4に示した。
マウス肺癌細胞株 LLCに卵白アルブミン (OVA)遺伝子を導入したLLC-OVA (2x10
6)をC57BL6マウスに皮内接種し、5日後にGEM (120 mg/kg)を腹腔内投与した。9日後に、所属リンパ節を採取し、OVA特異的CD8
+細胞傷害性T細胞の割合をフローサイトメトリーにて評価した。その結果を
図5に示した。
これらの結果から、GEMによるCD8
+T細胞の活性増加を介して、抗腫瘍効果が認められていることを確認することができた。
【0121】
〔実施例3〕抗IL-6R抗体(MR16-1)による抗腫瘍効果-1
メチルコラントレン誘発線維芽肉腫細胞株CMC-G4 (2x10
6)をBALB/cマウスに皮内接種し、1週間後および2週間後の血清中IL-6濃度をELISAにて測定した。その結果を
図6に示した。CMC-G4を皮内接種後、3日毎に抗IL-6受容体抗体(MR16-1:Tamura, T. et al. Proc. Natl. Acad. Sci. USA (1993) 90, 11924-11928) (250 μg)を静脈内投与した。28日後に脾臓細胞を採取し、抗CD3抗体 (2 μg/ml)、あるいはコンカナバリンA (ConA:2.5μg/ml)存在下で36時間培養後の培養上清中IFN-γ濃度をELISAにて測定した。その結果を
図7に示した。さらに、腫瘍径を2日毎に測定し、腫瘍増殖抑制効果を評価した。その結果を
図8に示した。
これらの結果から、抗IL-6受容体抗体が担癌生体におけるIFN-γの産生を促進させる効果を有していることが明らかとなった。当該結果から、抗IL-6受容体抗体もGEM同様に免疫担当細胞に対して優れた活性化促進効果を有することが示された。また、腫瘍増殖抑制効果を有することも確認することができた。
【0122】
〔実施例4〕抗IL-6R抗体(MR16-1)とGEMによる併用治療効果
CMC-G4 (2x10
6)をBALB/cマウスに皮内接種後、6日後からGEM (120 mg/kg)を1週間毎に腹腔内投与、抗IL-6受容体抗体 MR16-1 (200 μg)を3日毎に静脈内投与し、腫瘍径を2日毎に計測した。その結果を
図9に示した。
当該結果から、ゲムシタビン(GEM)および抗IL-6受容体抗体(MR16-1)を併用することにより、それぞれ単独で投与したときよりも優れた抗腫瘍効果が得られることが明らかとなった。
本発明において、担癌生体にIL-6阻害剤、および/または、ゲムシタビン若しくはその塩を投与することにより優れた抗腫瘍T細胞の応答増強効果が得られることが示された。さらに、当該応答増強効果により優れた抗腫瘍効果が得られることが示された。