IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭硝子株式会社の特許一覧

特開2022-75883溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法
<>
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図1
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図2
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図3
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図4
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図5
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図6
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図7
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図8
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図9
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図10
  • 特開-溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022075883
(43)【公開日】2022-05-18
(54)【発明の名称】溶融ガラスの成形方法、成形装置、およびガラス製品の製造方法
(51)【国際特許分類】
   C03B 18/02 20060101AFI20220511BHJP
   C03B 18/18 20060101ALI20220511BHJP
【FI】
C03B18/02
C03B18/18
【審査請求】有
【請求項の数】26
【出願形態】OL
(21)【出願番号】P 2022045905
(22)【出願日】2022-03-22
(62)【分割の表示】P 2018568576の分割
【原出願日】2018-02-14
(31)【優先権主張番号】P 2017026061
(32)【優先日】2017-02-15
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000000044
【氏名又は名称】AGC株式会社
(74)【代理人】
【識別番号】110001634
【氏名又は名称】特許業務法人 志賀国際特許事務所
(72)【発明者】
【氏名】伊賀 元一
(72)【発明者】
【氏名】上堀 徹
(72)【発明者】
【氏名】中野 正徳
(57)【要約】
【課題】溶融ガラスの成形精度を容易に向上できる溶融ガラスの成形方法を提供する。
【解決手段】本発明の溶融ガラスの成形方法の一つの態様は、軟化点以上の温度の溶融ガラスを帯状にして排出し、溶融金属の表面上に供給する供給工程と、溶融金属の表面上に供給されたガラスリボンを移送する移送工程と、を含み、移送工程は、移送されるガラスリボンを、移送方向上流側の領域で、ガラスリボンの温度が幅方向の全体において軟化点よりも低くなるように冷却する冷却工程を含む。
【選択図】図1
【特許請求の範囲】
【請求項1】
軟化点以上の温度の溶融ガラスを帯状に排出してガラスリボンとし、溶融金属の表面上に供給する供給工程と、
前記溶融金属の表面上に供給された前記ガラスリボンを移送する移送工程と、
を含み、
前記移送工程は、移送される前記ガラスリボンを、移送方向上流側の領域で、前記ガラスリボンの温度が幅方向の全体において軟化点よりも低くなるように冷却する冷却工程を含む溶融ガラスの成形方法。
【請求項2】
前記冷却工程において、前記ガラスリボンの温度が幅方向の全体において徐冷点よりも高くなるように前記ガラスリボンを冷却する請求項1に記載の成形方法。
【請求項3】
前記ガラスリボンが供給される箇所における前記溶融金属の温度は、前記溶融ガラスの軟化点よりも低く、かつ、前記溶融ガラスの徐冷点よりも高く、
前記冷却工程において、前記溶融金属によって前記ガラスリボンを冷却する請求項1または2に記載の成形方法。
【請求項4】
前記ガラスリボンが供給される箇所における前記溶融金属の温度は、900℃以下である請求項3に記載の成形方法。
【請求項5】
前記供給工程において、前記ガラスリボンから前記溶融金属に向けて輻射される輻射熱の少なくとも一部を遮蔽する請求項1~4のいずれか一項に記載の成形方法。
【請求項6】
前記供給工程と前記移送工程との少なくとも一方において、前記溶融ガラスを排出する排出部から前記溶融金属および前記ガラスリボンに向けて輻射される輻射熱の少なくとも一部を遮蔽する請求項1~5のいずれか一項に記載の成形方法。
【請求項7】
前記冷却工程において、前記ガラスリボンを前記溶融金属側と逆側から冷却する請求項1~6のいずれか一項に記載の成形方法。
【請求項8】
前記供給工程において、前記ガラスリボンを鉛直方向下方に落下させて前記溶融金属の表面上に供給する請求項1~7のいずれか一項に記載の成形方法。
【請求項9】
前記供給工程における前記ガラスリボンの粘度η[dPa・s]は、1.5≦logη≦5の範囲内である請求項8に記載の成形方法。
【請求項10】
前記供給工程において、前記ガラスリボンを落下させる間に、前記ガラスリボンを冷却する請求項8または9に記載の成形方法。
【請求項11】
前記移送工程において、前記ガラスリボンを引張しない請求項1~10のいずれか一項に記載の成形方法。
【請求項12】
前記供給工程において、前記溶融ガラスを排出する排出部のスリットから前記溶融ガラスを排出して前記溶融ガラスをガラスリボンにする請求項1~11のいずれか一項に記載の成形方法。
【請求項13】
前記溶融ガラスを排出する排出部は、前記移送方向上流側から移送方向下流側に向かうに従って鉛直方向下側に位置する傾斜面を有し、
前記供給工程において、前記傾斜面に沿って前記溶融ガラスを伝わらせて前記溶融ガラスをガラスリボンにする請求項1~11のいずれか一項に記載の成形方法。
【請求項14】
前記溶融ガラスを排出する排出部は、前記溶融ガラスが伝う第1表面および第2表面を有し、前記第1表面の下端と前記第2表面の下端とは、互いに接続され、
前記供給工程において、前記第1表面に沿って帯状にされたガラスリボンと前記第2表面に沿って帯状にされたガラスリボンとを重ね合わせて前記溶融金属の表面上に供給する請求項1~11のいずれか一項に記載の成形方法。
【請求項15】
溶融金属が貯留される浴槽と、
温度が軟化点以上で帯状の溶融ガラスを排出する排出部を有し、前記排出部から前記溶融ガラスを排出して前記溶融金属の表面上にガラスリボンを供給する供給装置と、
前記溶融金属の表面上に供給された前記ガラスリボンを移送する移送装置と、
移送される前記ガラスリボンを、移送方向上流側の領域において冷却する冷却装置と、
を備え、
前記冷却装置は、前記ガラスリボンの温度が幅方向の全体において軟化点よりも低くなるように前記ガラスリボンを冷却する溶融ガラスの成形装置。
【請求項16】
前記冷却装置は、前記ガラスリボンが供給される箇所における前記溶融金属の温度を前記溶融ガラスの軟化点よりも低く、かつ、前記溶融ガラスの徐冷点よりも高くする温度調整部を有する請求項15に記載の成形装置。
【請求項17】
前記冷却装置は、前記ガラスリボンが供給される箇所における前記溶融金属の温度を900℃以下にする温度調整部を有する請求項16に記載の成形装置。
【請求項18】
前記溶融金属の表面のうち前記ガラスリボンが供給される部分よりも移送方向上流側の部分を覆い、前記ガラスリボンから前記溶融金属に向けて輻射される輻射熱の少なくとも一部を遮蔽する第1遮蔽部をさらに備える請求項15~17のいずれか一項に記載の成形装置。
【請求項19】
前記排出部から前記溶融金属および前記ガラスリボンに向けて輻射される輻射熱の少なくとも一部を遮蔽する第2遮蔽部をさらに備える請求項15~18のいずれか一項に記載の成形装置。
【請求項20】
前記冷却装置は、前記ガラスリボンを前記溶融金属側と逆側から冷却する第1冷却部を有する請求項15~19のいずれか一項に記載の成形装置。
【請求項21】
前記排出部は、前記溶融金属の表面の鉛直方向上側に配置されている請求項15~20のいずれか一項に記載の成形装置。
【請求項22】
前記排出部と前記溶融金属の表面との鉛直方向の距離を調整可能な調整装置をさらに備える請求項21に記載の成形装置。
【請求項23】
前記調整装置は、前記供給装置を昇降させる昇降装置を有する請求項22に記載の成形装置。
【請求項24】
前記ガラスリボンが前記排出部から排出されてから前記溶融金属の表面上に供給されるまでの間に、前記ガラスリボンを冷却する第2冷却部をさらに備える請求項15から23のいずれか一項に記載の成形装置。
【請求項25】
前記排出部を加熱する加熱部をさらに備える請求項15~24のいずれか一項に記載の成形装置。
【請求項26】
請求項1~14のいずれか一項に記載の成形方法で成形されたガラスリボンを徐冷する徐冷工程を含むガラス製品の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶融ガラスの成形精度を容易に向上できる溶融ガラスの成形方法、溶融ガラスの成形装置、およびガラス製品の製造方法に関する。
【背景技術】
【0002】
溶融金属の表面上に溶融ガラスを供給して、溶融ガラスを成形する成形方法が知られている。例えば、特許文献1では、帯状の溶融ガラスを3層重ねた多層ガラスの成形方法が記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開第2014/009766号
【特許文献2】日本特開昭55-136140号公報
【特許文献3】米国特許第3679389号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1では、帯状の溶融ガラスを3層積層させて溶融金属の表面上に供給し、積層された溶融ガラスで形成されたガラスリボンをトップロールによって幅方向に引き延ばして、溶融ガラスを成形している。しかし、この場合、幅方向において、ガラスリボンの厚みが不均一になりやすく、ガラスリボンの成形精度が低下する問題があった。また、特許文献2においても同様に、トップロールを用いてガラスリボンを引き延ばすため、ガラスリボンの厚みが不均一になりやすい。
【0005】
また、例えば、特許文献3では、ガラスリボンの幅方向の縁部を冷却することで、ガラスリボンの幅が縮むことを抑制しつつ、溶融金属の表面上で溶融ガラスを成形する方法が記載されている。この場合、溶融金属の表面上においてガラスリボンをトップロール等によって引き延ばさなくてもよいが、ガラスリボンの幅方向の縁部のみを冷却する必要があるため、成形装置が煩雑化しやすく、溶融ガラスの成形に手間が掛かる場合があった。
【0006】
本発明は、上記問題点に鑑みて、溶融ガラスの成形精度を容易に向上できる溶融ガラスの成形方法、およびそのような成形方法を用いたガラス製品の製造方法を提供することを目的の一つとする。また、簡単な構造で、溶融ガラスの成形精度を向上できる溶融ガラスの成形装置、およびそのような成形装置を用いたガラス製品の製造方法を提供することを目的の一つとする。
【課題を解決するための手段】
【0007】
本発明者らは、上記問題を解決するために、溶融金属の表面上でガラスリボンの厚みを調整するのではなく、予め厚みを調整したガラスリボンを溶融金属の表面上に供給し、溶融金属の表面上においてガラスリボンの厚みを維持するという新たな着想を得た。この新たな着想によれば、ガラスリボンを溶融金属の表面上で引き延ばすことなく、溶融ガラスを成形することができる。具体的には、この新たな発想に基づいた以下に示す構成によって、上記課題を解決できる。
【0008】
本発明の溶融ガラスの成形方法の一つの態様は、軟化点以上の温度の溶融ガラスを帯状に排出してガラスリボンとし、溶融金属の表面上に供給する供給工程と、前記溶融金属の表面上に供給された前記ガラスリボンを移送する移送工程と、を含み、前記移送工程は、移送される前記ガラスリボンを、移送方向上流側の領域で、前記ガラスリボンの温度が幅方向の全体において軟化点よりも低くなるように冷却する冷却工程を含む。
【0009】
本発明の溶融ガラスの成形装置の一つの態様は、溶融金属が貯留される浴槽と、温度が軟化点以上で帯状の溶融ガラスを排出する排出部を有し、前記排出部から前記溶融ガラスを排出して前記溶融金属の表面上にガラスリボンを供給する供給装置と、前記溶融金属の表面上に供給された前記ガラスリボンを移送する移送装置と、移送される前記ガラスリボンを、移送方向上流側の領域において冷却する冷却装置と、を備え、前記冷却装置は、前記ガラスリボンの温度が幅方向の全体において軟化点よりも低くなるように前記ガラスリボンを冷却する。
本発明のガラス製品の製造方法の一つの態様は、上記の成形方法で成形されたガラスリボンを徐冷する徐冷工程を含む。
【発明の効果】
【0010】
本発明の一つの態様によれば、溶融ガラスの成形精度を容易に向上できる溶融ガラスの成形方法、およびその成形方法を用いたガラス製品の製造方法が提供される。また、本発明の一つの態様によれば、簡単な構造で、溶融ガラスの成形精度を向上できる溶融ガラスの成形装置、およびそのような成形装置を用いたガラス製品の製造方法が提供される。
【図面の簡単な説明】
【0011】
図1】第1実施形態の溶融ガラスの成形装置の部分を示す断面図である。
図2】第1実施形態の溶融ガラスの成形装置の部分を示す平面図である。
図3】第1実施形態の溶融ガラスの成形方法の手順を示すフローチャートである。
図4】第2実施形態の供給装置の部分を示す断面図である。
図5】第3実施形態の供給装置の部分を示す断面図である。
図6】第4実施形態の供給装置の部分を示す断面図である。
図7】第5実施形態の供給装置の部分を示す断面図である。
図8】第6実施形態の溶融ガラスの成形装置の部分を示す断面図である。
図9】第7実施形態の溶融ガラスの成形装置の部分を示す断面図である。
図10】実施形態におけるガラス製品の製造方法の一例のフローチャートを示す。
図11】比較例の溶融ガラスの成形装置の部分を示す平面図である。
【発明を実施するための形態】
【0012】
以下、図面を参照しながら、本発明の実施形態に係る溶融ガラスの成形方法、溶融ガラスの成形装置、およびガラス製品の製造方法について説明する。なお、本発明は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面は、いずれも概略的模式図または説明図であり、そこにおいては、各構成をわかりやすくするために、各構造における縮尺、数等を、実際の構造における縮尺、数等と異ならせている場合がある。
【0013】
図面においては、適宜3次元直交座標系としてXYZ座標系を示し、Z軸方向を鉛直方向とし、X軸方向を図1および図2に示す溶融ガラスGの成形装置1の長さ方向とし、Y軸方向を成形装置1の幅方向とする。Z軸方向のうち+Z側を鉛直方向上側とし、-Z側を鉛直方向下側とする。成形装置1の長さ方向は、図1における左右方向であり、本明細書においては、ガラスリボンGRの移送方向である。また、成形装置1の幅方向は、図2における上下方向であり、ガラスリボンGRの移送方向および鉛直方向の両方と直交する方向である。
【0014】
なお、本明細書において、ガラスリボンGRとは、溶融ガラスGから形成した帯状のガラスである。また、ガラスリボンGRの移送方向とは、成形装置1の平面視においてガラスリボンGRが移送される方向である。また、移送方向上流側および移送方向下流側とは、成形装置1内におけるガラスリボンGRの移送方向に対するものである。以下に説明する各実施形態においては、+X側が移送方向下流側であり、-X側が移送方向上流側である。
また、以下の説明においては、特に断りのない限り、幅方向とは、成形装置1の幅方向およびガラスリボンGRの幅方向を意味するものとし、移送方向とは、ガラスリボンGRの移送方向を意味するものとする。
【0015】
<第1実施形態>
図1に示す第1実施形態の成形装置1は、溶融ガラスGを成形する装置である。成形装置1は、バス10と、図示しないルーフと、供給装置20と、ドロスボックス11と、冷却装置30と、を備える。
バス10は、鉛直方向上側に開口する浴槽10aを有する。浴槽10aには、溶融金属Mが貯留される。溶融金属Mは、例えば、溶融スズ、溶融スズ合金等であることが好ましい。溶融金属Mの温度は、移送方向下流側に向かうに従って低くなることが好ましい。図示しないルーフは、バス10の上側を覆っている。バス10の鉛直方向上側には、ルーフによって囲まれた空間が設けられている。空間は、浴槽10a内の溶融金属Mが酸化することを抑制するために、還元性(非酸化性)ガスまたは不活性ガスで満たされることが好ましい。還元性ガスとしては、例えば、窒素と水素との混合ガスが挙げられる。
【0016】
供給装置20は、バス10の移送方向上流側に設けられている。供給装置20は、図示しないガラス溶融炉と、排出部21と、を有する。ガラス溶融炉は、ガラス原料を溶解して溶融ガラスGを製造する。排出部21は、溶融ガラスGを排出する。排出部21は、例えば、移送方向上流側から移送方向下流側に向かうに従って鉛直方向下側に位置する向きに傾いた方向に延びた筒状である。排出部21の先端には、排出部21の内部と外部とを繋げるスリット21aが形成されている。
【0017】
スリット21aは、幅方向に延びている。排出部21内の溶融ガラスGがスリット21aを介して排出されることで、溶融ガラスGが帯状の溶融ガラスであるガラスリボンGRにされる。スリット21aから排出されたガラスリボンGRの幅方向の寸法は、図2に示すように、スリット21aの幅方向の寸法とほぼ同じになる。スリット21aから排出されたガラスリボンGRは、図1に示すように、溶融金属Mの表面Ma上に供給される。以下の説明においては、帯状にされた溶融ガラスGをガラスリボンGRと呼ぶ。
【0018】
第1実施形態では、排出部21は、溶融金属Mの表面Maの鉛直方向上側に配置されている。そのため、排出部21のスリット21aから排出されたガラスリボンGRは、鉛直方向下方に落下して、溶融金属Mの表面Ma上に供給される。このようにして、供給装置20は、排出部21からガラスリボンGRを排出して溶融金属Mの表面Ma上に供給する。
【0019】
排出部21から排出されるガラスリボンGRの温度は、軟化点以上である。溶融ガラスGの軟化点は、例えば溶融ガラスGがソーダライムガラスである場合、750℃程度である。排出部21から排出されるガラスリボンGRの温度は、上限は特に限定されないが、溶融ガラスGの軟化点+500℃以下であることが好ましい。第1実施形態において排出部21から排出されるガラスリボンGRの温度は、溶融ガラスGの粘度η[dPa・s]が、1.5≦logη≦5の範囲内となる温度であることが好ましい。具体的には、例えば溶融ガラスGがソーダライムガラスである場合、排出部21から排出されるガラスリボンGRの温度は、940℃以上、1600℃以下程度であることが好ましい。
【0020】
なお、本明細書において溶融ガラスGの粘度η[dPa・s]は、JIS Z8803(2011年、液体の粘度測定法)に基づいて測定した値である。測定では、単一円筒形回転粘度計を用いた。単一円筒形回転粘度計としては、例えば、株式会社モトヤマ社(日本国大阪市)の製品であるGMシリーズの内筒回転式粘度計が使用できる。
【0021】
ドロスボックス11は、バス10の移送方向下流側に設けられている。ドロスボックス11は、溶融金属Mの表面Ma上に供給されたガラスリボンGRを移送する移送装置50を有する。移送装置50は、複数のガラス移送用ロール51を有する。ガラス移送用ロール51は、溶融金属Mの表面Maに供給されたガラスリボンGRを移送方向上流側から移送方向下流側に向けて移送する。ガラス移送用ロール51は、ガラスリボンGRを溶融金属Mの表面Maから引き上げて、図示しない徐冷炉へと搬送する。
【0022】
図示は省略するが、ドロスボックス11の移送方向下流側には、徐冷炉が設けられている。徐冷炉は、成形装置1で成形されたガラスリボンGRを移送方向に移送しつつ、ガラスリボンGRの温度を歪点以下まで徐冷することが好ましい。溶融ガラスGがソーダライムガラスの場合、徐冷炉内の温度は、移送方向上流側において、例えば、700℃程度であり、移送方向下流側において、例えば、300℃程度である。
【0023】
冷却装置30は、移送されるガラスリボンGRを、移送方向上流側の領域において冷却する。冷却装置30は、ガラスリボンGRの温度が幅方向の全体において軟化点よりも低くなるようにガラスリボンGRを冷却する。より詳細には、冷却装置30は、ガラスリボンGRの温度が幅方向の全体において軟化点よりも低く、かつ、徐冷点よりも高くなるようにガラスリボンGRを冷却することが好ましい。
【0024】
溶融ガラスGの徐冷点は、例えば溶融ガラスGがソーダライムガラスである場合、560℃程度である。すなわち、例えば溶融ガラスGがソーダライムガラスである場合、冷却装置30は、移送方向上流側の領域において、移送されるガラスリボンGRの温度が幅方向の全体において560℃以上、750℃以下程度となるようにガラスリボンGRを冷却する。ガラスリボンGRの温度が幅方向の全体において軟化点よりも低く、かつ、徐冷点よりも高い場合のガラスリボンGR(溶融ガラスG)の粘度η[dPa・s]は、7<logη<13の範囲内であることが好ましい。
【0025】
移送方向上流側の領域とは、例えば、浴槽10aの移送方向の中心よりも移送方向上流側に位置する領域を含む。また、移送方向上流側の領域とは、例えば、排出部21から排出されたガラスリボンGRが最初に接触する溶融金属Mの部分から、移送方向下流側に好ましくは500mm程度以内の範囲を含む。
【0026】
第1実施形態において冷却装置30は、温度調整部31と、第1冷却部32と、を有する。温度調整部31は、ガラスリボンGRが供給される部分における溶融金属Mの温度を溶融ガラスGの軟化点よりも低く、かつ、溶融ガラスGの徐冷点よりも高くせしめすることが好ましい。すなわち、例えば溶融ガラスGがソーダライムガラスである場合、温度調整部31は、ガラスリボンGRが供給される部分における溶融金属Mの温度を560℃以上、750℃以下程度とする。温度調整部31によって調整される溶融金属Mの温度は、従来の溶融金属Mの温度に比べて低い。
【0027】
溶融金属MにおけるガラスリボンGRが供給される部分とは、排出部21から排出されたガラスリボンGRが最初に接触する溶融金属Mの部分、およびその近傍の部分を含む。温度調整部31によって温度が調整された溶融金属Mに、排出部21から排出されたガラスリボンGRが接触することで、ガラスリボンGRを冷却できる。
【0028】
例えば、溶融金属Mを構成する金属は、バス10とルーフとで囲まれた内部の温度が高温になることで溶融する。温度調整部31が設けられていない場合、溶融金属Mの温度は、移送方向上流側において、例えば1050℃程度になる。このようにして溶融した溶融金属Mの温度を、温度調整部31は冷却することで、上述した温度に調整する。溶融金属Mを冷却する方法は、特に限定されず、空冷であってもよいし、液冷であってもよいし、熱伝導によって移送方向下流側に放熱するものであってもよい。なお、バス10とルーフとで囲まれた内部の温度によって溶融した溶融金属Mの温度が、所望の温度よりも低い場合には、温度調整部31は、溶融金属Mを加熱することで、溶融金属Mの温度を所望の温度にしてもよい。
【0029】
第1冷却部32は、浴槽10aの鉛直方向上側に配置されている。第1冷却部32は、ガラスリボンGRを溶融金属M側と逆側、すなわち鉛直方向上側から冷却する。第1冷却部32の構成は、ガラスリボンGRを冷却できるならば、特に限定されない。第1冷却部32は、ガラスリボンGRに送風する送風装置であってもよいし、内部に冷媒が流れる流路を有する冷却管であってもよい。また、冷却管に放熱用のフィンが設けられていてもよい。
【0030】
成形装置1は、調整装置60をさらに備えることができる。調整装置60は、排出部21と溶融金属Mの表面Maとの距離を調整可能である。第1実施形態において排出部21と溶融金属Mの表面Maとの距離とは、排出部21のスリット21aと溶融金属Mの表面Maとの鉛直方向の距離H1である。距離H1は、例えば1mm以上、100mm以下であることが好ましく、5mm以上、50mm以下であることがより好ましい。第1実施形態において調整装置60は、昇降装置61を有する。
【0031】
昇降装置61は、バス10の移送方向上流側の端部における鉛直方向上側の端部に設けられ、供給装置20を鉛直方向下側から支持している。昇降装置61は、供給装置20を昇降させる。昇降装置61によって供給装置20を昇降させることで、調整装置60は、排出部21を昇降させ、排出部21のスリット21aと溶融金属Mの表面Maとの鉛直方向の距離H1を調整することができる。
【0032】
成形装置1は、第2冷却部33,34をさらに備える。第2冷却部33,34は、鉛直方向において、浴槽10aと排出部21との間に配置されている。第2冷却部34は、第2冷却部33の移送方向上流側に、間隔を空けて配置されている。排出部21から排出されたガラスリボンGRは、第2冷却部33と第2冷却部34との移送方向の間を通って溶融金属Mの表面Maに供給される。
【0033】
第2冷却部33,34は、ガラスリボンGRが排出部21から排出されてから溶融金属Mの表面Ma上に供給されるまでの間に、ガラスリボンGRを冷却する。第2冷却部33,34は、ガラスリボンGRに送風する送風装置であってもよいし、内部に冷媒が流れる流路を有する冷却管であってもよい。
【0034】
成形装置1は、図2に示すように、複数のガイドロール70をさらに備える。ガイドロール70は、浴槽10aの幅方向両側の壁部に対向配置されている。ガイドロール70は、ガラスリボンGRの幅方向の端部を支持するガイドロール本体72と、ガイドロール本体72に連結された回転軸71と、で構成される。回転軸71は、幅方向に延びている。回転軸71が電気モータ等の駆動装置で回転駆動されると、ガイドロール本体72が回転しながらガラスリボンGRの幅方向の端部を移送方向下流側に送り出す。ガイドロール70の回転速度は、移送装置50におけるガラス移送用ロール51の回転速度と同じである。なお、後述するが、ガイドロール70は、背景技術で述べたトップロールや、従来技術としてのフロート製法で用いられるガラスリボンを幅方向および移送方向に広げるためのトップロールとは機能が異なるものである。
【0035】
次に、上述した成形装置1を用いた溶融ガラスGの成形方法について説明する。第1実施形態の成形方法は、図3に示すように、供給工程S11と、移送工程S12とを含む。
供給工程S11は、軟化点以上の温度の溶融ガラスGを帯状にして排出してガラスリボンGRにし、溶融金属Mの表面Ma上に供給する工程である。まず、供給装置20における図示しないガラス溶融炉において軟化点以上の温度の溶融ガラスGを製造する。第1実施形態では、供給工程S11における溶融ガラスGの温度は、溶融ガラスGの粘度η[dPa・s]が、1.5≦logη≦5の範囲内となる温度とすることが好ましい。そして、ガラス溶融炉で製造された溶融ガラスGを排出部21のスリット21aから排出して溶融ガラスGをガラスリボンGRにする。
【0036】
スリット21aから排出されたガラスリボンGRを鉛直方向下方に落下させて溶融金属Mの表面Ma上に供給できる。第1実施形態の供給工程S11においては、第2冷却部33,34を用いて、ガラスリボンGRを落下させる間に、ガラスリボンGRを冷却できる。このとき、ガラスリボンGRの温度が、軟化点より低くならないようにする。第1実施形態では、ガラスリボンGRの粘度η[dPa・s]が、1.5>logηとならないようにすることが好ましい。軟化点以上の温度のガラスリボンGRを鉛直方向下方に落下させることで、ガラスリボンGRの自重によってガラスリボンGRが引き延ばされ、ガラスリボンGRの厚みを小さくできる。これにより、ガラスリボンGRの厚みを所望の厚みにできる。
【0037】
移送工程S12は、溶融金属Mの表面Ma上に供給されたガラスリボンGRを移送する工程である。複数のガイドロール70でガラスリボンGRの幅方向両端部を支持しつつ、移送装置50のガラス移送用ロール51によってガラスリボンGRを移送できる。移送工程S12においては、ガラスリボンGRを引張しないことが好ましい。
【0038】
本明細書において、ガラスリボンGRを引張しないとは、ガラスリボンGRを幅方向および移送方向の少なくとも一方に引き延ばして変形させる力をガラスリボンGRに加えないことを含む。例えば、第1実施形態では、ガラスリボンGRに対して、ガラスリボンGRを移送するための力を加えてはいるが、ガラスリボンGRを幅方向および移送方向の少なくとも一方に変形させる力を加えてはいない。すなわち、移送工程S12においてガラスリボンGRを引張しないとは、ガラスリボンGRを移送する際に、ガラスリボンGRを幅方向に引き延ばして変形させる力、あるいはガラスリボンGRを移送方向に引き延ばして変形させる力をガラスリボンGRに対して加えないことを含む。
【0039】
移送工程S12は、移送されるガラスリボンGRを、移送方向上流側の領域で、ガラスリボンGRの温度が幅方向の全体において軟化点よりも低くなるように冷却する冷却工程S12aを含む。第1実施形態の冷却工程S12aにおいては、冷却装置30を用いて、ガラスリボンGRの温度が幅方向の全体において軟化点よりも低く、かつ、徐冷点よりも高くなるようにガラスリボンGRを冷却できる。
【0040】
第1実施形態では、冷却工程S12aにおいて、溶融金属MによってガラスリボンGRを冷却する。予め、冷却装置30の温度調整部31を用いて、ガラスリボンGRが供給される部分における溶融金属Mの温度を、溶融ガラスGの軟化点よりも低く、かつ、溶融ガラスGの徐冷点よりも高くしておくことができる。上述したように、供給工程S11における溶融ガラスGの温度は、軟化点以上であるため、ガラスリボンGRは、溶融金属Mの表面Ma上に供給されて溶融金属Mと接触することで冷却される。
【0041】
また、第1実施形態では、冷却工程S12aにおいて、冷却装置30の第1冷却部32を用いて、ガラスリボンGRを溶融金属Mと逆側、すなわち第1実施形態では鉛直方向上側から冷却できる。このように、第1実施形態では、冷却工程S12aにおいて、溶融金属Mと第1冷却部32とを用いて、ガラスリボンGRを冷却できる。
【0042】
なお、本明細書において、移送されるガラスリボンGRを、移送方向上流側の領域で、ガラスリボンGRの温度が軟化点よりも低くなるように冷却する、とは、移送方向上流側の領域内でガラスリボンGRの温度が軟化点よりも低くなれば、ガラスリボンGRの温度はどのように変化してもよい。例えば、ガラスリボンGRの温度は、溶融金属Mと接触した時点で軟化点より低くなってもよいし、溶融金属Mと接触した後、徐々に低下して軟化点より低くなってもよい。
以上の供給工程S11と移送工程S12とによって、溶融ガラスGを成形して、所望の厚みを有するガラスリボンGRを得ることができる。
【0043】
第1実施形態によれば、図11に示す比較例の溶融ガラスGの成形装置801と比べて、容易に溶融ガラスGの成形精度を向上できる。以下、詳細に説明する。
比較例の溶融ガラスGの成形装置801は、図11に示すように、従来のフロート製法で使用される複数のトップロール880を備える。トップロール880は、浴槽10aの幅方向両側の壁部に対向配置されている。トップロール880は、ガラスリボンGRの幅方向の端部を支持するトップロール本体882と、トップロール本体882に連結された回転軸881と、で構成される。複数のトップロール880は、回転軸881が幅方向に延びているトップロール880と、回転軸881が幅方向に対して移送方向下流側に傾いて延びているトップロール880と、を含む。
【0044】
排出部821におけるスリット821aの幅方向の寸法は、成形されるガラスリボンGRの幅方向の寸法よりも小さい。スリット821aから排出され、溶融金属Mの表面Ma上に供給されたガラスリボンGRは、トップロール880によって幅方向に引張されて引き延ばされる。トップロール880の回転速度は、移送装置50のガラス移送用ロール51の回転速度よりも遅い。そのため、トップロール880の回転速度とガラス移送用ロール51の回転速度との差によって、ガラスリボンGRが移送方向に引張されて引き延ばされる。このように、比較例の成形装置801においては、溶融金属Mの表面Ma上に供給したガラスリボンGRを幅方向および移送方向に引張し、引き延ばして成形する。
【0045】
ここで、比較例の成形装置801では、溶融金属Mの表面Ma上においてガラスリボンGRを引き延ばす必要があるため、溶融金属Mの表面Ma上に供給された溶融ガラスGの温度は、軟化点以上である。また、比較例において、ガラスリボンGRが供給される部分における溶融金属Mの温度は、例えば、1050℃程度である。
【0046】
比較例のように溶融金属Mの表面Maに供給されたガラスリボンGRを引張して引き延ばして成形する場合、ガラスリボンGRに加える力を幅方向において均一にすることは困難である。そのため、ガラスリボンGRの厚みは幅方向において不均一になりやすい問題があった。
【0047】
本発明者らは、上記問題を解決するために、溶融金属Mの表面Ma上でガラスリボンGRの厚みを調整するのではなく、予め厚みを調整したガラスリボンGRを溶融金属Mの表面Ma上に供給し、溶融金属Mの表面Ma上においてガラスリボンGRの厚みを維持するという新たな着想を得た。
この新たな着想によれば、ガラスリボンGRを溶融金属Mの表面Ma上で引き延ばすことなく、溶融ガラスGを成形することができる。具体的には、上述した第1実施形態のように、冷却装置30を用いて、帯状にした溶融ガラスGであるガラスリボンGRを、移送方向上流側の領域で、幅方向の全体においてガラスリボンGRの温度が軟化点よりも低くなるように冷却する。
【0048】
例えば、ガラスリボンGRの温度が軟化点以上の場合、溶融金属Mの表面Ma上に供給されたガラスリボンGRは、表面張力によって所定の平衡厚みになるように変形する。そのため、比較例では、ガラスリボンGRを引張して引き延ばすことで、ガラスリボンGRを平衡厚みよりも薄く成形していた。例えば、溶融ガラスGがソーダライムガラスで、溶融金属Mが溶融スズである場合、表面張力によって変形するガラスリボンGRの平衡厚みは、6mm程度である。
【0049】
これに対して第1実施形態によれば、溶融金属Mの表面Ma上を移送されるガラスリボンGRを移送方向上流側の領域において、軟化点よりも低くなるように冷却する。そのため、溶融金属Mの表面Ma上に供給されたガラスリボンGRが表面張力によって所定の厚みに変形することを抑制できる。これにより、ガラスリボンGRを引張することなく、溶融金属Mの表面Ma上に供給した際のガラスリボンGRの厚みを維持したまま、移送することが可能となる。したがって、供給工程S11において、溶融ガラスGを、所望する厚みを有するガラスリボンGRとして、溶融金属Mの表面Ma上に供給することで、所望する厚みを維持したままガラスリボンGRを移送できる。これにより、ガラスリボンGRを引張することなく成形することができるため、幅方向においてガラスリボンGRの厚みを均一にしやすく、溶融ガラスGの成形精度を向上できる。
【0050】
なお、本明細書において、溶融金属Mの表面Ma上においてガラスリボンGRの厚みを維持できるとは、ガラスリボンGRの厚みを厳密に維持できる場合に加えて、ガラスリボンGRの厚みをほぼ維持できる場合も含む。ガラスリボンGRの厚みをほぼ維持できる場合とは、溶融金属Mの表面Ma上に供給した際のガラスリボンGRの厚みに対する、最終的に成形されるガラスリボンGRの厚みの比が、例えば、1.0よりも大きく、1.3以下の場合を含む。
【0051】
例えば、溶融金属Mに供給した時点においてガラスリボンGRの温度が軟化点以上である場合、ガラスリボンGRの温度が軟化点よりも低くなるまでの間に、ガラスリボンGRは幅方向に縮み、ガラスリボンGRの厚みは大きくなる。溶融金属Mの表面Ma上においてガラスリボンGRの温度が軟化点より低くなるまでの時間は、ガラスリボンGRの物性、冷却装置30による冷却度合等から推算できる。また、ガラスリボンGRの幅方向の寸法の変化、およびガラスリボンGRの厚みの変化は、ガラスリボンGRの粘度η、すなわちガラスリボンGRの温度によって変化する。これらの条件から、溶融金属Mの表面Ma上におけるガラスリボンGRの厚みの変化を推算し、供給工程S11において供給するガラスリボンGRの厚みを、溶融金属Mの表面Ma上での変化分だけ小さくした値としてもよい。これにより、溶融ガラスGを所望する厚みに精度よく成形できる。
【0052】
また、第1実施形態によれば、幅方向の全体においてガラスリボンGRの温度を軟化点より低くするため、ガラスリボンGRの幅方向の縁部のみを冷却する場合に比べて、ガラスリボンGRの冷却が容易である。また、冷却装置30の構成を簡単化できる。したがって、溶融ガラスGの成形を容易にすることができ、成形装置1の構造を簡単にできる。
以上により、第1実施形態によれば、成形装置1の構造を簡単にすることができ、容易に溶融ガラスGの成形精度を向上させることができる。
【0053】
また、第1実施形態によれば、ガラスリボンGRを溶融金属Mの表面Ma上で引張して成形する必要がないため、バス10において、ガラスリボンGRを引張するためのスペースを設ける必要がない。したがって、第1実施形態によれば、バス10の移送方向の寸法を小さくでき、成形装置1全体を移送方向に小型化できる。
また、例えば、移送方向上流側の領域においてガラスリボンGRの温度を徐冷点以下にすると、過剰な温度変化によってガラスリボンGRが破損する場合がある。これに対して、第1実施形態によれば、冷却装置30を用いて、移送方向上流側の領域で、ガラスリボンGRの温度が幅方向の全体において軟化点よりも低く、かつ、徐冷点よりも高くなるようにガラスリボンGRを冷却できる。そのため、ガラスリボンGRの温度が過剰に変化することを抑制でき、ガラスリボンGRが破損することを抑制できる。
【0054】
また、第1実施形態によれば、溶融ガラスGの軟化点よりも低く、かつ、溶融ガラスGの徐冷点よりも高い温度に調整された溶融金属Mの表面Ma上にガラスリボンGRを供給することで、溶融金属MによってガラスリボンGRを冷却できる。そのため、ガラスリボンGRが溶融金属Mの表面Ma上に接触して、移送工程S12が開始した直後に冷却工程S12aを開始することができる。これにより、ガラスリボンGRの温度が軟化点より低くなるまでの時間を短くすることができ、移送工程S12においてガラスリボンGRが収縮してガラスリボンGRの厚みが変化することを抑制できる。したがって、成形するガラスリボンGRの厚みをより所望の厚みとしやすい。
【0055】
また、第1実施形態によれば、冷却工程S12aにおいて、第1冷却部32を用いて、ガラスリボンGRを溶融金属M側と逆側から冷却できる。そのため、溶融金属Mによる冷却と合わせることで、ガラスリボンGRを鉛直方向の両側から冷却できる。これにより、ガラスリボンGRの温度が軟化点より低くなるまでの時間をより短くすることができ、移送工程S12においてガラスリボンGRが収縮してガラスリボンGRの厚みが変化することをより抑制できる。また、溶融金属Mの温度を変化させる場合に比べて、第1冷却部32の出力を変化させやすいため、ガラスリボンGRの温度を調整しやすい。
【0056】
また、第1実施形態によれば、供給工程S11において、溶融金属Mの表面Maの鉛直方向上側に配置された排出部21から、ガラスリボンGRを鉛直方向下方に落下させて溶融金属Mの表面Ma上に供給できる。そのため、ガラスリボンGRを自重によって引き延ばして、ガラスリボンGRの厚みを調整できる。この場合、ガラスリボンGRの自重は、幅方向のいずれの位置においても均等に加わるため、ガラスリボンGRは幅方向の全体において均等に引き延ばされる。したがって、比較例の成形装置801のようにトップロール880を用いて引き延ばす場合と異なり、ガラスリボンGRの厚みが不均一となることを抑制できる。
【0057】
また、第1実施形態によれば、供給工程S11におけるガラスリボンGRの粘度η[dPa・s]は、好ましくは、1.5≦logη≦5の範囲内の範囲内である。そのため、落下させるガラスリボンGRの粘度を比較的小さくでき、ガラスリボンGRを自重によって引き延ばしやすくできる。これにより、供給工程S11においてガラスリボンGRの厚みを調整しやすい。
【0058】
また、第1実施形態によれば、供給工程S11において、ガラスリボンGRを落下させる間に、第2冷却部33,34を用いてガラスリボンGRを冷却できる。そのため、例えば、排出部21から排出された際のガラスリボンGRの粘度が小さすぎて、落下させるとガラスリボンGRの厚みが薄くなりすぎるような場合に、ガラスリボンGRを冷却してガラスリボンGRの粘度を増加させることができる。これにより、ガラスリボンGRを落下させた際に、ガラスリボンGRの厚みを好適に変化させることができる。
【0059】
また、第1実施形態によれば、移送工程S12において、ガラスリボンGRを引張しないことが好ましい。そのため、上述したように、ガラスリボンGRの厚みが幅方向において不均一になることを抑制できる。
また、第1実施形態によれば、供給工程S11において、排出部21のスリット21aから溶融ガラスGを排出して溶融ガラスGを帯状にできる。そのため、溶融ガラスGをガラスリボンGRにすることが容易である。
【0060】
また、第1実施形態によれば、排出部21と溶融金属Mの表面Maとの鉛直方向の距離を調整可能な調整装置60を設けることができる。ガラスリボンGRを鉛直方向下方に落下させることによるガラスリボンGRの厚みの変化は、鉛直方向下方に落下する時間が長いほど大きくなる。すなわち、排出部21と溶融金属Mの表面Maとの鉛直方向の距離を大きくして、ガラスリボンGRが落下する時間を長くするほど、ガラスリボンGRが自重で引き延ばされてガラスリボンGRの厚みは小さくなる。一方、排出部21と溶融金属Mの表面Maとの鉛直方向の距離を小さくして、ガラスリボンGRが落下する時間を短くするほど、ガラスリボンGRが自重で引き延ばされる量が小さく、ガラスリボンGRの厚みは大きくなる。このように、調整装置60によって排出部21と溶融金属Mの表面Maとの鉛直方向の距離を調整することで、溶融金属Mの表面Ma上に供給されるガラスリボンGRの厚みを調整できる。
【0061】
また、第1実施形態によれば、調整装置60は、供給装置20を昇降させる昇降装置61を有することができる。そのため、供給装置20を昇降させて、排出部21と溶融金属Mの表面Maとの鉛直方向の距離を容易に調整することができる。
また、例えば、排出部21の内壁と接触している溶融ガラスGの温度が、ある特定の温度に維持されると、溶融ガラスGの一部が結晶化して失透が生じる場合がある。失透が生じると結晶化した溶融ガラスGが排出部21の内壁に付着して、排出部21から排出されるガラスリボンGRの形状の平坦性を悪くする場合がある。
【0062】
例えば、ダウンドロー法等においては、排出部から排出する溶融ガラスGの温度を高くして溶融ガラスGの粘度を小さくすると、落下する溶融ガラスGの速度が大きくなり過ぎて、成形されたガラスリボンGRを好適に受け止められない場合があった。そのため、溶融ガラスGの温度をある程度低くして、溶融ガラスGの粘度を大きくする必要があった。したがって、溶融ガラスGの温度が、失透が生じる温度に維持され、失透が生じてガラスリボンGRの形状の平坦性が低下する場合があった。
【0063】
これに対して、第1実施形態によれば、落下したガラスリボンGRを溶融金属Mで受け止めることができるため、溶融ガラスGの温度を高くして溶融ガラスGの粘度を小さくしても、溶融ガラスGを好適に成形することができる。これにより、溶融ガラスGの温度を失透が生じる温度より高くしても、溶融ガラスGを好適に成形できる。なお、例えば溶融ガラスGがソーダライムガラスの場合、溶融ガラスGが失透する特定の温度は、1000℃程度である。
【0064】
また、第1実施形態によれば、図2のように、ガイドロール70を設けることができる。ガイドロール70が設けられていると、ガラスリボンGRの幅方向位置がずれることを抑制できる。これにより、溶融金属Mの表面Ma上において、ガラスリボンGRをより滑らかに移送することができる。また、ガイドロール70は、移送装置50のガラス移送用ロール51と同じ回転速度で回転しているため、ガラスリボンGRを引張しない。
【0065】
なお、ガラスリボンGRが供給される部分における溶融金属Mの温度は、溶融ガラスGの軟化点以上であってもよい。この場合であっても、ガラスリボンGRが供給される部分における溶融金属Mの温度が比較例の場合よりも低ければ、ガラスリボンGRを冷却することができる。ガラスリボンGRが供給される部分における溶融金属Mの温度は、温度調整部31を用いて、例えば、900℃以下にできる。この場合、例えば溶融ガラスGがソーダライムガラスである場合、比較例に比べて、ガラスリボンGRが供給される部分における溶融金属Mの温度を十分に低くでき、ガラスリボンGRを好適に冷却できる。
【0066】
また、冷却装置30は、移送方向上流側の領域で、ガラスリボンGRの温度が幅方向の全体において徐冷点以下となるようにガラスリボンGRを冷却してもよい。また、冷却装置30は、温度調整部31と第1冷却部32とのうちのいずれか一方のみを有する構成であってもよい。
【0067】
また、供給装置20から供給されるガラスリボンGRを、鉛直方向下方に落下させずに溶融金属Mの表面Ma上に供給してもよい。例えば、供給装置20から移送方向にガラスリボンGRを排出して、溶融金属Mの表面Ma上に供給してもよい。この場合、排出部21から排出された時点でガラスリボンGRの厚みが所望の厚みとなるように、例えばスリット21aの厚みを調整する。
【0068】
また、第2冷却部33,34は、1つのみ設けられていてもよいし、両方とも設けられていなくてもよい。また、調整装置60は、設けられていなくてもよい。また、ガイドロール70は、設けられていなくてもよい。
【0069】
また、例えば、移送方向下流側においてガラスリボンGRを加熱する加熱装置が設けられていてもよい。バス10からドロスボックス11へとガラスリボンGRを移送する際には、ガラスリボンGRはある程度柔軟性を有している必要があるため、ガラスリボンGRの温度は徐冷点より高くする必要がある。しかし、移送方向下流側においてガラスリボンGRが冷えて、ガラスリボンGRの温度が徐冷点以下となる場合がある。このような場合に、移送方向下流側においてガラスリボンGRを加熱する加熱装置(図示されない)が設けられていれば、バス10からドロスボックス11へと移送される際のガラスリボンGRの温度を徐冷点より高くでき、ガラスリボンGRを好適にドロスボックス11へと移送できる。
【0070】
(第1実施形態の変形例)
第1実施形態の変形例において成形装置は、上述した第1実施形態の成形装置1において、図1および図2に二点鎖線で示す第1遮蔽部90をさらに備えることができる。第1遮蔽部90は、矩形板状である。第1遮蔽部90の平面視形状は、図2に示すように、幅方向に長い長方形状である。第1遮蔽部90の移送方向上流側の端部は、浴槽10aの移送方向上流側の内壁に接続されている。第1遮蔽部90の幅方向両側の端部は、浴槽10aの幅方向両側の内壁に接続されている。図1に示すように、第1遮蔽部90は、溶融金属Mの表面MaのうちガラスリボンGRが供給される部分よりも移送方向上流側の部分を覆っている。すなわち、第1遮蔽部90は、溶融金属Mが貯留されるよりも鉛直方向上側に位置する部分において、浴槽10aの内壁に固定されている。第1遮蔽部90は、排出部21と溶融金属Mとの鉛直方向の間に配置されている。
【0071】
第1遮蔽部90は、ガラスリボンGRから溶融金属Mに向けて輻射される輻射熱の少なくとも一部を遮蔽し、ガラスリボンGRの温度が低下することを抑制できる。より詳細には、第1遮蔽部90は、排出部21から排出されてから溶融金属Mの表面Maに到達するまでの間において、ガラスリボンGRから溶融金属Mに向けて輻射される輻射熱の少なくとも一部を遮蔽する。第1遮蔽部90の材質は、例えば、黒鉛、セラミックス、ファイバーボード等であることが好ましい。
第1実施形態の変形例によれば、供給工程S11において、第1遮蔽部90を用いて、ガラスリボンGRから溶融金属Mに向けて輻射される輻射熱の少なくとも一部を遮蔽できる。これにより、ガラスリボンGRの温度が低下して軟化点より低くなることを抑制できる。したがって、供給工程S11において落下させる等によってガラスリボンGRの厚みを調整でき、ガラスリボンGRの厚みをより所望の厚みにしやすい。
【0072】
また、第1実施形態の変形例によれば、第1遮蔽部90は、排出部21と溶融金属Mとの間に配置できる。そのため、排出部21から溶融金属Mに向けて輻射される輻射熱の少なくとも一部を遮蔽することができ、排出部21の温度が低下することを抑制できる。これにより、排出部21の内壁と接触している溶融ガラスGの温度を失透が生じる温度より高くしやすく、失透が生じることを抑制できる。したがって、ガラスリボンGRの形状の平坦性が低下することを抑制できる。
また、第1遮蔽部90を用いて、排出部21とその周辺からガラスリボンGRから溶融金属Mに向けて輻射される輻射熱の少なくとも一部を遮蔽できるため、溶融金属Mの温度が上昇することを抑制できる。これにより、溶融金属MによってガラスリボンGRを好適に冷却できる。
なお、第1遮蔽部90は、排出部21から溶融金属Mに向けて輻射される輻射熱の少なくとも一部を遮蔽できるため、後述する第2遮蔽部としても機能する。
【0073】
<第2実施形態>
第2実施形態は、第1実施形態に対して、供給装置の構成が異なる。図4に示す第2実施形態の供給装置120の排出部121は、幅方向に延びた柱状の部材とすることができる。排出部121は、上部121aと、下部121bと、を有することが好ましい。
上部121aは、幅方向に延びた矩形柱状である。上部121aの上面には、鉛直方向下側に窪む凹部121cが形成されている。凹部121c内には溶融ガラスGが供給される。下部121bは、上部121aの鉛直方向下側に接続されている。下部121bは、幅方向に延びた三角柱状である。下部121bは、鉛直方向下側に向かって鋭角に凸となっている。
【0074】
排出部121は、溶融ガラスGが伝う第1表面121dおよび第2表面121eを有することが好ましい。第1表面121dは、排出部121の移送方向上流側の面である。第1表面121dは、上部121aの移送方向上流側の面と下部121bの移送方向上流側の面とが接続されて構成されている。上部121aの移送方向上流側の面は、移送方向と直交する面である。下部121bの移送方向上流側の面は、鉛直方向下側に向かうに従って移送方向下流側に位置する平坦な傾斜面である。
【0075】
第2表面121eは、上部121aの移送方向下流側の面と下部121bの移送方向下流側の面とが接続されて構成されている。上部121aの移送方向下流側の面は、移送方向と直交する面である。下部121bの移送方向下流側の面は、鉛直方向下側に向かうに従って移送方向上流側に位置する平坦な傾斜面である。
【0076】
第1表面121dの下端と第2表面121eの下端とは、互いに接続されている。第2実施形態において、第1表面121dの下端は、下部121bの移送方向上流側の面の下端である。第2表面121eの下端は、下部121bの移送方向下流側の面の下端である。
【0077】
供給装置120は、凹部121c内に溶融ガラスGを供給し、凹部121cから溶融ガラスGを溢れさせる。凹部121cから溢れた溶融ガラスGは、第1表面121dおよび第2表面121eを伝って、帯状になりつつ鉛直方向下側に移動する。第1表面121dを伝う溶融ガラスGは、帯状になって第1ガラスリボンGRaとなる。第2表面121eを伝う溶融ガラスGは、帯状になって第2ガラスリボンGRbとなる。第1ガラスリボンGRaと第2ガラスリボンGRbとは、排出部121の下端において重ね合わされてガラスリボンGRとなる。ガラスリボンGRは、第1実施形態と同様に溶融金属Mの表面Maに供給される。
【0078】
第2実施形態の供給工程S11においては、第1表面121dに沿って帯状にされた第1ガラスリボンGRaと第2表面121eに沿って帯状にされた第2ガラスリボンGRbとを重ね合わせて溶融金属Mの表面Ma上に供給できる。第2実施形態におけるその他の構成および方法は、第1実施形態と同様である。
第2実施形態によれば、第1実施形態と同様に、成形装置の構造を簡単にすることができ、容易に溶融ガラスGの成形精度を向上させることができる。
【0079】
<第3実施形態>
第3実施形態は、第1実施形態に対して、供給装置の構成が異なる。図5に示す第3実施形態の供給装置220の排出部221は、幅方向に延びた柱状の部材とすることができる。排出部221の幅方向と直交する断面形状は、略台形状である。排出部221の上面には、鉛直方向下側に窪む凹部221bが形成されている。凹部221b内には溶融ガラスGが供給される。凹部221bの移送方向上流側の壁部は、凹部221bの移送方向下流側の壁部よりも鉛直方向上側に延びている。
【0080】
排出部221は、傾斜面221aを有することができる。傾斜面221aは、排出部221の移送方向下流側の面である。傾斜面221aは、鉛直方向上側を向き移送方向上流側から移送方向下流側に向かうに従って鉛直方向下側に位置する傾斜面である。
【0081】
供給装置220は、凹部221b内に溶融ガラスGを供給し、凹部221bから溶融ガラスGを溢れさせる。第3実施形態では、凹部221bの移送方向上流側の壁部は、凹部221bの移送方向下流側の壁部よりも鉛直方向上側に延びているため、溶融ガラスGは、凹部221bの移送方向下流側にのみ溢れる。溢れた溶融ガラスGは、傾斜面221aを伝ってガラスリボンGRになりつつ鉛直方向下側に移動する。このようにして形成されたガラスリボンGRは、第1実施形態と同様に溶融金属Mの表面Maに供給される。
【0082】
第3実施形態の供給工程S11においては、傾斜面221aに沿って溶融ガラスを伝わらせて溶融ガラスGをガラスリボンGRとして、溶融金属Mの表面Ma上に供給できる。第3実施形態におけるその他の構成および方法は、第1実施形態と同様である。
第3実施形態によれば、第1実施形態と同様に、成形装置の構造を簡単にすることができ、容易に溶融ガラスGの成形精度を向上させることができる。
【0083】
<第4実施形態>
第4実施形態は、第1実施形態に対して、供給装置の構成が異なる。第4実施形態の供給装置320の排出部321は、図6に示すように、リップ321aと、ツイール321bと、を有することができる。リップ321aは、移送方向上流側から移送方向下流側に向かうに従って鉛直方向下側に位置する向きに傾いた方向に延びている。リップ321aの上面は、鉛直方向上側を向き移送方向上流側から移送方向下流側に向かうに従って鉛直方向下側に位置する傾斜面である。ツイール321bは、リップ321aの鉛直方向上側に隙間を空けて配置され、鉛直方向に延びている。ツイール321bは、鉛直方向に移動可能である。
【0084】
ツイール321bによって溶融ガラスGは堰き止められ、溶融ガラスGの一部がツイール321bとリップ321aとの隙間からガラスリボンGRとなって排出される。ガラスリボンGRは、リップ321aの上面に沿って移動し、リップ321aの先端から溶融金属Mの表面Maに向けて排出される。
第4実施形態によれば、ツイール321bを鉛直方向に移動させることによって、リップ321aとツイール321bとの隙間を調整できる。そのため、リップ321aとツイール321bとの隙間から排出されるガラスリボンGRの厚みを容易に調整できる。
【0085】
<第5実施形態>
第5実施形態は、第1実施形態に対して、供給装置および調整装置の構成が異なる。第5実施形態の供給装置420の排出部421は、図7に示すように、筒部421aと、可動部421bと、を有することができる。筒部421aは、移送方向上流側から移送方向下流側に向かうに従って鉛直方向下側に位置する向きに傾いた方向に延びた筒状である。筒部421aの先端は開口している。溶融ガラスGは、筒部421aの内壁面のうち鉛直方向下側の内壁面を伝うことでガラスリボンGRとなる。筒部421aの内壁面のうち鉛直方向下側の内壁面は、鉛直方向上側を向き移送方向上流側から移送方向下流側に向かうに従って鉛直方向下側に位置する傾斜面である。
【0086】
可動部421bは、筒部421aが延びる方向に沿って移動可能に筒部421aに取り付けられてもよい。可動部421bは、筒部421aの鉛直方向下側の部分に取り付けられており、筒部421aよりも移送方向下流側の斜め鉛直方向下側に突出している。可動部421bは、例えば、幅方向に長い長方形板状である。可動部421bの上面は、移送方向下流側に向かうに従って鉛直方向下側に位置する傾斜面である。筒部421aから排出されたガラスリボンGRは、可動部421bの上面を伝って、排出部421から排出される。
【0087】
第5実施形態の調整装置460は、昇降装置461と、排出部421の可動部421bと、を有することができる。昇降装置461は、供給装置420を昇降させる。昇降装置461は、供給装置420を昇降させることができるならば、特に限定されない。昇降装置461は、第1実施形態の昇降装置61のように供給装置420を鉛直方向下側から支持して昇降させる装置であってもよいし、供給装置420を図示しないルーフに対して連結し鉛直方向に伸縮するアームであってもよい。
【0088】
調整装置460は、昇降装置461と可動部421bとの少なくとも一方を駆動させて、排出部421と溶融金属Mの表面Maとの鉛直方向の距離を調整可能である。第5実施形態において排出部421と溶融金属Mの表面Maとの鉛直方向の距離は、可動部421bの上面の移送方向下流側の端部と溶融金属Mの表面Maとの鉛直方向の距離である。
【0089】
例えば、可動部421bが図7に実線で示す位置にある場合、可動部421bの上面の移送方向下流側の端部と溶融金属Mの表面Maとの間の鉛直方向の距離は、距離H2である。一方、可動部421bを移動させて図7に二点鎖線で示す位置にすると、可動部421bの上面の移送方向下流側の端部と溶融金属Mの表面Maとの鉛直方向の距離は、距離H2よりも大きい距離H3となる。これにより、可動部421bを移動させることで、排出部421と溶融金属Mの表面Maとの鉛直方向の距離を調整できる。第5実施形態におけるその他の構成および方法は、第1実施形態と同様である。
【0090】
第5実施形態によれば、調整装置460によって排出部421の全体あるいは一部を移動させることで、排出部421と溶融金属Mの表面Maとの鉛直方向の距離を調整可能である。そのため、浴槽10aを昇降させる場合に比べて、調整装置460を小型化しやすく、成形装置全体を小型化しやすい。
また、第5実施形態によれば、調整装置460が、昇降装置461と可動部421bとの2つの調整機構を有しているため、排出部421と溶融金属Mの表面Maとの鉛直方向の距離を調整しやすい。これにより、ガラスリボンGRの厚みをより調整しやすい。
なお、第5実施形態の調整装置460は、昇降装置461と可動部421bとのうちのいずれか一方のみを有していてもよい。
【0091】
<第6実施形態>
第6実施形態は、第1実施形態に対して、加熱部641,642が設けられている点が異なる。第6実施形態の成形装置601は、図8に示すように、加熱部641,642を備えることができる。加熱部641,642は、供給工程S11において、排出部21を加熱する。より詳細には、加熱部641,642は、排出部21の先端部を加熱する。加熱部641は、排出部21の鉛直方向下側の部分を加熱する。加熱部642は、排出部21の鉛直方向上側の部分を加熱する。加熱部641,642の構成は、排出部21を加熱できるならば、特に限定されない。
成形装置601は、第1実施形態の変形例における第1遮蔽部90を備えていない。第6実施形態におけるその他の構成および方法は、第1実施形態と同様である。
【0092】
第6実施形態によれば、排出部21を加熱する加熱部641,642が設けられているため、排出部21の内壁と接触している溶融ガラスGの温度を、失透が生じる温度よりも高くして、溶融ガラスGに失透が生じることを抑制できる。これにより、排出部21から排出されるガラスリボンGRの形状の平坦性が悪くなることを抑制できる。
【0093】
なお、加熱部641,642は、それらの1つのみ設けられていてもよい。また、第6実施形態において、第1実施形態の変形例における第1遮蔽部90が設けられていてもよい。この場合、第1遮蔽部90によって、溶融金属Mによる排出部21の温度低下を抑制しつつ、加熱部641,642によって排出部21を加熱できるため、より好適に排出部21内の溶融ガラスGの温度を失透が生じる温度より高く維持することができる。
【0094】
<第7実施形態>
第7実施形態は、第1実施形態に対して、第2遮蔽部790が設けられている点が異なる。第7実施形態の成形装置701は、図9に示すように、第2遮蔽部790を備えることができる。第2遮蔽部790は、矩形板状である。第2遮蔽部790は、移送方向上流側から移送方向下流側に向かうに従って鉛直方向上側に位置する向きに傾いた方向に延びている。第2遮蔽部790は、溶融金属Mよりも鉛直方向上側で、かつ、排出部21よりも鉛直方向下側に配置されている。
【0095】
第2遮蔽部790には、第2遮蔽部790を鉛直方向に貫通する貫通孔790aが形成されている。図示は省略するが、貫通孔790aは、例えば、幅方向に延びる矩形状の孔である。排出部21から排出されたガラスリボンGRは、貫通孔790aを通って、第2遮蔽部790よりも鉛直方向下側に移動し、溶融金属Mに供給される。
【0096】
第2遮蔽部790は、排出部21から溶融金属MおよびガラスリボンGRに向けて輻射される輻射熱の少なくとも一部を遮蔽する。第2遮蔽部790のうちガラスリボンGRよりも移送方向上流側に位置する部分は、排出部21と溶融金属Mとの鉛直方向の間に配置されており、排出部21から溶融金属Mに向けて輻射される輻射熱の少なくとも一部を遮蔽する。
【0097】
第2遮蔽部790のうちガラスリボンGRよりも移送方向下流側に位置する部分は、ガラスリボンGRの鉛直方向上側に配置されており、排出部21からガラスリボンGRに向けて輻射される輻射熱の少なくとも一部を遮蔽する。第2遮蔽部790における移送方向下流側の端部は、溶融金属Mの表面Ma上に供給された後のガラスリボンGRの鉛直方向上側に配置されている。
【0098】
第2遮蔽部790の材質は、例えば、第1実施形態の変形例における第1遮蔽部90と同様に、黒鉛、セラミックス、ファイバーボード等であることが好ましい。第7実施形態においては、供給工程S11と移送工程S12との両方において、排出部21から溶融金属MおよびガラスリボンGRに向けて輻射される輻射熱の少なくとも一部を遮蔽できる。
【0099】
第2遮蔽部790は、鉛直方向に移動可能に配置できる。第2遮蔽部790は、例えば、図9に実線で示す第2遮蔽部790の位置と、二点鎖線で示す位置との間を移動可能としてもよい。図9に実線で示す第2遮蔽部790の位置は、排出部21の近傍である。図9に二点鎖線で示す位置は、図9に実線で示す第2遮蔽部790の位置よりも鉛直方向下側である。図示は省略するが、成形装置701は、第2遮蔽部790を鉛直方向に移動させる駆動部を備えることができる。
成形装置701は、第1実施形態と異なり、第2冷却部33,34を備えなくてよい。また、成形装置701は、第1実施形態の変形例の第1遮蔽部90を備えなくてよい。第7実施形態におけるその他の構成および方法は、第1実施形態と同様である。
【0100】
第7実施形態によれば、排出部21から溶融金属MおよびガラスリボンGRに向けて輻射される輻射熱の少なくとも一部を遮蔽する第2遮蔽部790が設けられるため、排出部21の熱によって溶融金属MおよびガラスリボンGRが加熱されることを抑制できる。これにより、溶融金属Mの温度が上昇することを抑制できる。したがって、溶融金属Mによって好適にガラスリボンGRを冷却することができる。また、溶融金属Mの表面Ma上に供給されたガラスリボンGRの温度が上昇することを抑制できる。そのため、溶融金属Mの表面Ma上に供給された後のガラスリボンGRの温度を、好適に軟化点よりも低くしやすく、溶融金属Mの表面Ma上でガラスリボンGRの厚みが変化することを抑制できる。
【0101】
また、排出部21の熱が溶融金属MおよびガラスリボンGRに移動することを抑制できるため、排出部21の温度が低下することを抑制できる。これにより、排出部21内の溶融ガラスGの温度を、失透が生じる温度よりも高く維持しやすく、失透が生じることを抑制できる。
【0102】
また、第2遮蔽部790によって、第2遮蔽部790の鉛直方向上側の第1領域AR1と、第2遮蔽部790の鉛直方向下側の第2領域AR2と、の間の熱交換を抑制できる。これにより、第7実施形態では、第1領域AR1を比較的高い温度に保つことができ、第2領域AR2を比較的低い温度に保つことができる。
【0103】
ここで、排出部21から排出されたガラスリボンGRは、第2遮蔽部790の貫通孔790aを通って、第1領域AR1から第2領域AR2に移動する。第2領域AR2は第1領域AR1に比べて低い温度に保たれるため、第2領域AR2に移動したガラスリボンGRは冷却される。ガラスリボンGRが冷却されると、ガラスリボンGRの温度が低下し、ガラスリボンGRの粘度が増加する。したがって、ガラスリボンGRが自重によって引き延ばされることが抑制され、落下する間におけるガラスリボンGRの厚みが変化しにくくなる。
【0104】
このように、落下する間のうち第2領域AR2に位置する間におけるガラスリボンGRの厚みの変化は、落下する間のうち第1領域AR1に位置する間におけるガラスリボンGRの厚みの変化よりも小さい。そのため、ガラスリボンGRが第1領域AR1に位置する時間とガラスリボンGRが第2領域AR2に位置する時間との比を調整することで、落下する間に自重で変化するガラスリボンGRの厚みを調整することができる。ガラスリボンGRが第1領域AR1に位置する時間の割合を大きくするほど、ガラスリボンGRを自重によって引き延ばしやすく、ガラスリボンGRの厚みが小さくなる。ガラスリボンGRが第2領域AR2に位置する時間の割合を大きくするほど、ガラスリボンGRを自重によって引き延ばしにくく、ガラスリボンGRの厚みが大きくなる。
【0105】
第7実施形態では、第2遮蔽部790は、鉛直方向に移動可能に配置されている。そのため、図示しない駆動部によって第2遮蔽部790を鉛直方向に移動させることで、ガラスリボンGRが第1領域AR1に位置する時間とガラスリボンGRが第2領域AR2に位置する時間との比を変化させることができる。具体的には、第2遮蔽部790が鉛直方向下側に移動する程、ガラスリボンGRが第2領域AR2に位置する時間に対するガラスリボンGRが第1領域AR1に位置する時間の比は大きくなる。すなわち、例えば、第2遮蔽部790の位置を図9に示す実線の位置から二点鎖線の位置へと移動させることで、落下するガラスリボンGRが第1領域AR1にいる時間の割合を長くすることができる。これにより、図9に示す実線の位置に第2遮蔽部790が配置される場合に比べて、ガラスリボンGRの厚みを小さくできる。
【0106】
また、例えば、第2遮蔽部790が図9に二点鎖線で示す位置に配置される場合、第2遮蔽部790は、落下するガラスリボンGRから溶融金属Mに向けて輻射される輻射熱の少なくとも一部を遮蔽することができる。すなわち、第2遮蔽部790は、第1遮蔽部としても機能できる。
【0107】
なお、第2遮蔽部790のうちガラスリボンGRよりも移送方向上流側に位置する部分と、第2遮蔽部790のうちガラスリボンGRよりも移送方向下流側に位置する部分とは、互いに独立して移動可能に設けられていてもよい。この場合、各部分をそれぞれ移動させる駆動部が設けられる。また、第2遮蔽部790は、第2遮蔽部790のうちガラスリボンGRよりも移送方向上流側に位置する部分のみが設けられる構成であってもよいし、第2遮蔽部790のうちガラスリボンGRよりも移送方向下流側に位置する部分のみが設けられる構成であってもよい。
【0108】
また、第2遮蔽部790は、排出部21から溶融金属Mに向けて輻射される輻射熱の少なくとも一部と、排出部21からガラスリボンGRに向けて輻射される輻射熱の少なくとも一部と、のうちのいずれか一方のみを遮蔽する構成であってもよい。また、第2遮蔽部790を用いた輻射熱の遮蔽は、供給工程S11と移送工程S12との少なくとも一方において行われればよい。すなわち、供給工程S11と移送工程S12とのいずれかのみにおいて、第2遮蔽部790を用いた輻射熱の遮蔽が行われてもよい。
【0109】
また、第2遮蔽部790は、鉛直方向以外の方向に移動可能に配置されてもよい。例えば、第2遮蔽部790は、移送方向に移動可能に配置されてもよい。この場合、例えば、落下するガラスリボンGRの移送方向の位置に合わせて、貫通孔790aの移送方向の位置を調整できる。これにより、第2遮蔽部790の鉛直方向の位置を変化させても、貫通孔790aにガラスリボンGRを通しやすい。また、貫通孔790aの移送方向の寸法をガラスリボンGRが通ることができる範囲内で小さくしやすく、第2遮蔽部790による熱の遮蔽効果を向上させることができる。また、第2遮蔽部790は、幅方向に移動可能に配置されてもよい。
【0110】
また、第7実施形態においては、第1実施形態の第2冷却部33,34が設けられていてもよい。この場合、落下するガラスリボンGRの温度をより調整しやすく、ガラスリボンGRの厚みを調整しやすい。また、第1実施形態の変形例における第1遮蔽部90が設けられていてもよい。
【0111】
なお、上述した第1実施形態から第7実施形態では、単層の溶融ガラスGの成形について説明したが、これに限られず、溶融ガラスGを例えば3層重ねた多層の溶融ガラスGの成形について適用することもできる。
また、上述した各実施形態において成形される溶融ガラスGの種類は特に限定されない。上述した各実施形態は、ソーダライムガラス、無アルカリガラス等、種々のガラスに対して適用可能である。
また、上述した各構成は、相互に矛盾しない範囲内で適宜組み合わせることができる。
【0112】
<ガラス製品の製造方法の実施形態>
本発明の各実施形態のガラス製品の製造方法は、図10に示すように、成形工程S21と、徐冷工程S22と、切断工程S23と、を含むことができる。
まず、成形工程S21は、第1実施形態から第7実施形態のいずれか一つの成形装置および成形方法によって溶融ガラスGを目的の形状の成形体に成形する工程である。
次に、徐冷工程S22は、成形工程S21によって成形された成形体、すなわち第1実施形態から第7実施形態のいずれか一つの成形装置および成形方法で成形されたガラスリボンGRを徐冷する工程である。
次に、切断工程S23は、徐冷された成形体を必要な長さに切断する工程である。
以上の工程により、ガラス製品が製造される。
【0113】
本発明の実施形態のガラス製品の製造方法は、上述した各実施形態の成形装置および成形方法を用いて溶融ガラスGを成形するため、ガラス製品の厚みが不均一になることを抑制でき、品質に優れたガラス製品が得られる。
なお、必要に応じて、切断工程S23の後に、切断された後の成形体を研磨する研磨工程を設けてもよい。また、ガラス製品は、徐冷工程S22の途中のガラス溶融物もしくは成形体、または徐冷工程S22の後および切断工程S23の後の成形体に、表面処理等の加工をしたものやフィルムを貼ったものを含むことができる。
【符号の説明】
【0114】
1,601,701…成形装置、10a…浴槽、20,120,220,320,420…供給装置、21,121,221,321,421…排出部、21a…スリット、30…冷却装置、31…温度調整部、32…第1冷却部、33,34…第2冷却部、50…移送装置、60,460…調整装置、61,461…昇降装置、90…第1遮蔽部、121d…第1表面、121e…第2表面、221a…傾斜面、641,642…加熱部、790…第2遮蔽部、G…溶融ガラス、GR…ガラスリボン、GRa…第1ガラスリボン、GRb…第2ガラスリボン、M…溶融金属、Ma…表面、S11…供給工程、S12…移送工程、S12a…冷却工程、S22…徐冷工程
【0115】
なお、2017年2月15日に出願された日本特許出願2017-026061号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
【手続補正書】
【提出日】2022-04-20
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
軟化点以上の温度の溶融ガラスを帯状に排出してガラスリボンとし、溶融金属の表面上に供給する供給工程と、
前記溶融金属の表面上に供給された前記ガラスリボンを移送する移送工程と、
を含み、
前記移送工程は、移送される前記ガラスリボンを、移送方向上流側の領域で、前記ガラスリボンの温度が幅方向の全体において軟化点よりも低くなるように冷却する冷却工程を含む溶融ガラスの成形方法。
【請求項2】
前記冷却工程において、前記ガラスリボンの温度が幅方向の全体において徐冷点よりも高くなるように前記ガラスリボンを冷却する請求項1に記載の成形方法。
【請求項3】
前記ガラスリボンが供給される箇所における前記溶融金属の温度は、前記溶融ガラスの軟化点よりも低く、かつ、前記溶融ガラスの徐冷点よりも高く、
前記冷却工程において、前記溶融金属によって前記ガラスリボンを冷却する請求項1または2に記載の成形方法。
【請求項4】
前記ガラスリボンが供給される箇所における前記溶融金属の温度は、900℃以下である請求項3に記載の成形方法。
【請求項5】
前記供給工程において、前記溶融金属の表面のうち前記ガラスリボンが供給される部分よりも移送方向上流側の部分を覆う第1遮蔽部により、前記ガラスリボンから前記溶融金属に向けて輻射される輻射熱の少なくとも一部を遮蔽する請求項1~4のいずれか一項に記載の成形方法。
【請求項6】
前記供給工程と前記移送工程との少なくとも一方において、第2遮蔽部により、前記溶融ガラスを排出する排出部から前記溶融金属および前記ガラスリボンに向けて輻射される輻射熱の少なくとも一部を遮蔽する請求項1~5のいずれか一項に記載の成形方法。
【請求項7】
前記冷却工程において、前記ガラスリボンを前記溶融金属側と逆側から冷却する請求項1~6のいずれか一項に記載の成形方法。
【請求項8】
前記供給工程において、前記ガラスリボンを鉛直方向下方に落下させて前記溶融金属の表面上に供給する請求項1~7のいずれか一項に記載の成形方法。
【請求項9】
前記供給工程における前記ガラスリボンの粘度η[dPa・s]は、1.5≦logη≦5の範囲内である請求項8に記載の成形方法。
【請求項10】
前記供給工程において、前記ガラスリボンを落下させる間に、前記ガラスリボンを冷却する請求項8または9に記載の成形方法。
【請求項11】
前記移送工程において、前記ガラスリボンを引張しない請求項1~10のいずれか一項に記載の成形方法。
【請求項12】
前記供給工程において、前記溶融ガラスを排出する排出部のスリットから前記溶融ガラスを排出して前記溶融ガラスをガラスリボンにする請求項1~11のいずれか一項に記載の成形方法。
【請求項13】
前記溶融ガラスを排出する排出部は、前記移送方向上流側から移送方向下流側に向かうに従って鉛直方向下側に位置する傾斜面を有し、
前記供給工程において、前記傾斜面に沿って前記溶融ガラスを伝わらせて前記溶融ガラスをガラスリボンにする請求項1~11のいずれか一項に記載の成形方法。
【請求項14】
前記溶融ガラスを排出する排出部は、前記溶融ガラスが伝う第1表面および第2表面を有し、前記第1表面の下端と前記第2表面の下端とは、互いに接続され、
前記供給工程において、前記第1表面に沿って帯状にされたガラスリボンと前記第2表面に沿って帯状にされたガラスリボンとを重ね合わせて前記溶融金属の表面上に供給する請求項1~11のいずれか一項に記載の成形方法。
【請求項15】
溶融金属が貯留される浴槽と、
温度が軟化点以上で帯状の溶融ガラスを排出する排出部を有し、前記排出部から前記溶融ガラスを排出して前記溶融金属の表面上にガラスリボンを供給する供給装置と、
前記溶融金属の表面上に供給された前記ガラスリボンを移送する移送装置と、
移送される前記ガラスリボンを、移送方向上流側の領域において冷却する冷却装置と、
を備え、
前記冷却装置は、前記ガラスリボンの温度が幅方向の全体において軟化点よりも低くなるように前記ガラスリボンを冷却する溶融ガラスの成形装置。
【請求項16】
前記冷却装置は、前記ガラスリボンが供給される箇所における前記溶融金属の温度を前記溶融ガラスの軟化点よりも低く、かつ、前記溶融ガラスの徐冷点よりも高くする温度調整部を有する請求項15に記載の成形装置。
【請求項17】
前記冷却装置は、前記ガラスリボンが供給される箇所における前記溶融金属の温度を900℃以下にする温度調整部を有する請求項16に記載の成形装置。
【請求項18】
前記溶融金属の表面のうち前記ガラスリボンが供給される部分よりも移送方向上流側の部分を覆い、前記ガラスリボンから前記溶融金属に向けて輻射される輻射熱の少なくとも一部を遮蔽する第1遮蔽部をさらに備える請求項15~17のいずれか一項に記載の成形装置。
【請求項19】
前記排出部から前記溶融金属および前記ガラスリボンに向けて輻射される輻射熱の少なくとも一部を遮蔽する第2遮蔽部をさらに備える請求項15~18のいずれか一項に記載の成形装置。
【請求項20】
前記冷却装置は、前記ガラスリボンを前記溶融金属側と逆側から冷却する第1冷却部を有する請求項15~19のいずれか一項に記載の成形装置。
【請求項21】
前記排出部は、前記溶融金属の表面の鉛直方向上側に配置されている請求項15~20のいずれか一項に記載の成形装置。
【請求項22】
前記排出部と前記溶融金属の表面との鉛直方向の距離を調整可能な調整装置をさらに備える請求項21に記載の成形装置。
【請求項23】
前記調整装置は、前記供給装置を昇降させる昇降装置を有する請求項22に記載の成形装置。
【請求項24】
前記ガラスリボンが前記排出部から排出されてから前記溶融金属の表面上に供給されるまでの間に、前記ガラスリボンを冷却する第2冷却部をさらに備える請求項15から23のいずれか一項に記載の成形装置。
【請求項25】
前記排出部を加熱する加熱部をさらに備える請求項15~24のいずれか一項に記載の成形装置。
【請求項26】
請求項1~14のいずれか一項に記載の成形方法で成形されたガラスリボンを徐冷する徐冷工程を含むガラス製品の製造方法。