IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

特開2022-189900画像処理装置、内視鏡システム及び画像処理装置の作動方法
<>
  • 特開-画像処理装置、内視鏡システム及び画像処理装置の作動方法 図1
  • 特開-画像処理装置、内視鏡システム及び画像処理装置の作動方法 図2
  • 特開-画像処理装置、内視鏡システム及び画像処理装置の作動方法 図3
  • 特開-画像処理装置、内視鏡システム及び画像処理装置の作動方法 図4
  • 特開-画像処理装置、内視鏡システム及び画像処理装置の作動方法 図5
  • 特開-画像処理装置、内視鏡システム及び画像処理装置の作動方法 図6
  • 特開-画像処理装置、内視鏡システム及び画像処理装置の作動方法 図7
  • 特開-画像処理装置、内視鏡システム及び画像処理装置の作動方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022189900
(43)【公開日】2022-12-22
(54)【発明の名称】画像処理装置、内視鏡システム及び画像処理装置の作動方法
(51)【国際特許分類】
   A61B 1/045 20060101AFI20221215BHJP
   A61B 1/00 20060101ALI20221215BHJP
   G06V 10/82 20220101ALI20221215BHJP
   G06T 7/00 20170101ALI20221215BHJP
【FI】
A61B1/045 618
A61B1/045 614
A61B1/045 622
A61B1/00 513
A61B1/045 617
A61B1/00 511
A61B1/045 610
G06V10/82
G06T7/00 350C
G06T7/00 612
【審査請求】有
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022168121
(22)【出願日】2022-10-20
(62)【分割の表示】P 2020528760の分割
【原出願日】2019-06-13
(31)【優先権主張番号】P 2018128168
(32)【優先日】2018-07-05
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(74)【代理人】
【識別番号】100170069
【弁理士】
【氏名又は名称】大原 一樹
(74)【代理人】
【識別番号】100128635
【弁理士】
【氏名又は名称】松村 潔
(74)【代理人】
【識別番号】100140992
【弁理士】
【氏名又は名称】松浦 憲政
(72)【発明者】
【氏名】内藤 慧
(72)【発明者】
【氏名】加門 駿平
(57)【要約】
【課題】複数の画像を元に認識精度の向上を図ることができ、かつ良好な観察用画像及び認識結果を提示することができる画像処理装置、内視鏡システム及び画像処理装置の作動方法を提供する。
【解決手段】複数の異なる観察光を用いて順次取得された複数の画像からなる画像セットを受け付け、画像セットに対する認識結果を出力する認識器15と、複数の画像の一部もしくは複数の画像を用いて算出された観察用画像及び認識結果を表示部14に表示させる内視鏡プロセッサ13の表示制御部66と、を備える。認識器15は、複数の異なる観察光を用いて順次取得された画像セットを受け付け、その画像セットに対する認識結果を取得するため、1つの観察光により取得された1つの画像を元に、その画像の認識を行う場合に比べて認識精度を向上させることができる。
【選択図】 図6
【特許請求の範囲】
【請求項1】
通常光と特殊光とを用いて取得された内視鏡画像である通常光画像と特殊光画像とからなる画像セットを受け付け、前記画像セットに対する認識結果を出力する1つの認識器と、
前記画像セットの一部もしくは前記画像セットを用いて算出された観察用画像及び前記認識結果を表示部に表示させる表示制御部と、を備え、
前記画像セットは、前記通常光と前記特殊光とにより観察対象が照明され、前記通常光により撮像された前記通常光画像と、前記通常光と前記通常光との間の前記特殊光により撮像された前記特殊光画像とからなり、
前記認識器は、学習用の前記画像セットと正解データとをセットにして学習した学習済みモデルを有し、認識用の前記画像セットを受け付ける毎に前記学習済みモデルに基づいて前記認識結果を出力する、
画像処理装置。
【請求項2】
前記学習済みモデルは、畳み込みニューラルネットワークで構成される請求項1に記載の画像処理装置。
【請求項3】
前記特殊光画像は、2以上の異なる特殊光により撮像された2以上の特殊光画像を含む請求項1又は2に記載の画像処理装置。
【請求項4】
前記表示制御部は、前記画像セットの一部もしくは前記画像セットを用いて算出された観察用画像を、動画として前記表示部に表示させる請求項1から3のいずれか1項に記載の画像処理装置。
【請求項5】
前記認識器は、前記認識用の前記画像セットに含まれる注目領域を認識し、
前記表示制御部は、前記認識された前記注目領域を示す指標を、前記表示部に表示された前記観察用画像上に重畳して表示させる請求項1から4のいずれか1項に記載の画像処理装置。
【請求項6】
前記認識器は、前記認識用の画像セットに含まれる注目領域を認識し、
前記表示制御部は、前記注目領域の有無を表す情報を前記表示部に表示された前記観察用画像と重ならないように表示させる請求項1から4のいずれか1項に記載の画像処理装置。
【請求項7】
前記認識器は、前記認識用の画像セットに基づいて病変に関する鑑別を実行して鑑別結果を出力し、
前記表示制御部は、前記鑑別結果を前記表示部に表示させる請求項1から6のいずれか1項に記載の画像処理装置。
【請求項8】
前記通常光と前記特殊光とを順次発生する光源装置と、
前記通常光と前記特殊光とにより順次照明された観察対象を順次撮像することにより前記通常光画像と前記特殊光とを順次撮像する内視鏡スコープと、
前記表示部と、
請求項1から7のいずれか1項に記載の画像処理装置と、を備え、
前記認識器は、前記内視鏡スコープが撮像する前記通常光画像と前記特殊光画像とからなる前記画像セットを受け付ける内視鏡システム。
【請求項9】
前記内視鏡スコープが撮像する前記通常光画像と前記特殊光画像とを受け付け、前記通常光画像と前記特殊光画像との画像処理を行う内視鏡プロセッサを備え、
前記認識器は、前記内視鏡プロセッサによる画像処理後の前記通常光画像と前記特殊光画像とからなる前記画像セットを受け付ける請求項8に記載の内視鏡システム。
【請求項10】
1つの認識器と表示制御部とを有する画像処理装置の作動方法であって、
前記認識器が、通常光と特殊光とを用いて取得された内視鏡画像である通常光画像と特殊光画像とからなる画像セットを受け付ける第1ステップと、
前記認識器が、前記画像セットに対する認識結果を出力する第2ステップと、
前記表示制御部が、認識用の前記画像セットを受け付け、前記画像セットの一部もしくは前記画像セットを用いて算出された観察用画像及び前記認識結果を表示部に表示させる第3ステップと、を含み、
前記第1ステップから前記第3ステップの処理を繰り返し実行し、
前記画像セットは、前記通常光と前記特殊光とにより観察対象が照明され、前記通常光により撮像された前記通常光画像と、前記通常光と前記通常光との間の前記特殊光により撮像された前記特殊光画像とからなり、
前記第2ステップは、学習用の前記画像セットと正解データとをセットにして学習した学習済みモデルを有する前記認識器が、認識用の前記画像セットを受け付ける毎に前記学習済みモデルに基づいて前記認識結果を出力する、
画像処理装置の作動方法。
【請求項11】
前記学習済みモデルは、畳み込みニューラルネットワークで構成される請求項10に記載の画像処理装置の作動方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は画像処理装置、内視鏡システム及び画像処理装置の作動方法に係り、特に内視鏡検査において医師の支援に利用可能な技術に関する。
【背景技術】
【0002】
医療分野においては、内視鏡装置を用いた検査が行われている。近年においては、画像解析によって内視鏡画像に含まれる病変の位置や病変の種類の認識を行い、認識結果を報知することで検査を支援することが知られている。
【0003】
認識のための画像解析においては、深層学習(Deep Learning)をはじめとする画像の機械学習が広く使用されている。
【0004】
特許文献1には、時系列に沿って撮影された細胞の複数の画像を取得する取得部と、取得された複数の画像に対して、所定の1以上の評価項目の各々に関して、時系列に沿った評価値を付与する付与部と、付与された時系列に沿った評価値の時間変化に基づいて、細胞を評価する評価部とを具備する情報処理装置が提案されている。ここで、評価部は、時系列に沿って撮影された細胞の複数の画像に対して、機械学習アルゴリズムにしたがって時系列に沿った評価値を付与し、付与した評価値の時間変化に基づいて観察対象となる細胞を評価している。これにより、細胞の時系列的な評価を総合的に鑑みた評価を可能にしている。
【0005】
また、特許文献2には、動画中のデータ列である時系列入力データを取得し、時系列入力データにおける一の時点の入力データに対応する複数の入力値を、時系列入力データに対応する学習済みのモデル(ボルツマンマシンを構成するモデル)が有する複数のノードに供給し、時系列入力データにおける予測対象時点より前の入力データ系列と、モデルにおける入力データ系列中の入力データに対応する複数の入力値のそれぞれと複数のノードのそれぞれとの間の重みパラメータとに基づいて、入力データ系列が発生した条件下において予測対象時点に対応する各入力値となる条件付確率を算出し、予測対象時点に対応する各入力値の条件付確率に基づいて、時系列入力データが発生した条件の下で次の入力データが予め定められた値となる条件付確率を算出する処理装置が提案されている。
【0006】
この処理装置は、一例として時系列に並ぶT-1個の画像データに基づき、次の時刻に配列される1つの画像データを予測して、合計T個の画像を含む動画を生成することができる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2018-22216号公報
【特許文献2】特開2016-71697号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1に記載の情報処理装置は、時系列に沿って撮像された複数の画像により、撮像対象である細胞(受精卵)の培養過程における種々の変化等を評価するものであり、複数の画像は、同じ撮像条件で撮像されたものである。同じ撮像条件で撮像しなければ、取得した複数の画像から受精卵の変化を評価することができないからである。即ち、複数の画像は、異なる観察光を用いて順次取得された画像ではない。
【0009】
特許文献2に記載の処理装置は、時系列入力データを入力する学習済みモデルにより、次の時刻の画像データの予測を可能にするものであり、時系列入力データは、同じ撮像条件で撮像されたものである。同じ撮像条件で撮像しなければ、入力する時系列入力データから次の時刻の画像データを予測することができないからである。即ち、時系列入力データは、異なる観察光を用いて順次取得された入力データではない。
【0010】
また、特許文献1、2に記載の発明は、いずれも経時変化する対象(細胞、将来の動画)を予測するために時系列の複数の画像を入力しており、認識器での認識精度を向上させる目的で複数の画像を入力するものではない。
【0011】
本発明はこのような事情に鑑みてなされたもので、複数の画像を元に認識精度の向上を図ることができ、かつ良好な観察用画像及び認識結果を提示することができる画像処理装置、内視鏡システム及び画像処理装置の作動方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記目的を達成するために本発明の一の態様に係る画像処理装置は、複数の異なる観察光を用いて順次取得された複数の画像からなる画像セットを受け付け、画像セットに対する認識結果を出力する認識器と、複数の画像の一部もしくは複数の画像を用いて算出された観察用画像及び認識結果を表示部に表示させる表示制御部と、を備える。
【0013】
本発明の一の態様によれば、複数の異なる観察光を用いて順次取得された画像セットを入力し、その画像セットに対する認識結果を取得するため、1つの観察光により取得された1つの画像を元に、その画像の認識を行う場合に比べて認識精度を向上させることができる。また、複数の画像から得られる観察用画像とともに、認識結果を表示部に表示させることで、認識結果を適切に提示することができる。
【0014】
本発明の他の態様に係る画像処理装置において、認識器は、学習用の複数の画像と正解データとをセットにして学習した学習済みモデルを有し、認識用の複数の画像を受け付ける毎に学習済みモデルに基づいて認識結果を出力することが好ましい。
【0015】
本発明の更に他の態様に係る画像処理装置において、学習済みモデルは、畳み込みニューラルネットワークで構成されることが好ましい。畳み込みニューラルネットワークは、画像に対する認識に優れている。
【0016】
本発明の更に他の態様に係る画像処理装置において、複数の画像は、第1内視鏡画像及び第1内視鏡画像とは異なる観察光を用いて取得された第2内視鏡画像を含むことが好ましい。内視鏡検査では、複数の異なる観察光を用いて複数の画像を取得する場合があり、この場合の内視鏡検査に適用することができる。
【0017】
本発明の更に他の態様に係る画像処理装置において、第1内視鏡画像は、通常光で撮像された通常光画像であり、第2内視鏡画像は、特殊光で撮像された特殊光画像であることが好ましい。一般に、通常光画像は観察用画像として使用され、特殊光画像は表面構造を観察したい場合に使用される。
【0018】
本発明の更に他の態様に係る画像処理装置において、特殊光画像は、2以上の異なる特殊光により撮像された2以上の特殊光画像を含む。観察したい表面構造の深さが異なる場合等の観察目的に応じて、2以上の特殊光画像が撮像され得る。
【0019】
本発明の更に他の態様に係る画像処理装置において、第1内視鏡画像は、第1特殊光で撮像された第1特殊光画像であり、第2内視鏡画像は、第1特殊光とは異なる第2特殊光で撮像された第2特殊光画像である。即ち、複数の内視鏡画像には、通常光画像が含まれない場合もある。
【0020】
本発明の更に他の態様に係る画像処理装置において、表示制御部は、複数の画像の一部もしくは複数の画像を用いて算出された観察用画像を、動画として表示部に表示させることが好ましい。これにより、動画として表示される観察用画像及び認識結果を見ながらリアルタイムに検査が可能になる。
【0021】
本発明の更に他の態様に係る画像処理装置において、認識器は、複数の画像に含まれる注目領域を認識し、表示制御部は、認識された注目領域を示す指標を、表示部に表示された画像上に重畳して表示させることが好ましい。これにより、観察用画像内の注目領域の見落としがないように検査の支援を行うことができる。
【0022】
本発明の更に他の態様に係る画像処理装置において、認識器は、複数の画像に含まれる注目領域を認識し、表示制御部は、注目領域の有無を表す情報を表示部に表示された画像と重ならないように表示させることが好ましい。これにより、観察用画像内に注目領域が存在することを報知することができ、また、表示部に表示される情報により観察画像の観察が阻害されないようにすることができる。
【0023】
本発明の更に他の態様に係る画像処理装置において、認識器は、複数の画像に基づいて病変に関する鑑別を実行して鑑別結果を出力し、表示制御部は、鑑別結果を表示部に表示させることが好ましい。これにより、認識器による鑑別結果を参考にしながら観察用画像の目視による検査が可能になる。
【0024】
本発明の更に他の態様に係る内視鏡システムは、第1観察光と第1観察光と異なる第2観察光とを順次発生する光源装置と、第1観察光と第2観察光により順次照明された観察対象を順次撮像することにより複数の画像を撮像する内視鏡スコープと、表示部と、上記の画像処理装置と、を備え、認識器は、内視鏡スコープが撮像する複数の画像からなる画像セットを受け付ける。
【0025】
本発明の更に他の態様に係る内視鏡システムにおいて、内視鏡スコープが撮像する複数の画像を受け付け、複数の画像の画像処理を行う内視鏡プロセッサを備え、認識器は、内視鏡プロセッサによる画像処理後の複数の画像を受け付けることが好ましい。内視鏡プロセッサは、内視鏡スコープが撮像する複数の画像を画像処理する機能を備えており、認識器は、画像処理後の複数の画像を用いて病変領域の検出・鑑別を行うことができる。尚、認識器は、内視鏡プロセッサとは別体のものでもよいし、内視鏡プロセッサに内蔵されたものでもよい。
【0026】
本発明の更に他の態様に係る画像処理方法は、複数の異なる観察光を用いて取得された複数の画像からなる画像セットを受け付ける第1ステップと、認識器が、画像セットに対する認識結果を出力する第2ステップと、表示制御部が、複数の画像の一部もしくは複数の画像を用いて算出された観察用画像及び認識結果を表示部に表示させる第3ステップと、を含み、第1ステップから第3ステップの処理を繰り返し実行する。
【0027】
本発明の更に他の態様に係る画像処理方法において、第2ステップは、学習用の画像セットと正解データとにより学習した学習済みモデルを有する認識器が、認識用の画像セットを受け付ける毎に学習済みモデルに基づいて認識結果を出力することが好ましい。
【0028】
本発明の更に他の態様に係る画像処理方法において、学習済みモデルは、畳み込みニューラルネットワークで構成されることが好ましい。
【0029】
本発明の更に他の態様に係る画像処理方法において、複数の画像は、第1内視鏡画像及び第1内視鏡画像とは異なる観察光を用いて取得された第2内視鏡画像を含むことが好ましい。
【0030】
本発明の更に他の態様に係る画像処理方法において、第1内視鏡画像は、通常光で撮像された通常光画像であり、第2内視鏡画像は、特殊光で撮像された特殊光画像であることが好ましい。
【発明の効果】
【0031】
本発明によれば、複数の異なる観察光を用いて順次取得された複数の画像からなる画像セットを元に、画像セットに対する認識を行うため、認識精度を向上させることができる。また、複数の画像から得られる観察用画像ととともに、認識結果を表示部に表示させることで、認識結果を適切に提示することができる。
【図面の簡単な説明】
【0032】
図1図1は、本発明に係る内視鏡システム10の外観を示す斜視図である。
図2図2は、内視鏡システム10の電気的構成を示すブロック図である。
図3図3は、主としてマルチフレーム撮影モードで撮像されるマルチフレーム画像と画像セットの一例を示す図である。
図4図4は、認識器15を構成する学習モデルの一つである畳み込みニューラルネットワークの代表的な構成例を示す模式図である。
図5図5は、図4に示したCNN15の中間層15Bの構成例を示す模式図である。
図6図6は、本発明に係る内視鏡システム10の作用を説明するために用いた主要構成を示すブロック図である。
図7図7は、面順次で撮像されるR画像、G画像、B画像、及びV画像と画像セットの一例を示す図である。
図8図8は、本発明に係る画像処理方法の実施形態を示すフローチャートである。
【発明を実施するための形態】
【0033】
以下、添付図面に従って本発明に係る画像処理装置、内視鏡システム及び画像処理装置の作動方法の好ましい実施形態について説明する。
【0034】
[内視鏡システムの全体構成]
図1は、本発明に係る内視鏡システム10の外観を示す斜視図である。
【0035】
図1に示すように内視鏡システム10は、主として被検体内の観察対象を撮像する内視鏡スコープ(ここでは軟性内視鏡)11と、光源装置12と、内視鏡プロセッサ13と、液晶モニタ等の表示部(表示器)14と、認識器15とから構成されている。
【0036】
光源装置12は、通常光画像の撮像用の白色光、特殊光画像の撮像用の特定の波長帯域の光等の各種の観察光を内視鏡スコープ11へ供給する。
【0037】
内視鏡プロセッサ13は、内視鏡スコープ11により得られた画像信号に基づいて表示用/記録用の通常光画像、特殊光画像、又は観察用画像の画像データを生成する画像処理機能、光源装置12を制御する機能、通常画像又は観察用画像、及び認識器15による認識結果を表示器14に表示させる機能等を有する。尚、認識器15の詳細は後述するが、内視鏡プロセッサ13を内視鏡画像を受け付け、内視鏡画像に対する注目領域(病変、手術痕、処置痕、処置具など)の位置検出や病変の種類の鑑別等の認識を行う部分である。
【0038】
表示器14は、内視鏡プロセッサ13から入力される表示用の画像データに基づき通常画像、特殊光画像又は観察用画像、及び認識器15による認識結果を表示する。
【0039】
内視鏡スコープ11は、被検体内に挿入される可撓性の挿入部16と、挿入部16の基端部に連設され、内視鏡スコープ11の把持及び挿入部16の操作に用いられる手元操作部17と、手元操作部17を光源装置12及び内視鏡プロセッサ13に接続するユニバーサルコード18と、を備えている。
【0040】
挿入部16の先端部である挿入部先端部16aには、照明レンズ42、対物レンズ44、撮像素子45などが内蔵されている(図2参照)。挿入部先端部16aの後端には、湾曲自在な湾曲部16bが連設されている。また、湾曲部16bの後端には、可撓性を有する可撓管部16cが連設されている。
【0041】
手元操作部17には、アングルノブ21、操作ボタン22、及び鉗子入口23などが設けられている。アングルノブ21は、湾曲部16bの湾曲方向及び湾曲量を調整する際に回転操作される。操作ボタン22は、送気・送水や吸引等の各種の操作に用いられる。鉗子入口23は、挿入部16内の鉗子チャンネルに連通している。また、手元操作部17には、各種の設定を行う内視鏡操作部46(図2参照)等が設けられている。
【0042】
ユニバーサルコード18には、送気・送水チャンネル、信号ケーブル、及びライトガイドなどが組み込まれている。ユニバーサルコード18の先端部には、光源装置12に接続されるコネクタ部25aと、内視鏡プロセッサ13に接続されるコネクタ部25bとが設けられている。これにより、コネクタ部25aを介して光源装置12から内視鏡スコープ11に観察光が供給され、コネクタ部25bを介して内視鏡スコープ11により得られた画像信号が内視鏡プロセッサ13に入力される。
【0043】
尚、光源装置12には、電源ボタン、光源を点灯させる点灯ボタン、及び明るさ調節ボタン等の光源操作部12aが設けられ、また、内視鏡プロセッサ13には、電源ボタン、図示しないマウス等のポインティングデバイスからの入力を受け付ける入力部を含むプロセッサ操作部13aが設けられている。本例の内視鏡プロセッサ13と光源装置12とは別体型のものであるが、内視鏡プロセッサは、光源装置内蔵型ものでもよい。
【0044】
[内視鏡システムの電気的構成]
図2は、内視鏡システム10の電気的構成を示すブロック図である。
【0045】
図2に示すように内視鏡スコープ11は、大別してライトガイド40と、照明レンズ42と、対物レンズ44と、撮像素子45と、内視鏡操作部46と、内視鏡制御部47と、ROM(Read Only Memory)48とを有している。
【0046】
ライトガイド40は、大口径光ファイバ、バンドルファイバなどが用いられる。ライトガイド40は、その入射端がコネクタ部25aを介して光源装置12に挿入されており、その出射端が挿入部16を通って挿入部先端部16a内に設けられた照明レンズ42に対向している。光源装置12からライトガイド40に供給された照明光は、照明レンズ42を通して観察対象に照射される。そして、観察対象で反射及び/又は散乱した照明光は、対物レンズ44に入射する。
【0047】
対物レンズ44は、入射した照明光の反射光又は散乱光(即ち、観察対象の光学像)を撮像素子45の撮像面に結像させる。
【0048】
撮像素子45は、CMOS(complementary metal oxide semiconductor)型又はCCD(charge coupled device)型の撮像素子であり、対物レンズ44よりも奥側の位置で対物レンズ44に相対的に位置決め固定されている。撮像素子45の撮像面には、光学像を光電変換する複数の光電変換素子(フォトダイオード)により構成される複数の画素が2次元配列されている。また、本例の撮像素子45の複数の画素の入射面側には、画素毎に赤(R)、緑(G)、青(B)のカラーフィルタが配置され、これによりR画素、G画素、B画素が構成されている。尚、RGBのカラーフィルタのフィルタ配列は、ベイヤ配列が一般的であるが、これに限らない。
【0049】
撮像素子45は、対物レンズ44により結像される光学像を電気的な画像信号に変換して内視鏡プロセッサ13に出力する。
【0050】
尚、撮像素子45がCMOS型である場合には、A/D(Analog/Digital)変換器が内蔵されており、撮像素子45から内視鏡プロセッサ13に対してデジタルの画像信号が直接出力される。また、撮像素子45がCCD型である場合には、撮像素子45から出力される画像信号は、図示しないA/D変換器等でデジタルな画像信号に変換された後、内視鏡プロセッサ13に出力される。
【0051】
内視鏡操作部46は、図示しない静止画撮像ボタン、通常光画像撮影モード、特殊光画像撮影モード、及びマルチフレーム撮影モードのうちのいずれかの撮影モードを設定する撮影モード設定部を有している。尚、撮影モード設定部は、内視鏡プロセッサ13のプロセッサ操作部13aに設けられていてもよい。
【0052】
内視鏡制御部47は、内視鏡操作部46での操作に応じてROM48等から読み出した各種プログラムやデータを逐次実行し、主として撮像素子45の駆動を制御する。例えば、通常光画像撮影モードの場合、内視鏡制御部47は、撮像素子45のR画素、G画素及びB画素の信号を読み出すように撮像素子45を制御し、特殊光画像撮影モード又はマルチフレーム撮影モードであって、特定の特殊光画像を取得するために観察光としてV-LED32aから紫色光が発光される場合、又はB-LED32bから青色光が発光される場合には、これらの紫色光、青色色光の波長帯域に分光感度を有する撮像素子45のB画素の信号のみを読み出し、あるいはR画素、G画素及びB画素の3つの色画素のうちのいずれか1つの色画素、又は2つの色画素を読み出すように撮像素子45を制御する。
【0053】
また、内視鏡制御部47は、内視鏡プロセッサ13のプロセッサ制御部61との間で通信を行い、内視鏡操作部46での操作情報及びROM48に記憶されている内視鏡スコープ11の種類を識別するための識別情報等を内視鏡プロセッサ13に送信する。
【0054】
光源装置12は、光源制御部31及び光源ユニット32を有している。光源制御部31は、光源ユニット32の制御と、内視鏡プロセッサ13のプロセッサ制御部61との間で通信を行い、各種情報の遣り取りを行う。
【0055】
光源ユニット32は、例えば複数の半導体光源を有している。本実施形態では、光源ユニット32は、V-LED(Violet Light Emitting Diode)32a、B-LED(Blue Light Emitting Diode)32b、G-LED(Green Light Emitting Diode)32c、及びR-LED(Red Light Emitting Diode)32dの4色のLEDを有する。V-LED32a、B-LED32b、G-LED32c、及びR-LED32dは、例えば、410nm、450nm、530nm、615nmにそれぞれピーク波長を持つ観察光であり、紫色(V)光、青色(B)光、緑色(G)光、及び赤色(R)光を発光する半導体光源である。
【0056】
光源制御部31は、撮影モード設定部により設定される撮影モードに応じて、光源ユニット32の4つのLEDの点灯や消灯、点灯時の発光量等を、LED毎に個別に制御する。通常光画像撮影モードの場合、光源制御部31は、V-LED32a、B-LED32b、G-LED32c、及びR-LED32dを全て点灯させる。このため、通常光画像撮影モードでは、V光、B光、G光、及びR光を含む白色光が観察光として用いられる。
【0057】
一方、特殊光画像撮影モードの場合、光源制御部31は、V-LED32a、B-LED32b、G-LED32c、及びR-LED32dのうちのいずれか1つの光源、又は適宜組み合わせた複数の光源を点灯させ、又は複数の光源を点灯させる場合に各光源の発光量(光量比)を制御し、これにより被検体の深度の異なる複数の層の画像の撮像を可能にする。
【0058】
また、マルチフレーム撮影モードは、通常光画像と1以上の特殊光画像とをフレーム毎に切り換えて撮影し、又は2以上の特殊光画像をフレーム毎に切り換えて撮影する撮影モードであり、マルチフレーム撮影モードの場合、光源制御部31は、フレーム毎に異なる観察光を光源ユニット32から発光させる。
【0059】
各LED32a~32dが発する各色の光は、ダイクロイックミラーやレンズ等で形成される光路結合部、及び絞り機構(図示せず)を介して内視鏡スコープ11内に挿通されたライトガイド40に入射される。
【0060】
尚、光源装置12の観察光は、白色光(白色の波長帯域の光又は複数の波長帯域の光)、或いは1又は複数の特定の波長帯域にピークを有する光(特殊光)、或いはこれらの組み合わせなど、観察目的に応じた各種の波長帯域の光が選択される。
【0061】
特定の波長帯域の第1例は、例えば可視域の青色帯域又は緑色帯域である。この第1例の波長帯域は、390nm以上450nm以下又は530nm以上550nm以下の波長帯域を含み、且つ第1例の光は、390nm以上450nm以下又は530nm以上550nm以下の波長帯域内にピーク波長を有する。
【0062】
特定の波長帯域の第2例は、例えば可視域の赤色帯域である。この第2例の波長帯域は、585nm以上615nm以下又は610nm以上730nm以下の波長帯域を含み、且つ第2例の光は、585nm以上615nm以下又は610nm以上730nm以下の波長帯域内にピーク波長を有する。
【0063】
特定の波長帯域の第3例は、酸化ヘモグロビンと還元ヘモグロビンとで吸光係数が異なる波長帯域を含み、且つ第3例の光は、酸化ヘモグロビンと還元ヘモグロビンとで吸光係数が異なる波長帯域にピーク波長を有する。この第3例の波長帯域は、400±10nm、440±10nm、470±10nm、又は600nm以上750nm以下の波長帯域を含み、且つ第3例の光は、上記400±10nm、440±10nm、470±10nm、又は600nm以上750nm以下の波長帯域にピーク波長を有する。
【0064】
特定の波長帯域の第4例は、生体内の蛍光物質が発する蛍光の観察(蛍光観察)に用いられ且つこの蛍光物質を励起させる励起光の波長帯域(390nmから470nm)である。
【0065】
特定の波長帯域の第5例は、赤外光の波長帯域である。この第5例の波長帯域は、790nm以上820nm以下又は905nm以上970nm以下の波長帯域を含み、且つ第5例の光は、790nm以上820nm以下又は905nm以上970nm以下の波長帯域にピーク波長を有する。
【0066】
内視鏡プロセッサ13は、プロセッサ操作部13a、プロセッサ制御部61、ROM62、デジタル信号処理回路(DSP:Digital Signal Processor)63、画像処理部65、表示制御部66、及び記憶部67等を有している。
【0067】
プロセッサ操作部13aは、電源ボタン、マウスにより表示器14の画面上で指示される座標位置及びクリック(実行指示)等の入力を受け付ける入力部等を含む。
【0068】
プロセッサ制御部61は、プロセッサ操作部13aでの操作情報、及び内視鏡制御部47を介して受信した内視鏡操作部46での操作情報に応じてROM62から必要なプログラムやデータを読み出し、逐次処理することで内視鏡プロセッサ13の各部を制御するとともに、光源装置12を制御する。尚、プロセッサ制御部61は、図示しないインターフェースを介して接続されたキーボード等の他の外部機器から必要な指示入力を受け付けるようにしてもよい。
【0069】
内視鏡スコープ11(撮像素子45)から出力される動画の各フレームの画像データを取得する画像取得部の一形態として機能するDSP63は、プロセッサ制御部61の制御の下、内視鏡スコープ11から入力される動画の1フレーム分の画像データに対し、欠陥補正処理、オフセット処理、ホワイトバランス補正、ガンマ補正、及びデモザイク処理(「同時化処理」ともいう)等の各種の信号処理を行い、1フレーム分の画像データを生成する。
【0070】
画像処理部65は、DSP63から画像データを入力し、入力した画像データに対して、必要に応じて色変換処理、色彩強調処理、及び構造強調処理等の画像処理を施し、観察対象が写った内視鏡画像を示す画像データを生成する。色変換処理は、画像データに対して3×3のマトリックス処理、階調変換処理、及び3次元ルックアップテーブル処理などにより色の変換を行う処理である。色彩強調処理は、色変換処理済みの画像データに対して、例えば血管と粘膜との色味に差をつける方向に色彩を強調する処理である。構造強調処理は、例えば血管やピットパターン等の観察対象に含まれる特定の組織や構造を強調する処理であり、色彩強調処理後の画像データに対して行う。
【0071】
画像処理部65により処理された動画の各フレームの画像データは、静止画又は動画の撮影指示があると、撮影指示された静止画又は動画として記憶部67に記録される。
【0072】
表示制御部66は、画像処理部65から入力する画像データに基づいて通常光画像又は特殊光画像を表示器14に表示させるための表示用データを生成し、生成した表示用データを表示器14に出力し、表示器14に表示画像(内視鏡スコープ11により撮像された動画等)を表示させる。
【0073】
マルチフレーム撮影モードの場合、異なる観察光を用いて順次取得された複数の画像をそのまま順次表示すると、見え方が変化してチラつくため、表示制御部66は、複数の画像のうちの何れかの画像(一部の画像)を表示器14に表示させ、または画像処理部65により複数の画像を用いて算出された観察用画像を表示器14に表示させる。
【0074】
また、表示制御部66は、認識器15から画像処理部65を介して入力する認識結果、又は認識器15から入力する認識結果を表示器14に表示させる。
【0075】
表示制御部66は、認識器15により注目領域が検出された場合、その注目領域を示す指標を、表示器14に表示された画像上に重畳して表示させる。例えば、表示画像における注目領域の色を変えるなどの強調表示や、マーカの表示、バウンディングボックスの表示が、指標として考えられる。
【0076】
また、表示制御部66は、認識器15による注目領域の検出結果に基づいて、注目領域の有無を表す情報を表示器14に表示された画像と重ならないように表示させることができる。注目領域の有無を表す情報は、例えば、内視鏡画像の枠の色を、注目領域が検出された場合と注目領域が検出されない場合とで変えたり、「注目領域有り!」のテキストを内視鏡画像とは異なる表示領域に表示させる態様が考えられる。
【0077】
また、表示制御部66は、認識器15により病変に関する鑑別が実行された場合、その鑑別結果を表示器14に表示させる。鑑別結果の表示方法は、例えば、表示器14の表示画像上に検出結果を表すテキストの表示などが考えられる。テキストの表示は、表示画像上でなくてもよく、表示画像との対応関係が分かりさえすれば、特に限定されない。
【0078】
[認識器15]
次に、本発明に係る認識器15について説明する。
【0079】
認識器15は、内視鏡プロセッサ13による画像処理後の画像を受け付けるが、まず、認識器15が受け付ける認識用の画像について説明する。
【0080】
本例の認識器15は、マルチフレーム撮影モードが設定される場合に適用される。
【0081】
マルチフレーム撮影モードが設定されると、光源装置12は、紫色光、青色光、緑色光、及び赤色光を含む白色光と、V-LED32a、B-LED32b、G-LED32c、及びR-LED32dの点灯が制御された1又は複数の特定の波長帯域の光(特殊光)とを順次発生し、内視鏡プロセッサ13は、内視鏡スコープ11から白色光下の画像(通常光画像)と特殊光下の画像(特殊光画像)とを順次に取得する。
【0082】
本例のマルチフレーム撮影モードでは、図3に示すように第1内視鏡画像である通常光画像(WL(White Light)画像)と、第2内視鏡画像である2種類の特殊光画像(BLI(Blue Light Imaging or Blue LASER Imaging)画像)、LCI(Linked Color Imaging)画像)とを、フレーム毎に順次切り換えて繰り返し取得する。
【0083】
ここで、BLI画像及びLCI画像は、それぞれBLI用の観察光、及びLCI用の観察光で撮像された画像である。
【0084】
BLI用の観察光は、表層血管での吸収率が高いV光の比率が高く、中層血管での吸収率が高いG光の比率を抑えた観察光であり、被検体の粘膜表層の血管や構造の強調に適した画像(BLI画像)の生成に適している。
【0085】
また、LCI用の観察光は、V光の比率がWL用の観察光に比べて高く、WL用の観察光と比べて微細な色調変化を捉えるのに適した観察光であり、LCI画像は、R成分の信号も利用して粘膜付近の色を中心に、赤味を帯びている色はより赤く、白っぽい色はより白くなるような色強調処理が行われた画像である。
【0086】
認識器15は、内視鏡プロセッサ13にて順次取得された複数の画像(本例では、WL画像、BLI画像及びLCI画像)からなる画像セットSaを、認識用の画像として受け付ける。
【0087】
WL画像、BLI画像及びLCI画像は、それぞれカラー画像であるため、R画像、G画像及びB画像(3つの色チャンネル)を有している。したがって、認識器15が入力する画像セットSaは、チャンネル数が9(=3×3)の画像となる。
【0088】
また、認識器15は、画像セットSaを順次入力するが、画像セットSaは、時系列順の連続する3つのフレーム(WL画像、BLI画像及びLCI画像)から構成されるため、各画像セットSaを入力する時間間隔は、マルチフレーム撮影モードで撮像される各フレームの3フレーム分の時間に相当する。即ち、認識器15が受け付ける時刻tの画像セットSaと、1つ前の時刻tn-1の画像セットSaとの時間間隔は、マルチフレーム撮影モードで撮像される各フレームの3フレーム分の時間に相当する。
【0089】
図4は、認識器15を構成する学習モデルの一つである畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)の代表的な構成例を示す模式図である。
【0090】
CNN15は、例えば、内視鏡画像に写っている注目領域(病変、手術痕、処置痕、処置具など)の位置検出や病変の種類を鑑別する学習モデルであり、複数のレイヤー構造を有し、複数の重みパラメータを保持している。CNN15は、重みパラメータが最適値に設定されることで、学習済みモデルとなり認識器として機能する。
【0091】
図4に示すようにCNN15は、入力層15Aと、複数の畳み込み層及び複数のプーリング層を有する中間層15Bと、出力層15Cとを備え、各層は複数の「ノード」が「エッジ」で結ばれる構造となっている。
【0092】
本例のCNN15は、内視鏡画像に写っている注目領域の位置を認識するセグメンテーションを行う学習モデルであり、CNNの一種である全層畳み込みネットワーク(FCN:Fully Convolution Network)が適用され、内視鏡画像に写っている注目領域の位置を画素レベルで把握できるものである。
【0093】
入力層15Aには、認識用の画像セットSa(図3)が入力される。
【0094】
中間層15Bは、入力層15Aから入力した画像セットSaから特徴を抽出する部分である。中間層15Bにおける畳み込み層は、画像セットSaや前の層で近くにあるノードにフィルタ処理し(フィルタを使用した畳み込み演算を行い)、「特徴マップ」を取得する。プーリング層は、畳み込み層から出力された特徴マップを縮小(又は拡大)して新たな特徴マップとする。「畳み込み層」は、画像からのエッジ抽出等の特徴抽出の役割を担い、「プーリング層」は抽出された特徴が、平行移動などによる影響を受けないようにロバスト性を与える役割を担う。尚、中間層15Bには、畳み込み層とプーリング層とを1セットとする場合に限らず、畳み込み層が連続する場合や正規化層も含まれ得る。
【0095】
出力層15Cは、中間層15Bにより抽出された特徴に基づき内視鏡画像に写っている注目領域の位置検出や病変の種類を分類(鑑別)する認識結果を出力する部分である。
【0096】
また、このCNN15は、学習用の画像セットSaと画像セットSaに対する正解データとの多数のセットにより学習されたものであり、CNN15の各畳み込み層に適用されるフィルタの係数やオフセット値が、学習用のデータセットにより最適値に設定されている。ここで、正解データとは、内視鏡画像(本例では、画像セットSaの少なくとも1つの画像)に対して医師が指定した注目領域や鑑別結果であることが好ましい。
【0097】
図5は、図4に示したCNN15の中間層15Bの構成例を示す模式図である。
【0098】
注目領域の最初(1番目)の畳み込み層では、認識用の画像セットSaと、フィルタFとの畳み込み演算が行われる。ここで、画像セットSaは、縦がH、横がWの画像サイズを有するN枚(Nチャンネル)の画像である。本例では、図3に示したように画像セットSaは、9チャンネルの画像である。
【0099】
この画像セットSaと畳み込み演算されるフィルタFは、画像セットSがNチャンネル(N枚)であるため、例えばサイズ5のフィルタの場合、フィルタサイズは、5×5×Nのフィルタになる。
【0100】
このフィルタFを用いた畳み込み演算により、1つのフィルタFに対して1チャンネル(1枚)の「特徴マップ」が生成される。図5に示す例では、M個のフィルタFを使用することで、Mチャンネルの「特徴マップ」が生成される。
【0101】
2番目の畳み込み層で使用されるフィルタFは、例えばサイズ3のフィルタの場合、フィルタサイズは、3×3×Mのフィルタになる。
【0102】
n番目の畳み込み層における「特徴マップ」のサイズが、2番目の畳み込み層における「特徴マップ」のサイズよりも小さくなっているのは、前段までの畳み込み層によりダウンスケーリングされているからである。
【0103】
中間層15Bの前半部分の畳み込み層は特徴量の抽出を担い、後半部分の畳み込み層は対象物(注目領域)のセグメンテーションを担う。尚、後半部分の畳み込み層では、アップスケーリングされ、最後の畳み込み層では、入力した画像セットSaと同じサイズの1枚の「特徴マップ」が得られる。CNN15の出力層15C(図4)は、中間層15Bから得られる「特徴マップ」により、画像セットSaの画像に写っている注目領域の位置を画素レベルで把握する。即ち、内視鏡画像の画素毎に注目領域に属するか否かを検出し、その検出結果を出力することができる。
【0104】
本実施形態によれば、WL画像、BLI画像及びLCI画像のうちのいずれか1つ(1種類)の画像により認識する場合に比べて、マルチフレーム撮影モードで順次取得される複数の画像(WL画像、BLI画像及びLCI画像の画像セット)を用いて認識するため、認識精度を向上させることができる。
【0105】
また、本例のCNN15は、内視鏡画像に写っている注目領域の位置を認識するものであるが、本発明に係る認識器(CNN)は、これに限らず、病変に関する鑑別を実行して鑑別結果を出力するものでもよい。例えば、認識器は、内視鏡画像を「腫瘍性」、「非腫瘍性」、「その他」の3つのカテゴリに分類し、鑑別結果として「腫瘍性」、「非腫瘍性」及び「その他」に対応する3つのスコア(3つのスコアの合計は100%)として出力したり、3つのスコアから明確に分類できる場合には、分類結果を出力するものでもよい。また、このような鑑別結果を出力するCNNの場合、全層畳み込みネットワーク(FCN)の代わりに、中間層の最後の1層又は複数の層として全結合層を有するものが好ましい。
【0106】
[内視鏡システムの作用]
図6は、本発明に係る内視鏡システム10の作用を説明するために用いた主要構成を示すブロック図である。
【0107】
光源ユニット32のV-LED32a、B-LED32b、G-LED32c、及びR-LED32dからは、それぞれ異なるピーク波長をもつ観察光(V光、B光、G光、及びR光)が、ライトガイド40を介して被検体20に照射される。V光、B光、G光、及びR光は、それぞれ被検体20の深度の異なる複数の層に到達するため、これらの観察光により被検体20の深度の異なる画像の撮像が可能である。
【0108】
尚、図3で説明したようにマルチフレーム撮影モードでは、複数の異なる観察光(例えば、WL用の第1観察光、BLI用の第2観察光、及びLCI用の第3観察光)によりWL画像、BLI画像及びLCI画像が順次取得されるが、WL用、BLI用、及びLCI用の観察光は、前述したようにV光、B光、G光、及びR光の光量比が異なるものである。
【0109】
内視鏡スコープ11では、複数の異なる観察光の照射によりWL画像、BLI画像及びLCI画像が順次繰り返し撮像される。WL画像、BLI画像及びLCI画像は、それぞれカラー画像であるため、内視鏡プロセッサ13では、RGBの3チャンネルのWL画像、BLI画像及びLCI画像が生成される。
【0110】
認識器15は、WL画像、BLI画像及びLCI画像からなる画像セットSa(合計、9チャンネルの画像)を認識用の画像として受け付ける。
【0111】
認識器15は、内視鏡画像に写っている注目領域(本例では、病変領域)の位置を検出し、病変領域を示す位置情報(認識結果)を内視鏡プロセッサ13に出力する。
【0112】
内視鏡プロセッサ13の画像処理部65は、内視鏡スコープ11から入力する画像信号からWL画像、BLI画像及びLCI画像を生成するとともに、観察用画像を生成する。観察用画像は、複数の画像の一部(例えば、WL画像、BLI画像及びLCI画像のうちのWL画像)を観察用画像としてもよいし、複数の画像を用いて算出された画像(WL画像、BLI画像及びLCI画像の2以上の画像を合成した画像)を観察用画像としてもよい。尚、異なる観察光を用いて順次取得された複数の画像をそのまま観察用画像として順次表示すると、見え方が変化してチラつくため、観察用画像は、1種類の画像であることが好ましい。
【0113】
表示制御部66は、画像処理部65から観察用画像を入力し、認識器15から病変領域を示す位置情報を入力し、これらの観察用画像及び認識結果を表示器14に表示させる。
【0114】
本例では、表示制御部66は、観察用画像26を表示器14に表示させるとともに、認識された注目領域(病変領域)を強調する強調処理を施す。表示制御部66による強調処理は、表示器14に表示された観察用画像26上に、病変領域を示す指標28を重畳して表示させることで、病変領域を強調表示させる。ここで、指標28の表示は、病変領域の色を変えるなどの強調表示や病変領域の輪郭を示す境界線の表示の他、病変領域を示すマーカの表示、バウンディングボックスの表示が考えられる。
【0115】
このように、表示器14に表示される観察用画像26上に注目領域を示す指標28を重畳表示することで、注目領域の見落としがないように検査の支援を行うことができる。
【0116】
尚、本例の認識器15は、内視鏡画像に写っている注目領域の位置を認識するものであるが、これに限らず、病変に関する鑑別を実行して鑑別結果を出力するものでもよい。鑑別結果の表示方法は、例えば、表示器14の画像上に鑑別結果を表すテキストを表示する方法が考えられる。テキストの表示位置は、画像上でなくてもよく、画像との対応関係が分かりさえすれば、画像とは異なるウインドウでもよく、特に限定されない。
【0117】
[マルチフレーム撮影の他の実施形態]
撮像素子45(カラー撮像素子)の代わりに、カラーフィルタを有さないモノクロの撮像素子を備えた内視鏡スコープによりカラーの内視鏡画像を取得する場合、異なる色の観察光により被検体を順次照明し、観察光毎に画像を撮像する(面順次で撮像する)。
【0118】
例えば、光源ユニット32から異なる色の観察光(R光、G光、B光、及びV光)を順次発光することで、モノクロの撮像素子によりR光、G光、B光、及びV光に対応した色のR画像、G画像、B画像、及びV画像が面順次で撮像される。
【0119】
図7は、面順次で撮像されるR画像、G画像、B画像、及びV画像と画像セットの一例を示す図である。
【0120】
内視鏡プロセッサ13は、複数の異なる観察光(R光、G光、B光、及びV光)を用いて順次取得された複数の画像(R画像、G画像、B画像、及びV画像)に基づいてWL画像、BLI画像及びLCI画像等の観察用画像を生成することができる。これらの観察用画像は、R画像、G画像、B画像、及びV画像の合成比率を調整することで生成することができる。
【0121】
また、R画像、G画像、B画像、及びV画像のうち少なくとも2つの画像を予め設定された係数を掛けて合成(四則演算)した画像を、画像セットに含めても良い。例えば、中心波長410nmの画像(V画像)を中心波長450nmの画像(B画像)で各画素を除算して得られる画像や、中心波長410nmの画像(V画像)を中心波長450nmの画像(B画像)で各画素を乗算して得られる画像を用いても良い。
【0122】
認識器15は、内視鏡プロセッサ13により生成されたWL画像、BLI画像及びLCI画像を画像セットSbとして受け付け、内視鏡画像に対する認識結果を内視鏡プロセッサ13に返すことができる。
【0123】
本例の認識器15は、WL画像、BLI画像及びLCI画像からなる画像セットSa(合計、9チャンネルの画像)を認識用の画像として受け付けるが、これに限らず、例えば、上記のR画像、G画像、B画像、及びV画像からなる画像セットを受け付け、内視鏡画像に対する認識結果を出力するものでもよい。
【0124】
[画像処理方法]
図8は、本発明に係る画像処理方法の実施形態を示すフローチャートであり、図2に示した内視鏡システム10の各部の処理手順に関して示している。
【0125】
図8において、マルチフレーム撮影モードが設定され、内視鏡スコープ11は、複数の異なる観察光を用いたマルチフレーム画像を順次撮像する(ステップS10)。
【0126】
内視鏡プロセッサ13は、内視鏡スコープ11により撮像されたマルチフレーム画像を構成する画像セットを取得する(ステップS12、第1ステップ)。
【0127】
画像セットは、内視鏡スコープ11により撮像されたWL用、BLI用、及びLCI用の観察光により撮像されたWL画像、BLI画像及びLCI画像、あるいは面順次で撮像されたR画像、G画像、B画像、及びV画像から生成されたWL画像、BLI画像及びLCI画像が考えられるが、特殊光画像は、BLI画像及びLCI画像の何れか1つの特殊光画像であってもよいし、他の特殊光で撮像された特殊光画像であってもよい。また、画像セットは、WL画像(通常光画像)を含まず、第1特殊光で撮像された第1特殊光画像及び第2特殊光で撮像された第2特殊光画像を含む2以上の特殊光画像であってもよい。要は、複数の異なる観察光を用いて順次取得された複数の画像からなる画像セットであればよく、如何なる画像セットでもよい。
【0128】
内視鏡プロセッサ13の画像処理部65は、取得した画像セットに基づいて観察用画像を生成する(ステップS14)。観察用画像は、複数の画像の一部(例えば、WL画像、BLI画像及びLCI画像のうちのWL画像)もしくは複数の画像を用いて算出された画像である。
【0129】
一方、認識器15は、内視鏡プロセッサ13を介して受け付けた画像セットに基づいて内視鏡画像に写っている注目領域の位置検出や病変の種類の鑑別等を行い、認識結果を出力する(ステップS16、第2ステップ)。
【0130】
そして、表示制御部66は、生成された観察用画像と認識器15による認識結果とを、表示器14に表示させる(ステップS18、第3ステップ)。
【0131】
続いて、マルチフレーム画像の撮像を終了するか否かが判別され(ステップS20)、マルチフレーム画像の撮像が継続される場合(「No」の場合)には、ステップS10に遷移し、ステップS10からステップS20の処理が繰り返し行われる。これにより、観察用画像が動画として表示され、また、認識器15の認識結果も連続的に表示される。
【0132】
マルチフレーム画像の撮像が終了する場合(「Yes」の場合)には、本処理を終了させる。
【0133】
[その他]
本実施形態では、内視鏡スコープ11等を含む内視鏡システム10について説明したが、本発明は、内視鏡システム10に限らず、内視鏡プロセッサ13と認識器15とにより構成される画像処理装置でもよい。この場合、内視鏡プロセッサ13と認識器15とは一体化されたものでもよいし、別体のものでもよい。
【0134】
また、異なる観察光は、4色のLEDから発光されるものに限らず、例えば、中心波長445nmの青色レーザ光を発する青色レーザダイオードと、中心波長405nmの青紫色レーザ光を発する青紫色レーザダイオードとを発光源とし、これらの青色レーザダイオード、及び青紫色レーザダイオードのレーザ光を、YAG(Yttrium Aluminum Garnet)系の蛍光体に照射して発光されるものでもよい。この蛍光体に青色レーザ光が照射されることで、蛍光体が励起され広帯域の蛍光が発せられ、また、一部の青色レーザ光は、そのまま蛍光体を透過する。青紫色レーザ光は、蛍光体を励起させることなく透過する。したがって、青色レーザ光と青紫色レーザ光との強度を調整することで、WL用の観察光、BLI用の観察光、及びLCI用の観察光を照射することができ、また、青紫色レーザ光のみを発光させると、中心波長が405nmの観察光を照射することができる。
【0135】
また、本発明に係る観察用画像は動画に限らず、記憶部67等に記憶された静止画でもよく、認識器は静止画の画像セットに基づいて認識結果を出力するものでもよい。
【0136】
更に、認識器は、CNNに限らず、例えばDBN(Deep Belief Network)、SVM(Support Vector Machine)などのCNN以外の機械学習モデルでもよい。
【0137】
また、内視鏡プロセッサ13及び/又は認識器15のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の制御部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
【0138】
1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の制御部を1つのプロセッサで構成してもよい。複数の制御部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の制御部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の制御部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の制御部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
【0139】
更に、本発明は上述した実施形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
【符号の説明】
【0140】
10 内視鏡システム
11 内視鏡スコープ
12 光源装置
12a 光源操作部
13 内視鏡プロセッサ
13a プロセッサ操作部
14 表示器
15 認識器(CNN)
15A 入力層
15B 中間層
15C 出力層
16 挿入部
16a 挿入部先端部
16b 湾曲部
16c 可撓管部
17 手元操作部
18 ユニバーサルコード
20 被検体
21 アングルノブ
22 操作ボタン
23 鉗子入口
25a コネクタ部
25b コネクタ部
26 観察用画像
28 指標
31 光源制御部
32 光源ユニット
32a V-LED
32b B-LED
32c G-LED
32d R-LED
40 ライトガイド
42 照明レンズ
44 対物レンズ
45 撮像素子
46 内視鏡操作部
47 内視鏡制御部
48,62 ROM
61 プロセッサ制御部
65 画像処理部
66 表示制御部
67 記憶部
F1 フィルタ
S 画像セット
S10 ステップ
S12 ステップ
S14 ステップ
S16 ステップ
S18 ステップ
S20 ステップ
図1
図2
図3
図4
図5
図6
図7
図8