IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
  • -気圧調整が容易な露光用ペリクル 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022191120
(43)【公開日】2022-12-27
(54)【発明の名称】気圧調整が容易な露光用ペリクル
(51)【国際特許分類】
   G03F 1/64 20120101AFI20221220BHJP
   G03F 7/20 20060101ALI20221220BHJP
【FI】
G03F1/64
G03F7/20 503
G03F7/20 521
【審査請求】未請求
【請求項の数】23
【出願形態】OL
(21)【出願番号】P 2021128949
(22)【出願日】2021-08-05
(31)【優先権主張番号】P 2021099551
(32)【優先日】2021-06-15
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】100108143
【弁理士】
【氏名又は名称】嶋崎 英一郎
(72)【発明者】
【氏名】久保田 芳宏
(72)【発明者】
【氏名】簗瀬 優
(72)【発明者】
【氏名】竹内 彩乃
(72)【発明者】
【氏名】西村 晃範
【テーマコード(参考)】
2H195
2H197
【Fターム(参考)】
2H195BA10
2H195BC38
2H197BA11
2H197CA10
2H197GA01
2H197GA24
2H197HA03
(57)【要約】
【課題】特にEUV露光において求められる最大許容異物サイズの低下並びにペリクル膜が曝される過酷な気圧変動に呼応すべく、ペリクルフレームを貫通して設けられる通気孔にあてがわれるフィルターの高性能化を果たす。
【解決手段】本発明のペリクルは、ペリクルフレーム3と、前記ペリクルフレームの上端面に設けられたペリクル膜1と、前記ペリクルフレームに設けられた通気孔6と、前記通気孔を塞ぐフィルター7と、を備え、前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有する。
【選択図】図1
【特許請求の範囲】
【請求項1】
ペリクルフレームと、
前記ペリクルフレームの上端面に設けられたペリクル膜と、
前記ペリクルフレームに設けられた通気孔と、
前記通気孔を塞ぐフィルターと、
を備え、
前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成されるシートを有することを特徴とするペリクル。
【請求項2】
ペリクルフレームと、
前記ペリクルフレームの上端面に設けられたペリクル膜と、
前記ペリクルフレームに設けられた通気孔と、
前記通気孔を塞ぐフィルターと、
を備え、
前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有することを特徴とするペリクル。
【請求項3】
前記フィルターは、その一部又は全部が、ナノファイバー及びカーボンナノチューブで構成される不織布を有することを特徴とする請求項2に記載のペリクル。
【請求項4】
前記フィルターを構成するファイバーのうち、5~70vol%が、平均ファイバー径が数μm以上ないし数百μm以下のファイバーであることを特徴とする請求項1~3のいずれか1項に記載のペリクル。
【請求項5】
前記フィルターは、その一部又は全部が、前記通気孔に挿入されていることを特徴とする請求項1~4のいずれか1項に記載のペリクル。
【請求項6】
前記通気孔は、その外側口に座繰りが設けられており、前記フィルターは、その一部又は全部が該座繰りに埋め込まれていることを特徴とする請求項1~5のいずれか1項に記載のペリクル。
【請求項7】
前記通気孔は、その外側口又は内側口の少なくとも一方に面取りが施されていることを特徴とする請求項1~6のいずれか1項に記載のペリクル。
【請求項8】
前記通気孔の開口面積の合計の割合は、前記ペリクルフレーム下端面の総面積に対して、2%以上であることを特徴とする請求項1~7のいずれか1項に記載のペリクル。
【請求項9】
前記通気孔の開口面積の合計の割合は、前記ペリクルフレーム下端面の総面積に対して、10%以上50%以下であることを特徴とする請求項8に記載のペリクル。
【請求項10】
前記フィルターは、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に平均ファイバー径が小さくなるろ過精度勾配を持つことを特徴とする請求項1~9のいずれか1項に記載のペリクル。
【請求項11】
前記フィルターは、平均ファイバー径が数μm以上ないし数百μm以下のファイバーを含み、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に前記ファイバーの存在割合が低くなっていることを特徴とする請求項1~10のいずれか1項に記載のペリクル。
【請求項12】
前記フィルターは、それぞれ異なる平均ファイバー径を有するファイバーで構成される複数の不織布シートを重ねて合体したものであることを特徴とする請求項10又は11に記載のペリクル。
【請求項13】
前記ペリクル膜は、膜厚が1μm以下であり、その一部又は全部が、単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物より成ることを特徴とする請求項1~12のいずれか1項に記載のペリクル。
【請求項14】
前記ペリクル膜には、無機化合物のコーティングが施されていることを特徴とする請求項1~13のいずれか1項に記載のペリクル。
【請求項15】
前記無機化合物が、SiC、Si、又はYのいずれかであることを特徴とする請求項14に記載のペリクル。
【請求項16】
前記ナノファイバーの全部又は一部の表面は、SiC又はSiで被覆されていることを特徴とする請求項1~15のいずれか1項に記載のペリクル。
【請求項17】
前記ぺリクルが、EUVマスク用ペリクルであることを特徴とする請求項1~16のいずれか1項に記載のペリクル。
【請求項18】
ペリクルフレームと、
前記ペリクルフレームに設けられた通気孔と、
前記通気孔を塞ぐフィルターと、
を備え、
前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成されるシートを有することを特徴とするフィルター付ペリクルフレーム。
【請求項19】
ペリクルフレームと、
前記ペリクルフレームに設けられた通気孔と、
前記通気孔を塞ぐフィルターと、
を備え、
前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有することを特徴とするフィルター付ペリクルフレーム。
【請求項20】
請求項1~17のいずれか1項に記載のペリクルを露光マスクに装着してなることを特徴とするペリクル付き露光マスク。
【請求項21】
請求項1~17のいずれか1項に記載のペリクルの製造方法であって、エレクトロスピニング法を用いて前記ナノファイバーを作成する工程を備えることを特徴とするペリクルの製造方法。
【請求項22】
請求項20に記載のペリクル付き露光マスクを用いて露光することを特徴とする露光方法。
【請求項23】
請求項20に記載のペリクル付き露光マスクによって露光する工程を備えることを特徴とする半導体装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体や液晶などの製造に用いられる露光用マスクを異物から保護する、気圧調整が容易な露光用ペリクルに関し、特には気圧調整が容易なEUVマスク用ペリクルに関するものである。
【背景技術】
【0002】
半導体や液晶などの製造は所謂、リソグラフィー技術を使い露光用マスク(単に「マスク」ともいう。)を用いて回路パターンを形成する。近年、特に半導体ではこの回路パターンもミクロンからサブミクロン、更にはナノへと微細化が進み、それに従って露光光源もg線(436nm)、i線(365nm)、KrFエキシマレーザー(248nm)、ArFエキシマレザー(193nm)、へと短波長化が進んでいる。最近は更に短波長のEUV(極端紫外線;13.5nm)露光も検討され、最先端デバイスには一部実用化も始まっている。
【0003】
上記の半導体、例えば、LSI、超LSIなどの製造は一般的には、ウエハーにレジストを塗布後、所望の回路パターンが描画された露光マスク共々、露光機に設置し、露光マスクに光を照射し、回路パターンをウエハーに転写する。通常、これらの操作はゴミを極力低減したクリーンルーム内で行われるが、それでもマスク作成後の移動や設置などで、人体や機器、或いは環境由来のゴミが、マスク上に付着することが多い。これらのゴミは回路パターンと共に転写されるため、異常な回路が発生し、得られた半導体は不良品となり、製造歩留まりの低下をもたらす。
【0004】
そこで、この防止策に非特許文献1の如くマスク作成後、直ちにゴミ除けのペリクルをマスク上に貼り付けることが一般的に行われている。これはペリクルを一括、マスクに貼り付けると、仮にゴミがあって飛来しても、ペリクルにより遮られ、マスクの回路パターン上にゴミは到達できず、ペリクル膜に載ってもそこはマスク面から距離があるため、露光の焦点を回路パターン上に合わせることにより、ペリクル上のゴミは「焦点ボケ」で転写されないことによる。
【0005】
ペリクルの基本構成は、通常、金属製のフレームと、その上端面に接着剤を介して張設された露光波長に対し高透明で耐光性を有するペリクル膜と、マスクに貼り付けるフレーム下端面に形成された比較的耐光性のあるアクリルやシリコーン等よりなる粘着剤層と、ペリクルがマスクに気密に装着された後のペリクルの内外気圧差を調整する、フレームに穿たれた通気孔と、通気孔の外側口を塞ぐフィルター、とから成っている。
【0006】
ペリクル膜としては、露光波長に高透過率あり、高耐光性を有し、例えばg線(436nm)にはニトロセルロース、i線(365nm)にはプロピオン酸セルロースが、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)には非晶質フッ素ポリマーが用いられている。最近は更なる微細化と共に短波長化が一層進み、EUV(極端紫外線;13.5nm)露光も使われ始めている。このペリクル膜材としてはEUV光に対し透過率性が高く、且つ、耐光性が高い材料ならば使用可能だが、実際には低価格で再現性良く均一な成膜ができることから、通常は単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物等が好適である。更には、これらの膜材を保護する目的で、SiC、SiO、Si、SiON、Y、YN、Mo、Ru及びRhなどの保護膜を備えてもよい。膜厚は高透過率を得るため、サブミクロン以下の上記の無機材料膜が検討され、一部は既に実用に供されている。
【0007】
これらのうち、大気圧下で使われるg線(436nm)i線(365nm)、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)等の従来型ペリクルでは、その通気孔用フィルターには一般的に、PET、PTFE等の数十μmから数百μmのファイバー径から成る不織布が使われている(特許文献1)。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2005-268464号公報
【非特許文献】
【0009】
【非特許文献1】「電子材料」、1997年7月号、p.103
【発明の概要】
【発明が解決しようとする課題】
【0010】
一方、真空又は減圧下で使われ、近年実用化され始めたEUV(極端紫外線:13.5nm)露光のペリクルでは、その通気孔用フィルターとして、従来のPET、PTFE等の樹脂製や多孔質の焼結金属やセラミックス等が一部で使用されたり、或いは提案されているが、その厳しい使用条件に耐える物は無いに等しい状況であり、EUV(極端紫外線:13.5nm)露光の実用化への大きな障害となっている。即ち、従来のPET、PTFE等の樹脂製の不織布のフィルターではファイバー径が太く、圧損も高く、又、阻止すべきサブミクロン以下のゴミも容易に通過させてしまう欠点を持つ。多孔質の焼結金属やセラミックスは、ろ過孔を微細にしかも一定にすることは、作成時に孔同士の融着などが起き易く技術的な困難さを伴う。阻止すべきゴミの径よりも大きい孔や必要以上の小さい孔、或いは塞がった孔などが混在してしまい、通気時の圧損が大きく、フィルター性能も安定しない等の問題がある。
【0011】
他方、EUV露光装置は1台数百億円と特に高価な装置であり、且つ、生産には無駄で直接役立っていないが、その操作上不可欠な、マスクの出し入れ時の真空引きや大気圧戻しが、露光装置運転上のデッドタイムとなり、コストアップ要因となっている。そのため、生産コストを下げるべく、この真空引きや大気圧戻しをより高速にし、少しでもEUV露光装置の稼働率を上げることが求められている。
【0012】
しかしながら、現行のEUV露光のペリクル膜は、EUVの光耐性、光透過率や加工性の点から、サブミクロン以下の極薄単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物などの剛直な無機材料膜が一般的に使われており、このため、上記の真空引きや大気圧戻しを高速で行うと、急激な空気の出入りにより、合体したマスクとペリクルで閉じ込められた空間内で局部的な空気の濃淡が発生し、その内外で大きな局部的な圧力差を生じる。この圧力差に極薄で剛直なペリクル膜は追従できず、ペリクル膜が破断、飛散し、高価な露光機内を汚し、以後、露光が不可能となり、莫大な損害を生じ、EUV露光技術上の大きなネックとなっている。
【0013】
この改善策として先行技術では、例えば特許文献1では、所謂ペリクル膜と通気孔フィルターを兼ねたマスクカバー(レチクルカバー)で回路パターンを覆い、ゴミから保護することが提案されている。確かに、この方法はフィルター面積として露光面も含み、極めて大きく取れるため、真空引きや大気圧戻しを高速で行うことは可能だが、その半面、フィルターの通気孔確保のために、ポーラスなフッ素樹脂、具体的にはPTFEが提示されているものの、EUV光は波長が極端に短い紫外線(極端紫外線:13.5nm)なので、照射されるエネルギーが極めて大きく、有機物は短時間で分解してしまう。比較的、耐光性が良いPTFEでさえも長時間のEUV光での使用に耐えられないという大きな問題を抱えている。
【課題を解決するための手段】
【0014】
そこで、本発明者らは、前記のネックと種々の問題の解決に鋭意努力した結果、本発明に至ったものである。即ち、下記のとおりである。
[1] ペリクルフレームと、
前記ペリクルフレームの上端面に設けられたペリクル膜と、
前記ペリクルフレームに設けられた通気孔と、
前記通気孔を塞ぐフィルターと、
を備え、
前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成されるシートを有することを特徴とするペリクル。
[2] ペリクルフレームと、
前記ペリクルフレームの上端面に設けられたペリクル膜と、
前記ペリクルフレームに設けられた通気孔と、
前記通気孔を塞ぐフィルターと、
を備え、
前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有することを特徴とするペリクル。
[3] 前記フィルターは、その一部又は全部が、ナノファイバー及びカーボンナノチューブで構成される不織布を有することを特徴とする前記[2]に記載のペリクル。
[4] 前記フィルターを構成するファイバーのうち、5~70vol%が、平均ファイバー径が数μm以上ないし数百μm以下のファイバーであることを特徴とする前記[1]~[3]のいずれかに記載のペリクル。
[5] 前記フィルターは、その一部又は全部が、前記通気孔に挿入されていることを特徴とする前記[1]~[4]のいずれかに記載のペリクル。
[6] 前記通気孔は、その外側口に座繰りが設けられており、前記フィルターは、その一部又は全部が該座繰りに埋め込まれていることを特徴とする前記[1]~[5]のいずれかに記載のペリクル。
[7] 前記通気孔は、その外側口又は内側口の少なくとも一方に面取りが施されていることを特徴とする前記[1]~[6]のいずれかに記載のペリクル。
[8] 前記通気孔の開口面積の合計の割合は、前記ペリクルフレーム下端面の総面積に対して、2%以上であることを特徴とする前記[1]~[7]のいずれかに記載のペリクル。
[9] 前記通気孔の開口面積の合計の割合は、前記ペリクルフレーム下端面の総面積に対して、10%以上50%以下であることを特徴とする前記[8]に記載のペリクル。
[10] 前記フィルターは、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に平均ファイバー径が小さくなるろ過精度勾配を持つことを特徴とする前記[1]~[9]のいずれかに記載のペリクル。
「ろ過精度勾配」:フィルター材のろ過精度を段階的に変えることをいう。一般的には大きい粒子から小さい粒子へ段階的に捕捉させ、急激な目詰まりを防ぐ。
[11] 前記フィルターは、平均ファイバー径が数μm以上ないし数百μm以下のファイバーを含み、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に前記ファイバーの存在割合が低くなっていることを特徴とする前記[1]~[10]のいずれかに記載のペリクル。
[12] 前記フィルターは、それぞれ異なる平均ファイバー径を有するファイバーで構成される複数の不織布シートを重ねて合体したものであることを特徴とする前記[10]又は[11]に記載のペリクル。
[13] 前記ペリクル膜は、膜厚が1μm以下であり、その一部又は全部が、単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物より成ることを特徴とする前記[1]~[12]のいずれかに記載のペリクル。
[14] 前記ペリクル膜には、無機化合物のコーティングが施されていることを特徴とする前記[1]~[13]のいずれかに記載のペリクル。
[15] 前記無機化合物が、SiC、Si、又はYのいずれかであることを特徴とする前記[14]に記載のペリクル。
[16] 前記ナノファイバーの全部又は一部の表面は、SiC又はSiで被覆されていることを特徴とする前記[1]~[15]のいずれかに記載のペリクル。
[17] 前記ぺリクルが、EUVマスク用ペリクルであることを特徴とする前記[1]~[16]のいずれかに記載のペリクル。
[18] ペリクルフレームと、
前記ペリクルフレームに設けられた通気孔と、
前記通気孔を塞ぐフィルターと、
を備え、
前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成されるシートを有することを特徴とするフィルター付ペリクルフレーム。
[19] ペリクルフレームと、
前記ペリクルフレームに設けられた通気孔と、
前記通気孔を塞ぐフィルターと、
を備え、
前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有することを特徴とするフィルター付ペリクルフレーム。
[20] 前記[1]~[17]のいずれかに記載のペリクルを露光マスクに装着してなることを特徴とするペリクル付き露光マスク。
[21] 前記[1]~[17]のいずれかに記載のペリクルの製造方法であって、エレクトロスピニング法を用いて前記ナノファイバーを作成する工程を備えることを特徴とするペリクルの製造方法。
[22] 前記[20]に記載のペリクル付き露光マスクを用いて露光することを特徴とする露光方法。
[23] 前記[20]に記載のペリクル付き露光マスクによって露光する工程を備えることを特徴とする半導体装置の製造方法。
【発明の効果】
【0015】
本発明によれば、通常の各種ペリクルは勿論のこと、就中、超微細なパターンを転写する最先端EUV露光機へのマスクの出入りの際の真空引きや大気圧戻しを、より高速に行うことができ、高価な露光装置の稼働率を上げ、生産性コストを大きく下げることが可能となる。
【図面の簡単な説明】
【0016】
図1】本発明の一実施形態におけるペリクル付き露光マスクの縦断面構造を示す概略図である。
【発明を実施するための形態】
【0017】
以下、本発明を実施するための形態を図面と共に詳細に説明する。
図1に示すように、本発明のペリクル10は、ペリクルフレーム3と、ペリクルフレーム3の上端面に接着剤層2を介して設けられた極薄のペリクル膜1と、ペリクルフレーム3に設けられた少なくとも1つの通気孔7、とを含んでいる。通気孔は、一部又は全部がナノファイバー又はカーボンナノチューブ(CNT)の少なくとも一方で構成される不織布を有する異物侵入防止用のフィルター7で塞がれている。図1では、フィルター7は通気孔6の外側口の外部にあるが、その一部又は全体が通気孔6に挿入された態様を除外するものではない。また通気孔6の外側口に、フィルター7の一部又は全体を埋め込む座繰りを設けたものや、ペリクルフレーム3周縁部からの発塵低下に加え、フィルター7と通気孔6周縁部の接触に際しての発塵を防ぐため、通気孔6の外側口又は内側口の少なくとも一方に面取りがあるものも可能であり、ペリクルフレーム3は、マスク5の形状に対応して枠状(通常、四角形状)である。
上記不織布は、JIS L-0222:2001に記載されるように「繊維シート,ウェブ又はバットで,繊維が一方向又はランダムに配向しており,交絡,及び/又は融着,及び/又は接着によって繊維間が結合されたもの。ただし,紙,織物,編物,タフト及び縮じゅう(絨)フェルトを除く。」を意味する。なお、本発明において、上記フィルターは必ずしも不織布である必要はなく、シートであればよい。上記シートは一部又は全部がナノファイバー又はカーボンナノチューブ(CNT)の少なくとも一方がシート状に構成され、ナノファイバー又はカーボンナノチューブ(CNT)が絡み合った状態であることが好ましい。
【0018】
ペリクル膜1は、極薄のシリコン製であり、単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物より成る。これは種々の金属、無機化合物と比較して各種の結晶形状や化合物の薄膜が比較的強度が高いこと、そして高純度膜が容易且つ、経済的に作成できること、などの理由から選ばれるものである。また、グラフェン、ダイヤモンドライクカーボン、カーボンナノチューブ等の炭素膜もEUV露光用としては有効である。なお、これらのペリクル膜1に対し、割れや腐食の防止などを目的に、SiC、Si、Y等の各種無機化合物のコーティングを施すことは好適である。ペリクル膜単独での取り扱いが難しい場合は、シリコン等の枠に支えられたペリクル膜を用いることができる。その場合、枠の領域とペリクルフレームを接着することにより、ペリクルを容易に製造することができる。
【0019】
ペリクル膜1の膜厚は1μmを超えると露光光の透過量が不充分となるため、1μm以下が好ましく、100nm~1μmがより好ましい。
【0020】
本発明において、ペリクルフレームに設けられた通気孔6は前記の如く、一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方(ナノファイバー及びカーボンナノチューブの両方の場合を含む。)で構成される不織布を有する異物侵入防止用のフィルター7で塞がれる。これは先にも述べたように、従来の不織布のフィルターでは、近年のサブミクロン~数nmの超高精細、高微細な回路パターンで問題になるゴミ等の異物は最早、除去不能である。一方、多孔質の焼結金属やセラミックスのフィルターはその焼成時に孔径分布の調整や孔の塞がり、或いは厚み調整等が難しく、圧損が高くなったり、再現性が出なかったり、等の問題が発生することなどによる。なお、前記通気孔の配置・数・形状は特に限定されず、種々の態様をとりうる。
通気孔は、ペリクルの外側の空間と内側の空間をつなぐように設けることが好ましい。図1のような、ペリクルフレームの外側面から内側面に向けて貫通して設けられた通気孔は製造するのが容易である。一方で、外側面と内側面を貫通する通気孔ではなく、ペリクルフレームの外側面から内側面の方向へ延びた貫通孔の向きを途中でペリクルフレームの上端面又は下端面の方向へ曲げて、ペリクルフレームの上端面又は下端面に開口を設けてもよい。また、ペリクルフレームの内側面から外側面の方向へ延びた貫通孔の向きを途中でペリクルフレームの上端面又は下端面の方向へ曲げて、ペリクルフレームの上端面又は下端面に開口を設けることもできる。このように、途中で方向を変えた通気孔は上端面又は下端面の開口面積を広く設計することが容易であり、ペリクルの高さが約2.5mm以下という制限を有するEUV露光用のペリクル等の薄型ペリクルにおいて有効な技術となる。
【0021】
しかしながら、本発明のように、一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有する異物侵入防止用のフィルター7で通気孔6を塞ぐことにより、上記の問題が解決し、これまでのペリクルは勿論のこと、最先端の超微細化されたマスク、とりわけEUVマスク用ペリクルにも好適である。即ち、サブミクロン~数nmの異物が、本発明で採用するこのフィルターで高効率に捕集されるため、更にフィルターを薄くできる上に、加えて極細ファイバー径ゆえ、空気やガスの出入り時の圧損も低下する等の相乗効果により、マスクの出し入れ時の真空引きや大気圧戻しを、より高速化することが可能となる。これらの結果、露光装置運転上のデッドタイムも短縮化が可能となり、露光装置の稼働率が上がり、生産コストを下げることが可能となる。
【0022】
この際の通気孔6の全開口面積は、開口の一方をペリクルフレームの上端面又は下端面にした場合、開口を有するペリクルフレーム端面の総面積の2%以上が好ましいが、より高速な真空引きや大気圧戻しを可能とするには10%以上がより好ましく、更なる生産コストの低下が可能となる。但し、全通気孔の合計開口面積の上限はペリクルフレームの強度に依存し、あまり大きくすると、ペリクルフレームの変形が起き、その結果、回路パターンも歪むため、好ましくない。したがって、合計開口面積の上限はペリクルフレームの種類によって決定するのがよいが、高強度のペリクルフレームの加工の難度により、どんな種類でも50%を超えると加工費アップをサポートできる合理性を失いやすい。したがって、合計開口面積は50%以下であることが好ましく、45%以下であることがより好ましく、35%以下であること特に好ましい。ここで、この全開口面積は、開口を有するペリクルフレーム端面の総面積に対する前記端面に設けられた全開口の面積の割合を意味する。
【0023】
なお、通常の不織布の製造法には一般に延伸法で作成されたファイバーが使われるが、その平均ファイバー径は数μm以上と太く、また、各々のファイバー径も延伸力依存で細くなったり、太くなったりして広い分布となるため、異物の捕捉率や強度が一定しない。それ故、本発明におけるナノファイバーには不適で使用できない。そのため、本発明においては、ナノファイバーは所謂、これらが比較的一定となるエレクトロスピンニング法で作成したものが最適であり、エレクトロスピンニング法及び/又は周知のCNTの製法で作られる不織布が最適である。エレクトロスピンニング法は、周知のように、シリンジ中にナノファイバーの原料である高分子溶液を流し入れた後に、高電圧を与え高分子溶液を帯電させ、静電爆発を起こすことでナノファイバーを作成する方法である。該方法を行う際の条件は、特に限定されず、高分子材料の種類等に応じて適宜設定すればよい。
【0024】
前記ナノファイバーの材質は、特に限定されず、例えば、有機高分子(ポリプロピレン、ポリエステル、ポリカルボシラン、ポリエチレン、ナイロン、ポリアセテート、ポリアクリル、ポリスチレン、ポリ塩化ビニルなど)、無機高分子(シリカ、アルミナ、チタニア、ジルコニアなど)、天然高分子化合物(セルロース、キチンなど)、炭素材料などが挙げられる。なお、本明細書において、「ナノファイバー」とは、平均ファイバー径がナノオーダーである繊維状物質をいう。
【0025】
本発明において、ナノファイバー及びカーボンナノチューブの平均ファイバー径(直径)は更に限定するものではないが、通常、1μm以下で10~950nmの範囲が好適である。これは10nm未満のファイバーは余りにも強度が弱く、取り扱いが難しいこと、また、950nm以上では昨今の問題になっているナノオーダーの異物の除去が困難であることによる。
【0026】
また、本発明では、フィルターの全てのファイバーをナノファイバー及び/又はカーボンナノチューブとするよりも、真空引きや大気圧戻しを高速化した時の風圧に耐えるように強度アップのために数μm以上ないし数百μm以下(例えば、1μmから300μm程度)のファイバーを意図的に、フィルターを構成するファイバーのうち、5~70vol%だけ混在させるのが好ましい。これは数μm以上ないし数百μm以下のファイバーが5vol%未満では強度が低目になり、あまり高速化ができず、また、70vol%超では強度は高くても、サブミクロン以下の微細な異物の捕集率が低下し始めるためである。
【0027】
本発明において、ナノファイバー、特には無機系のシリカナノファイバーやCNTは、表面が脆く活性なため、雰囲気ガスによっては消失や破損し易いので、これらの表面をSiCやSi等で被覆して少し改質してもよい。
【0028】
また、本発明においては、前記フィルターは、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に平均ファイバー径が小さくなるろ過精度勾配を持つことが好ましい。このように、ろ過精度勾配を形成するとフィルターの強度を向上させると共に異物捕集率はより高く、しかも圧損も小さくできる。その結果、マスクの出入り時の真空引きや大気圧戻しの、より高速化が可能となる。更に好ましい形態は、フィルターの不織布を片表面からもう一方の表面、又は両表面から中央部に向かってナノファイバーと数μm以上ないし数百μm以下の太いファイバーとの混入比率を段階的に平均ファイバー径を小さくするように変えて、ろ過精度勾配を持たせることが好ましい。これは、ナノファイバーのみで構成される不織布は、異物捕集率は高くてもフィルター強度が弱く、直ぐに破れ長期の使用に耐えないことがあるからである。
【0029】
更に加えるに、ナノファイバーと数μm以上ないし数百μm以下の太いファイバーとの混入の際の太いファイバーは曲げ強度も有り、柔軟性を持ったポリプロピレン、ポリエステル、ポリカルボシラン等の高分子系ファイバーが好適である。これは、これらのファイバーがあたかも鉄筋コンクリートの鉄筋の如き役割を担い、混在するナノファイバー及びフィルター全体が高速の真空引きや大気圧戻し時の風圧により破壊されるのを防ぐことができるからである。
【0030】
ろ過精度勾配を段階的に有したフィルターを作成する方法としては、それぞれ異なる平均ファイバー径を有するファイバーで構成される複数の不織布シートから、所望の勾配が達成されるように適宜選択して重ね、合体することにより得られる。重ねた後、側面に接着剤を塗布すると分散を防ぐことができる。座繰りに埋め込む場合は、座繰りの側面に接着剤を塗布することが好ましい。
【0031】
このように作成されたフィルターを、ペリクルフレームに穿たれた通気孔を塞ぐように装着する方法は、従来のフィルターの場合と変わらない。例えば、通気孔の外側口の周りに、フィルターの形状に合わせて、方形枠状、リング状等に接着剤を塗布し、これにフィルターを貼着させる。座繰りがある場合は、接着剤を座繰りの側面に塗布すると、フィルターの固定とフィルターの分散防止がなされる。
【0032】
本発明のペリクルをマスクに装着する方法を図1を用いて説明する。ペリクルフレーム3の下端面にはペリクル10をフォトマスク5に装着するための粘着剤層4が形成されている。更に粘着剤層4の下端面には、粘着面を保護するためのライナー(図示せず)が設けられている。ペリクル10をフォトマスク5に装着する時は、このライナーを外し、粘着剤層4を露出させてフォトマスク5に貼り付け使用する。
【実施例0033】
以下に本発明を実施例及び比較例を示して具体的に説明するが、本発明の範囲がこれに制限されるものではない。
【0034】
[実施例1]
現行品フィルターで使用されている平均ファイバー径5μmのポリプロピレン・ファイバーにエレクトロスピンニング法で作成した平均ファイバー径0.3μmのシリカ・ナノファイバーを混ぜ合わせ、厚み500μmの不織布フィルターであって、その両端面で平均ファイバー径が0.95μm、中央部の平均ファイバー径が0.35μmの「ろ過精度勾配」を持った不織布フィルターを28個作った。なお、平均ファイバー径はSEM像より算出した。
次に、図1に示したように、この不織布フィルター7で、厚さ0.1μmのp-Si(ポリシリコン)製ペリクル膜1が張設されたペリクルフレーム3の通気孔6、計28個(全開口面積=450mm;ペリクルフレーム下端面総面積の21%)を1つずつ塞いだ後に、このペリクル10を露光マスク5に粘着剤層4を介して貼った。
その後、この露光マスクを模擬EUV装置に装着して、NaClを微粒子生成アトマイザーで処理してNaCl微粒子を発生させ、静電分級器を用いて0.01~0.5μmのNaCl微粒子に分級し、疑似異物雰囲気とした。この疑似異物雰囲気を模擬EUV装置内に導入しつつ、マスクの出し入れを想定した真空引きや大気圧戻しのシミュレーション実験を実施した。真空引き後、大気圧戻しの際の異物捕捉率と差圧を測定して、上記不織布フィルターの概略評価とした。
その結果、異物捕捉率は0.01~0.5μmの微粒子についてすべて100%であった。差圧は線速0.15cm/sで0.5Paであった。また、p-Siペリクル膜は圧力変化によるショックに対して破損することなく十分耐えられるものであった。
【0035】
[比較例1]
現行品フィルターによる比較例として、上記実施例1の平均ファイバー径5μmのポリプロピレン・ファイバーのみで構成され、厚み500μm全体にわたってろ過精度勾配が無く、厚み方向に均一な不織布フィルターを28個作成した。
その後、実施例1と同一装置、同条件で同じくペリクルフレームのフィルターに上記不織布フィルターを使用し、真空引き後、大気圧戻しの際の異物捕捉率と差圧を測定し、上記不織布フィルターの評価を行った。
その結果、異物捕捉率は、0.01μm近傍の微粒子についての異物捕捉率は94.0%、0.05μm近傍の異物捕捉率は93.5%、0.10μm近傍の異物捕捉率は94.8%、0.5μm近傍の異物捕捉率は95.3%であった。差圧は線速0.15cm/sで20.5Paであったが、途中、差圧が大きすぎたため、極薄のp-Siペリクル膜が破裂してしまい、現行のフィルターは、この模擬EUV装置には不適切であることが分かった。
【0036】
[実施例2]
平均ファイバー径3μmのポリエステル・ファイバーのみを50μm積層し、片端面とした。この片端面上に平均ファイバー径35nm(0.035μm)のカーボンナノチューブ(CNT)と上記の平均ファイバー径3μmのポリエステル・ファイバーとを、両者の混入度を徐々に変化させつつ、400μm積層し、更に平均ファイバー径35nmのCNTのみで50μm厚みを積み、もう一方の端面とし、ろ過精度勾配を中間部に有する不織布フィルターを28個作成した。更にこの不織布フィルターで、図1に示すように、0.1μmのp-Si膜ペリクル膜1が張設されたペリクルフレーム3の通気孔6、計28個(全開口面積=321mm;ペリクルフレーム下端面総面積の15%に相当)を塞いだ後に、このペリクル10を露光マスク5に粘着剤層4を介し貼った。
その後、実施例1と同じ装置、同一条件で上記不織布フィルターの評価を行った。
その結果、異物捕捉率は0.01~0.5μmですべて100%、差圧は線速0.15cm/sで0.2Paであり、p-Siペリクル膜は差圧による損傷は被らず、露光マスクの出し入れ時の真空引き、大気圧戻しには十分耐えるものであった。
【符号の説明】
【0037】
1 ペリクル膜
2 接着剤層
3 ペリクルフレーム
4 粘着剤層
5 フォトマスク
6 通気孔
7 フィルター
10 ペリクル
図1