IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニューフレアテクノロジーの特許一覧

特開2022-77420画像補正装置、パターン検査装置、及び画像補正方法
<>
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図1
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図2
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図3
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図4
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図5
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図6
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図7
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図8
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図9
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図10
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図11
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図12
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図13
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図14
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図15
  • 特開-画像補正装置、パターン検査装置、及び画像補正方法 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022077420
(43)【公開日】2022-05-23
(54)【発明の名称】画像補正装置、パターン検査装置、及び画像補正方法
(51)【国際特許分類】
   G06T 3/20 20060101AFI20220516BHJP
   G06T 5/00 20060101ALI20220516BHJP
【FI】
G06T3/20
G06T5/00 725
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2020188280
(22)【出願日】2020-11-11
(71)【出願人】
【識別番号】504162958
【氏名又は名称】株式会社ニューフレアテクノロジー
(74)【代理人】
【識別番号】100119035
【弁理士】
【氏名又は名称】池上 徹真
(74)【代理人】
【識別番号】100141036
【弁理士】
【氏名又は名称】須藤 章
(74)【代理人】
【識別番号】100178984
【弁理士】
【氏名又は名称】高下 雅弘
(72)【発明者】
【氏名】白土 昌孝
(72)【発明者】
【氏名】能弾 長作
【テーマコード(参考)】
5B057
【Fターム(参考)】
5B057AA01
5B057BA01
5B057BA15
5B057BA21
5B057CA02
5B057CA08
5B057CA12
5B057CA16
5B057CB02
5B057CB08
5B057CB12
5B057CB16
5B057CC02
5B057CD02
5B057CD12
5B057CE02
5B057CE06
5B057CH07
5B057DA03
5B057DA07
5B057DA16
5B057DB02
5B057DB05
5B057DB09
5B057DC32
(57)【要約】
【目的】シフト量に応じたノイズレベルの変動分が生じないように画像を補正可能な装置を提供する。
【構成】本発明の一態様の画像補正装置は、画像を記憶する記憶装置50と、画像の全体画像と画像の位置毎の部分画像との一方に対して、サブ画素単位のシフト量を決定する最適化処理部64と、全体画像と位置毎の部分画像との前記一方に対して、画素毎に対象画素の階調値と対象画素の周辺画素の階調値とを用いてシフト量に応じた補間処理を行うサブ画素補間処理部60と、を備え、補間処理は、画素の位置における線形和の各項の重み付け係数の和が1となり、各項の重み付け係数の2乗和がシフト量に依存しない定数となるように設定された各項の重み付け係数を用いて、対象画素の補間値として、対象画素の階調値と周辺画素の階調値との線形和を演算することを特徴とする。
【選択図】図5
【特許請求の範囲】
【請求項1】
画像を記憶する記憶装置と、
前記画像の全体画像と前記画像の位置毎の部分画像との一方に対して、サブ画素単位のシフト量を決定するシフト量決定部と、
前記全体画像と前記位置毎の部分画像との前記一方に対して、画素毎に対象画素の階調値と前記対象画素の周辺画素の階調値とを用いて前記シフト量に応じた補間処理を行う補間処理部と、
を備え、
前記補間処理は、画素の位置における線形和の各項の重み付け係数の和が1となり、各項の重み付け係数の2乗和がシフト量に依存しない定数となるように設定された各項の重み付け係数を用いて、前記対象画素の補間値として、前記対象画素の階調値と前記周辺画素の階調値との線形和を演算することを特徴とする画像補正装置。
【請求項2】
前記補間処理は、対象画素の階調値と3つの前記周辺画素の階調値との合計4つの階調値を用いた線形和を演算することを特徴とする請求項1記載の画像補正装置。
【請求項3】
サブ画素単位のシフト量に応じた前記線形和の各項の係数を定義するテーブルをさらに備え
前記テーブルを参照して、決定された前記シフト量に対応する各項の係数を取得することを特徴とする請求項1又は2記載の画像補正装置。
【請求項4】
図形パターンが形成された第1の画像を記憶する記憶装置と、
前記第1の画像の全体画像と前記第1の画像の位置毎の部分画像との一方に対して、サブ画素単位のシフト量を決定するシフト量決定部と、
前記全体画像と前記位置毎の部分画像との前記一方に対して、画素毎に対象画素の階調値と前記対象画素の周辺画素の階調値とを用いて前記シフト量に応じた補間処理を行う補間処理部と、
前記補間処理が行われた第1の画像と、前記第1の画像に対応する第2の画像とを比較する比較部と、
を備え、
前記補間処理は、画素の位置における線形和の各項の係数の和が1となり、各項の重み付け係数の2乗和がシフト量に依存しない定数となるように設定された各項の重み付け係数を用いて、前記対象画素の補間値として、前記対象画素の階調値と前記周辺画素の階調値との線形和を演算することを特徴とするパターン検査装置。
【請求項5】
前記補間処理は、対象画素の階調値と3つの前記周辺画素の階調値との合計4つの階調値を用いた線形和を演算することを特徴とする請求項4記載のパターン検査装置。
【請求項6】
サブ画素単位のシフト量に応じた前記線形和の各項の係数を定義するテーブルをさらに備え、
前記テーブルを参照して、決定された前記シフト量に対応する各項の係数を取得することを特徴とする請求項4又は5記載のパターン検査装置。
【請求項7】
記憶装置に記憶された画像の全体画像と前記画像の位置毎の部分画像との一方に対して、サブ画素単位のシフト量を決定する工程と、
前記全体画像と前記位置毎の部分画像との前記一方に対して、画素毎に対象画素の階調値と前記対象画素の周辺画素の階調値とを用いて前記シフト量に応じた補間処理を行う工程と、
を備え、
前記補間処理は、画素の位置における線形和の各項の係数の和が1となり、各項の重み付け係数の2乗和がシフト量に依存しない定数となるように設定された各項の重み付け係数を用いて、前記対象画素の補間値として、前記対象画素の階調値と前記周辺画素の階調値との線形和を演算することを特徴とする画像補正方法。
【請求項8】
前記補間処理は、対象画素の階調値と3つの前記周辺画素の階調値との合計4つの階調値を用いた線形和を演算することを特徴とする請求項7記載の画像補正方法。
【請求項9】
サブ画素単位のシフト量に応じた前記線形和の各項の係数を定義するテーブルを参照して、決定された前記シフト量に対応する各項の係数を取得することを特徴とする請求項7又は8記載の画像補正方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像補正装置、パターン検査装置、及び画像補正方法に関する。例えば、電子ビームを用いて検査用に撮像された基板に形成された図形パターンの画像の位置合わせの手法に関する。
【背景技術】
【0002】
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。これらの半導体素子は、回路パターンが形成された原画パターン(マスク或いはレチクルともいう。以下、マスクと総称する)を用いて、いわゆるステッパと呼ばれる縮小投影露光装置でウェハ上にパターンを露光転写して回路形成することにより製造される。
【0003】
そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、1ギガビット級のDRAM(ランダムアクセスメモリ)に代表されるように、LSIを構成するパターンは、サブミクロンからナノメータのオーダーになっている。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。よって、半導体ウェハ上に転写された超微細パターンの欠陥を検査するパターン検査装置の高精度化が必要とされている。その他、歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
【0004】
検査手法としては、半導体ウェハやリソグラフィマスク等の基板上に形成されているパターンを撮像した測定画像と、設計データ、あるいは基板上の同一パターンを撮像した測定画像と比較することにより検査を行う方法が知られている。例えば、パターン検査方法として、同一基板上の異なる場所の同一パターンを撮像した測定画像データ同士を比較する「die to die(ダイ-ダイ)検査」や、パターン設計された設計データをベースに設計画像データ(参照画像)を生成して、それとパターンを撮像した測定データとなる測定画像とを比較する「die to database(ダイ-データベース)検査」がある。かかる検査装置における検査方法では、検査対象基板はステージ上に載置され、ステージが動くことによって光束が試料上を走査し、検査が行われる。検査対象基板には、光源及び照明光学系によって光束が照射される。検査対象基板を透過あるいは反射した光は光学系を介して、センサ上に結像される。センサで撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
【0005】
かかる画像同士の位置合わせの手法として、SSD(Sum of Squared Difference)法が用いられていた。SSD法では、比較する画像同士の一方をサブ画素単位でシフトさせ、シフト後の画素値を1画素未満の位置ずれについては補間により求めて、両画像の画素値の差の二乗和が最小となる位置に合わせる。
【0006】
上述したパターン検査装置では、レーザ光を検査対象基板に照射して、その透過像或いは反射像を撮像することにより、光学画像を取得する。これに対して、電子ビームを使ったマルチビームを検査対象基板に照射して、検査対象基板から放出される各ビームに対応する2次電子を検出して、パターン像を取得する検査装置の開発も進んでいる。ここで、電子ビームを用いて画像を撮像する場合、従来のSSD法だけでは、画像同士の位置合わせが十分にできないことが分かってきた。電子ビーム検査装置では、単位領域あたりに入射する電子数が限られているために個々の電子に対するショットノイズの影響が大きい。そこで、画像全体に対してシフト量に応じた補間処理を行い、かかる補間処理により生じたシフト量に応じたノイズレベルの変動分を抑制する補償フィルタをさらに適用するといった2段階での処理手法を提案した(例えば特許文献1参照)。
【0007】
しかしながら、かかる処理では、例えば4タップによる補間処理と例えば3タップによる補償フィルタ処理の2段階での処理となるためデータ処理に必要なメモリ量が大きくなってしまうといった問題点や、ノイズレベルの変動を完全に消すことができない場合があり得るといった問題点があった。そこで、さらなる改良が求められる。また、2つの画像同士の位置合わせに限らず、画像が持つ歪を補正する場合等、位置に応じてシフト量が変化する場合でもノイズレベルの変動を抑制することが求められる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2019-039808号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
そこで、本発明の一態様は、シフト量に応じたノイズレベルの変動分が生じないように画像を補正可能な装置及び方法を提供する。
【課題を解決するための手段】
【0010】
本発明の一態様の画像補正装置は、
画像を記憶する記憶装置と、
画像の全体画像と画像の位置毎の部分画像との一方に対して、サブ画素単位のシフト量を決定するシフト量決定部と、
全体画像と位置毎の部分画像との前記一方に対して、画素毎に対象画素の階調値と対象画素の周辺画素の階調値とを用いてシフト量に応じた補間処理を行う補間処理部と、
を備え、
補間処理は、画素の位置における線形和の各項の重み付け係数の和が1となり、各項の重み付け係数の2乗和がシフト量に依存しない定数となるように設定された各項の重み付け係数を用いて、対象画素の補間値として、対象画素の階調値と周辺画素の階調値との線形和を演算することを特徴とする。
【0011】
また、補間処理は、対象画素の階調値と3つの周辺画素の階調値との合計4つの階調値を用いた線形和を演算すると好適である。
【0012】
また、サブ画素単位のシフト量に応じた線形和の各項の係数を定義するテーブルをさらに備え、
テーブルを参照して、決定されたシフト量に対応する各項の係数を取得すると好適である。
【0013】
本発明の一態様のパターン検査装置は、
図形パターンが形成された第1の画像を記憶する記憶装置と、
第1の画像の全体画像と第1の画像の位置毎の部分画像との一方に対して、サブ画素単位のシフト量を決定するシフト量決定部と、
全体画像と位置毎の部分画像との一方に対して、画素毎に対象画素の階調値と対象画素の周辺画素の階調値とを用いてシフト量に応じた補間処理を行う補間処理部と、
補間処理が行われた第1の画像と、第1の画像に対応する第2の画像とを比較する比較部と、
を備え、
補間処理は、画素の位置における線形和の各項の重み付け係数の和が1となり、各項の重み付け係数の2乗和がシフト量に依存しない定数となるように設定された各項の重み付け係数を用いて、前記対象画素の補間値として、前記対象画素の階調値と前記周辺画素の階調値との線形和を演算することを特徴とする。
【0014】
また、補間処理は、対象画素の階調値と3つの周辺画素の階調値との合計4つの階調値を用いた線形和を演算すると好適である。
【0015】
また、サブ画素単位のシフト量に応じた線形和の各項の係数を定義するテーブルをさらに備え、
テーブルを参照して、決定されたシフト量に対応する各項の係数を取得すると好適である。
【0016】
本発明の一態様の画像補正方法は、
記憶装置に記憶された画像の全体画像と画像の位置毎の部分画像との一方に対して、サブ画素単位のシフト量を決定する工程と、
全体画像と位置毎の部分画像との前記一方に対して、画素毎に対象画素の階調値と対象画素の周辺画素の階調値とを用いてシフト量に応じた補間処理を行う工程と、
を備え、
補間処理は、画素の位置における線形和の各項の重み付け係数の和が1となり、各項の重み付け係数の2乗和がシフト量に依存しない定数となるように設定された各項の重み付け係数を用いて、対象画素の補間値として、対象画素の階調値と周辺画素の階調値との線形和を演算することを特徴とする。
【0017】
また、補間処理は、対象画素の階調値と3つの周辺画素の階調値との合計4つの階調値を用いた線形和を演算すると好適である。
【0018】
また、サブ画素単位のシフト量に応じた線形和の各項の係数を定義するテーブルを参照して、決定されたシフト量に対応する各項の係数を取得すると好適である。
【発明の効果】
【0019】
本発明の一態様によれば、シフト量に応じたノイズレベルの変動分が生じないように画像を補正できる。そのため、高精度なパターン検査ができる。
【図面の簡単な説明】
【0020】
図1】実施の形態1におけるパターン検査装置の構成を示す構成図である。
図2】実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。
図3】実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。
図4】実施の形態1における画像取得処理を説明するための図である。
図5】実施の形態1における比較回路内の構成を示す内部構成図の一例である。
図6】実施の形態1の比較例におけるノイズレベルの変動の一例を示す図である。
図7】実施の形態1における画像補正方法の要部工程を示すフローチャート図である。
図8】実施の形態1におけるサブ画素補間処理のフィルタ関数を説明するための図である。
図9】実施の形態1におけるフィルタテーブル作成工程の内部工程を示すフローチャート図である。
図10】実施の形態1におけるフィルタテーブルの一例をグラフで示した図である。
図11】実施の形態1における位置に依存させてシフトする場合のシフト量を求める方法を説明するための図である。
図12】実施の形態1の比較例における補正前後の画像の一例を示す図である。
図13】実施の形態1における補正前後の画像の一例を示す図である。
図14】実施の形態2における比較回路内の構成を示す内部構成図の一例である。
図15】実施の形態3における画像補正装置の構成の一例を示す図である。
図16】実施の形態3における補正対象画像の形状の一例を示す図である。
【発明を実施するための形態】
【0021】
以下、実施の形態において、画像補正装置の一例として、電子ビームを用いて画像を取得する電子ビーム検査装置について説明する。但し、これに限るものではない。イオンビーム或いは紫外線等を用いて画像を取得する装置であっても構わない。或いは、外部で取得された画像を入力して、かかる画像を補正する装置であっても構わない。また、以下、電子ビームについては、マルチビームを用いた構成について説明するが、例えば、1本の電子ビームによるシングルビームを用いた構成であっても構わない。
【0022】
実施の形態1.
図1は、実施の形態1におけるパターン検査装置の構成を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、電子ビーム検査装置の一例である。検査装置100は、画像取得機構150、及び制御系回路160(制御部)を備えている。画像取得機構150は、電子ビームカラム102(電子鏡筒)、検査室103、検出回路106、チップパターンメモリ123、ステージ駆動機構142、及びレーザ測長システム122を備えている。電子ビームカラム102内には、電子銃201、照明レンズ202、成形アパーチャアレイ基板203、縮小レンズ205、制限アパーチャ基板213、対物レンズ207、主偏向器208、副偏向器209、一括ブランキング偏向器212、ビームセパレーター214、偏向器218、投影レンズ224,226、及びマルチ検出器222が配置されている。
【0023】
電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、及び副偏向器209によって1次電子光学系を構成する。また、電磁レンズ207、ビームセパレーター214、偏向器218、及び電磁レンズ224,226によって2次電子光学系を構成する。
【0024】
検査室103内には、少なくともXY方向に移動可能なステージ105が配置される。ステージ105上には、検査対象となる基板101(試料)が配置される。基板101には、露光用マスク基板、及びシリコンウェハ等の半導体基板が含まれる。基板101が半導体基板である場合、半導体基板には複数のチップパターン(ウェハダイ)が形成されている。基板101が露光用マスク基板である場合、露光用マスク基板には、チップパターンが形成されている。チップパターンは、複数の図形パターンによって構成される。かかる露光用マスク基板に形成されたチップパターンが半導体基板上に複数回露光転写されることで、半導体基板には複数のチップパターン(ウェハダイ)が形成されることになる。以下、基板101が半導体基板である場合を主として説明する。基板101は、例えば、パターン形成面を上側に向けてステージ105に配置される。また、ステージ105上には、検査室103の外部に配置されたレーザ測長システム122から照射されるレーザ測長用のレーザ光を反射するミラー216が配置されている。
【0025】
また、マルチ検出器222は、電子ビームカラム102の外部で検出回路106に接続される。検出回路106は、チップパターンメモリ123に接続される。
【0026】
制御系回路160では、検査装置100全体を制御する制御計算機110が、バス120を介して、位置回路107、比較回路108、参照画像作成回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、フィルタテーブル作成回路130、磁気ディスク装置等の記憶装置109、モニタ117、メモリ118、及びプリンタ119に接続されている。また、偏向制御回路128は、DAC(デジタルアナログ変換)アンプ144,146,148に接続される。DACアンプ146は、主偏向器208に接続され、DACアンプ144は、副偏向器209に接続される。DACアンプ148は、偏向器218に接続される。
【0027】
また、チップパターンメモリ123は、比較回路108に接続されている。また、ステージ105は、ステージ制御回路114の制御の下に駆動機構142により駆動される。駆動機構142では、例えば、ステージ座標系におけるX方向、Y方向、θ方向に駆動する3軸(X-Y-θ)モータの様な駆動系が構成され、XYθ方向にステージ105が移動可能となっている。これらの、図示しないXモータ、Yモータ、θモータは、例えばステップモータを用いることができる。ステージ105は、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。そして、ステージ105の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。レーザ測長システム122は、ミラー216からの反射光を受光することによって、レーザ干渉法の原理でステージ105の位置を測長する。ステージ座標系は、例えば、マルチ1次電子ビーム20の光軸に直交する面に対して、1次座標系のX方向、Y方向、θ方向が設定される。
【0028】
電磁レンズ202、電磁レンズ205、電磁レンズ206、電磁レンズ207(対物レンズ)、電磁レンズ224,226、及びビームセパレーター214は、レンズ制御回路124により制御される。また、一括ブランキング偏向器212は、2極以上の電極により構成され、電極毎に図示しないDACアンプを介してブランキング制御回路126により制御される。副偏向器209は、4極以上の電極により構成され、電極毎にDACアンプ144を介して偏向制御回路128により制御される。主偏向器208は、4極以上の電極により構成され、電極毎にDACアンプ146を介して偏向制御回路128により制御される。偏向器218は、4極以上の電極により構成され、電極毎にDACアンプ148を介して偏向制御回路128により制御される。
【0029】
電子銃201には、図示しない高圧電源回路が接続され、電子銃201内の図示しないフィラメントと引出電極間への高圧電源回路からの加速電圧の印加と共に、所定の引出電極(ウェネルト)の電圧の印加と所定の温度のカソードの加熱によって、カソードから放出された電子群が加速させられ、電子ビーム200となって放出される。照明レンズ202、縮小レンズ205、対物レンズ207、及び投影レンズ224,226は、例えば電磁レンズが用いられる。
【0030】
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。検査装置100にとって、通常、必要なその他の構成を備えていても構わない。
【0031】
図2は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図2において、成形アパーチャアレイ基板203には、2次元状の横(x方向)m列×縦(y方向)n段(m,nは2以上の整数)の穴(開口部)22がx,y方向に所定の配列ピッチで形成されている。図2の例では、23×23の穴(開口部)22が形成されている場合を示している。各穴22は、共に同じ寸法形状の矩形で形成される。或いは、同じ外径の円形であっても構わない。これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、マルチ1次電子ビーム20が形成されることになる。次に、2次電子画像を取得する場合における画像取得機構150の動作について説明する。
【0032】
画像取得機構150は、電子ビームによるマルチビーム20を用いて、図形パターンが形成された基板101から図形パターンの被検査画像を取得する。以下、検査装置100における画像取得機構150の動作について説明する。
【0033】
電子銃201(放出源)から放出された電子ビーム200は、電磁レンズ202によって屈折させられ、成形アパーチャアレイ基板203全体を照明する。成形アパーチャアレイ基板203には、図2に示すように、複数の穴22(開口部)が形成され、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の穴22をそれぞれ通過することによって、マルチ1次電子ビーム20が形成される。
【0034】
形成されたマルチ1次電子ビーム20は、電磁レンズ205、及び電磁レンズ206によってそれぞれ屈折させられ、中間像およびクロスオーバーを繰り返しながら、マルチ1次電子ビーム20の各ビームの中間像面(像面共役位置:I.I.P.)に配置されたビームセパレーター214を通過して電磁レンズ207(対物レンズ)に進む。
【0035】
マルチ1次電子ビーム20が電磁レンズ207(対物レンズ)に入射すると、電磁レンズ207は、マルチ1次電子ビーム20を基板101にフォーカスする。対物レンズ207により基板101(試料)面上に焦点が合わされ(合焦され)たマルチ1次電子ビーム20は、主偏向器208及び副偏向器209によって一括して偏向され、各ビームの基板101上のそれぞれの照射位置に照射される。なお、一括ブランキング偏向器212によって、マルチ1次電子ビーム20全体が一括して偏向された場合には、制限アパーチャ基板213の中心の穴から位置がはずれ、制限アパーチャ基板206によってマルチ1次電子ビーム20全体が遮蔽される。一方、一括ブランキング偏向器212によって偏向されなかったマルチ1次電子ビーム20は、図1に示すように制限アパーチャ基板206の中心の穴を通過する。かかる一括ブランキング偏向器212のON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが一括制御される。このように、制限アパーチャ基板206は、一括ブランキング偏向器212によってビームOFFの状態になるように偏向されたマルチ1次電子ビーム20を遮蔽する。そして、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板206を通過したビーム群により、画像取得用のマルチ1次電子ビーム20が形成される。
【0036】
基板101の所望する位置にマルチ1次電子ビーム20が照射されると、かかるマルチ1次電子ビーム20が照射されたことに起因して基板101からマルチ1次電子ビーム20の各ビームに対応する、反射電子を含む2次電子の束(マルチ2次電子ビーム300)が放出される。
【0037】
基板101から放出されたマルチ2次電子ビーム300は、電磁レンズ207を通って、ビームセパレーター214に進む。
【0038】
ここで、ビームセパレーター214はマルチ1次電子ビーム20の中心ビームが進む方向(軌道中心軸)に直交する面上において電界と磁界を直交する方向に発生させる。電界は電子の進行方向に関わりなく同じ方向に力を及ぼす。これに対して、磁界はフレミング左手の法則に従って力を及ぼす。そのため電子の侵入方向によって電子に作用する力の向きを変化させることができる。ビームセパレーター214に上側から侵入してくるマルチ1次電子ビーム20には、電界による力と磁界による力が打ち消し合い、マルチ1次電子ビーム20は下方に直進する。これに対して、ビームセパレーター214に下側から侵入してくるマルチ2次電子ビーム300には、電界による力と磁界による力がどちらも同じ方向に働き、マルチ2次電子ビーム300は斜め上方に曲げられ、マルチ1次電子ビーム20から分離する。
【0039】
斜め上方に曲げられ、マルチ1次電子ビーム20から分離したマルチ2次電子ビーム300は、偏向器218によって、さらに曲げられ、電磁レンズ224,226によって、屈折させられながらマルチ検出器222に投影される。マルチ検出器222は、投影されたマルチ2次電子ビーム300を検出する。マルチ検出器222は、複数の検出エレメント(例えば図示しないダイオード型の2次元センサ)を有する。そして、マルチ1次電子ビーム20の各ビームは、マルチ検出器222の検出面において、マルチ2次電子ビーム300の各2次電子ビームに対応する検出エレメントに衝突して、電子を発生し、2次電子画像データを画素毎に生成する。マルチ検出器222にて検出された強度信号は、検出回路106に出力される。各1次電子ビームは、基板101上における自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域内に照射され、当該サブ照射領域内を走査(スキャン動作)する。
【0040】
図3は、実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。図3において、半導体基板(ウェハ)101の検査領域330には、複数のチップ(ウェハダイ)332が2次元のアレイ状に形成されている。各チップ332には、露光用マスク基板に形成された1チップ分のマスクパターンが図示しない露光装置(ステッパ)によって例えば1/4に縮小されて転写されている。
【0041】
図4は、実施の形態1における画像取得処理を説明するための図である。図4に示すように、各チップ332の領域は、例えばy方向に向かって所定の幅で複数のストライプ領域32に分割される。画像取得機構150によるスキャン動作は、例えば、ストライプ領域32毎に実施される。例えば、-x方向にステージ105を移動させながら、相対的にx方向にストライプ領域32のスキャン動作を進めていく。各ストライプ領域32は、長手方向に向かって複数の矩形領域33に分割される。対象となる矩形領域33へのビームの移動は、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって行われる。
【0042】
図4の例では、例えば、5×5列のマルチ1次電子ビーム20の場合を示している。1回のマルチ1次電子ビーム20の照射で照射可能な照射領域34は、(基板101面上におけるマルチ1次電子ビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じたx方向サイズ)×(基板101面上におけるマルチ1次電子ビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じたy方向サイズ)で定義される。照射領域34が、マルチ1次電子ビーム20の視野となる。そして、マルチ1次電子ビーム20を構成する各1次電子ビーム10は、自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。各1次電子ビーム10は、互いに異なるいずれかのサブ照射領域29を担当することになる。そして、各ショット時に、各1次電子ビーム10は、担当サブ照射領域29内の同じ位置を照射することになる。サブ照射領域29内の1次電子ビーム10の移動は、副偏向器209によるマルチ1次電子ビーム20全体での一括偏向によって行われる。かかる動作を繰り返し、1つの1次電子ビーム10で1つのサブ照射領域29内を順に照射していく。
【0043】
各ストライプ領域32の幅は、照射領域34のy方向サイズと同様、或いはスキャンマージン分狭くしたサイズに設定すると好適である。図4の例では、照射領域34が矩形領域33と同じサイズの場合を示している。但し、これに限るものではない。照射領域34が矩形領域33よりも小さくても良い。或いは大きくても構わない。そして、マルチ1次電子ビーム20を構成する各1次電子ビーム10は、自身のビームが位置するサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。そして、1つのサブ照射領域29のスキャンが終了したら、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が同じストライプ領域32内の隣接する矩形領域33へと移動する。かかる動作を繰り返し、ストライプ領域32内を順に照射していく。1つのストライプ領域32のスキャンが終了したら、ステージ105の移動或いは/及び主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射領域34が次のストライプ領域32へと移動する。以上のように各1次電子ビーム10の照射によってサブ照射領域29毎のスキャン動作および2次電子画像の取得が行われる。これらのサブ照射領域29毎の2次電子画像を組み合わせることで、矩形領域33の2次電子画像、ストライプ領域32の2次電子画像、或いはチップ332の2次電子画像が構成される。また、実際に画像比較を行う場合には、各矩形領域33内のサブ照射領域29をさらに複数のフレーム領域30に分割して、フレーム領域30毎のフレーム画像31について比較することになる。図4の例では、1つの1次電子ビーム10によってスキャンされるサブ照射領域29を例えばx,y方向にそれぞれ2分割することによって形成される4つのフレーム領域30に分割する場合を示している。
【0044】
ここで、ステージ105が連続移動しながらマルチ1次電子ビーム20を基板101に照射する場合、マルチ1次電子ビーム20の照射位置がステージ105の移動に追従するように主偏向器208によって一括偏向によるトラッキング動作が行われる。そのため、マルチ2次電子ビーム300の放出位置がマルチ1次電子ビーム20の軌道中心軸に対して刻々と変化する。同様に、サブ照射領域29内をスキャンする場合に、各2次電子ビームの放出位置は、サブ照射領域29内で刻々と変化する。このように放出位置が変化した各2次電子ビームをマルチ検出器222の対応する検出領域内に照射させるように、偏向器218は、マルチ2次電子ビーム300を一括偏向する。
【0045】
以上のように、画像取得機構150は、ストライプ領域32毎に、スキャン動作をすすめていく。上述したように、マルチ1次電子ビーム20を照射して、マルチ1次電子ビーム20の照射に起因して基板101から放出されるマルチ2次電子ビーム300は、マルチ検出器222で検出される。検出されるマルチ2次電子ビーム300には、反射電子が含まれていても構わない。或いは、反射電子は、2次電子光学系を移動中に発散し、マルチ検出器222まで到達しない場合であっても構わない。マルチ検出器222によって検出された各サブ照射領域29内の画素毎の2次電子の検出データ(測定画像データ:2次電子画像データ:被検査画像データ)は、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、チップパターンメモリ123に格納される。そして、得られた測定画像データは、位置回路107からの各位置を示す情報と共に、比較回路108に転送される。
【0046】
一方、参照画像作成回路112は、基板101に形成された複数の図形パターンの元になる設計データに基づいて、フレーム領域30毎に、フレーム画像31に対応する参照画像を作成する。具体的には、以下のように動作する。まず、記憶装置109から制御計算機110を通して設計パターンデータを読み出し、この読み出された設計パターンデータに定義された各図形パターンを2値ないしは多値のイメージデータに変換する。
【0047】
上述したように、設計パターンデータに定義される図形は、例えば長方形や三角形を基本図形としたもので、例えば、図形の基準位置における座標(x、y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。
【0048】
かかる図形データとなる設計パターンデータが参照画像作成回路112に入力されると図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の設計パターン画像データに展開し、出力する。言い換えれば、設計データを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできたマス目毎に設計パターンにおける図形が占める占有率を演算し、nビットの占有率データを出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとなる。かかるマス目(検査画素)は、測定データの画素に合わせればよい。
【0049】
次に、参照画像作成回路112は、図形のイメージデータである設計パターンの設計画像データに、所定のフィルタ関数を使ってフィルタ処理を施す。これにより、画像強度(濃淡値)がデジタル値の設計側のイメージデータである設計画像データをマルチ1次電子ビーム20の照射によって得られる像生成特性に合わせることができる。作成された参照画像の画素毎の画像データは比較回路108に出力される。
【0050】
図5は、実施の形態1における比較回路内の構成を示す内部構成図の一例である。図5において、比較回路108内には、磁気ディスク装置等の記憶装置50,51,52,74、スムージング処理部54,56、サブ画素補間処理部60、サブ画素シフト処理部63、SSD(Sum of Squared Difference)値算出部62、最適化処理部64、スムージング処理部70、及び比較処理部72が配置される。スムージング処理部54,56、サブ画素補間処理部60、サブ画素シフト処理部63、SSD(Sum of Squared Difference)値算出部62、最適化処理部64、スムージング処理部70、及び比較処理部72といった各「~部」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~部」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。スムージング処理部54,56、サブ画素補間処理部60、サブ画素シフト処理部63、SSD(Sum of Squared Difference)値算出部62、最適化処理部64、スムージング処理部70、及び比較処理部72内に必要な入力データ或いは演算された結果はその都度図示しないメモリに記憶される。
【0051】
比較回路108内に転送された被検査画像データ(フレーム画像データ)は、記憶装置52に格納される。また、比較回路108内に転送された参照画像データは、記憶装置50に格納される。比較回路108内にて、被検査画像となるフレーム画像と参照画像との位置合わせを行うことになる。
【0052】
ここで、上述したように、電子ビーム検査装置では、単位領域あたりに入射する電子数が限られているために個々の電子に対するショットノイズの影響が大きい。そのため、1画素未満の位置ずれについて、画像全体に対してシフト量に応じた補間処理を行い、補間処理により生じたシフト量に応じたノイズレベルの変動分を抑制する補償フィルタをさらに適用するといった2段階での処理手法が考えられる。しかしながら、かかる処理では、例えば4タップによる補間処理と例えば3タップによる補償フィルタ処理の2段階での処理となるためデータ処理に必要なメモリ量が大きくなってしまうといった問題点や、ノイズレベルの変動を完全に消すことができない場合があり得るといった問題点があった。
【0053】
図6は、実施の形態1の比較例におけるノイズレベルの変動の一例を示す図である。図6に示す比較例では、上述したように、4タップによる補間処理と例えば3タップによる補償フィルタ処理の2段階での処理を行う。この4タップのシフトフィルタと、3タップの補償ブラー(blur)フィルタを連続で掛けた場合、6タップのフィルタと等価になるが、この係数二乗和は図6に示すように厳密には一定値にならない。したがって、シフト量によっておこるノイズ量の変動が完全には抑制されておらず、わずかに残っていることがわかる。このように、2段階でフィルタを掛けた場合、ノイズ量の変動を完全には抑えられないことがわかる。そこで、実施の形態1では、画像補正を行うための補間処理の際に、シフト量に応じたノイズレベルの変動分が生じないように補間する。
【0054】
図7は、実施の形態1における画像補正方法の要部工程を示すフローチャート図である。図7において、実施の形態1における画像補正方法は、フィルタテーブル作成工程(S102)と、シフト量決定工程(S202)と、補間処理工程(S204)と、いう一連の工程を実施する。
【0055】
図8は、実施の形態1におけるサブ画素補間処理のフィルタ関数を説明するための図である。図8の例では、1次元方向(x方向)へ画像をシフトする場合の補間処理を示している。図8(a)において参照画像をシフトした場合に、シフト後の位置xでの画素値f(x)を補間により求める場合、シフト後の位置xから見てシフト方向の両側に隣接する2画素ずつ計4画素(-1,0,1,2)の階調値(f(-1),f(0),f(1),f(2)を用いて補間する方法がよく用いられる。言い換えれば、補間処理では、対象画素の階調値f(0)と3つの周辺画素の階調値f(-1),f(1),f(2)との合計4つの階調値を用いた線形和を演算する。かかる場合、対象画素は、画素(0)と周辺画素(1)との間にあって、画素(0)からシフト量xだけずらした位置になる場合を想定している。シフト量xはサブ画素単位になるので0≦x≦1となる。かかる場合の対象画素の階調値f(x)(補間値)は、例えば、4タップフィルタを用いて、図8(b)に示すように、4つの画素の画素値を用いた線形和で定義できる。具体的には、4つの画素の画素値にそれぞれ重み付け係数a(x)、b(x)、c(x)、d(x)を乗じた値の和を示す式(1)(補間フィルタ関数)で定義できる。
【0056】
【数1】
【0057】
その際、図8(b)に示すように、線形和の各項の重み付け係数a(x)、b(x)、c(x)、d(x)の和が1となり、各項の重み付け係数a(x)、b(x)、c(x)、d(x)の2乗和がシフト量xに依存しない定数Rとなるように設定する。具体的には、式(2-1)及び式(2-2)の関係になるように定義する。
【0058】
【数2】
【0059】
f(-1),f(0),f(1),f(2)が一定量のノイズを含む場合、補間後のノイズ量は、式(2-2)の左辺で定義できる。よって、式(2-2)の左辺を定数Rになるように定義できれば、補間後のノイズ量はシフト量xに依存せずに一定にできる。言い換えれば、シフト量xに関わらずノイズレベルの変動分をゼロにできる。ここで、各項の重み付け係数a(x)、b(x)、c(x)、d(x)を具体的に算出する方法の一例について説明する。図8(a)に示す位置xから見た各周辺画素までの位置に依存する偶関数k(x)を用いて、以下の式(3-1)~式(3-4)のように定義できる。
【0060】
【数3】
ここで、k1(x)は、k(x)の0<x<1の区間を定義する関数であり、k2(x)は、k(x)の1<x<2の区間を定義する関数であって、これらの範囲において定義されるものとする。
【0061】
そして、式(2-1)、式(2-2)、及び式(3-1)~式(3-4)を用いて変形すると、例えばx=1/2のとき、定数Rは、以下の式(4)で定義できる。
【0062】
【数4】
【0063】
また、式(2-1)、式(2-2)、及び式(3-1)~式(3-4)を用いて変形すると、例えばx=0のとき、k1(0)は式(5-1)で定義できる。また、k1(1)は式(5-2)で定義できる。
【0064】
【数5】
したがって、k(1/2)が決まれば、R、k1(0)、k1(1)の3つの値が決まることになる。これら4つの値のうち、独立に決定できるのは1つだけである。
【0065】
また、式(2-1)、式(2-2)、及び式(3-1)~式(3-4)を用いて変形すると、k2(x+1)は式(6-1)で定義できる。また、k2(2-x)は式(6-2)で定義できる。
【0066】
【数6】
つまり、R とk1(x)が決まれば、k2(x)も決まる。Rはk1(0)、k1(1/2)、k1(1)のどれか1つが決まれば決まるので、要するにk1(x)が決まれば、k2(x)も決まる。
【0067】
ここで、k1(x)を例えば式(7)に示す3次元多項式で表せるものとする。
【0068】
【数7】
【0069】
かかる場合、式(7)の右辺の係数p、q、r、sは、以下の式(8-1)~式(8-4)で定義できる。
【0070】
【数8】
【0071】
以上のように、k1(1/2)を与えるとR、k1(0)、k1(1)の値が決まり、これに加えてr=k1’(0)の値も与えれば、p,q,r,sの4つの値が決まるのでk1(x)が決定し、k2(x)も決定する。これらの計算過程において独立な変数は2つであり、例えば、k1(1/2)とrの2つの値を自由に決めることができる。
以上の関係を満たすフィルタ関数の係数a(x)、b(x)、c(x)、d(x)をまずは求める。
【0072】
フィルタテーブル作成工程(S102)として、フィルタテーブル作成回路130は、補間処理を行うための係数が定義されるフィルタテーブルを作成する。
【0073】
図9は、実施の形態1におけるフィルタテーブル作成工程の内部工程を示すフローチャート図である。フィルタテーブルは、検査装置100内で作成しても良いし、外部で作成した後に入力しても構わない。
【0074】
フィルタテーブル作成回路130は、k1(1/2)、rを設定する(S104)。これらの値は外部からユーザによって入力された値を設定すればよい。
【0075】
次に、フィルタテーブル作成回路130は、k1(1/2)を式(4)に代入して、定数Rを演算する(S106)。
【0076】
次に、フィルタテーブル作成回路130は、Rを式(5-1)及び式(5-2)に代入して、k1(0)、k1(1)を演算する(S108)。
【0077】
次に、フィルタテーブル作成回路130は、k1(0)、k1(1/2)、k1(1)、rの各値を、式(8-1)、式(8-2)、及び式(8-4)に代入して、係数p,q,sを演算する(S110)。これにより、k1(x)を求めることができる。
【0078】
次に、フィルタテーブル作成回路130は、R、及びk1(x)を、式(6-1)、及び式(6-2)に代入して、例えばx=0のとき、k2(1)、k2(2)を演算する(S112)。
【0079】
次に、フィルタテーブル作成回路130は、得られたk1(0)、k1(1)、k2(1)、及びk2(2)が実数かどうかを判定する(S114)。k1(0)、k1(1)、k2(1)、及びk2(2)のすべてが実数でない場合、実数になるまで、k1(1/2)、rの値を変更して、同様にS104~S114までの各工程を繰り返す。
【0080】
以上により、重み付け係数a(x)、b(x)、c(x)、d(x)を求めることができる。次に、サブ画素単位のシフト量毎の重み付け係数a(x)、b(x)、c(x)、d(x)の各値を演算する(S114)。1画素が例えば256階調で定義される場合、n=0~255の各値におけるx=n/256に対し、重み付け係数a(x)、b(x)、c(x)、d(x)の各値が求まる。k1(1/2)、rの値の組は1種に限るものではない。そのため、k1(1/2)、rの値の組毎に、x=0~255の各値における係数a(x)、b(x)、c(x)、d(x)の各値を求めても好適である。
【0081】
そして、フィルタテーブル作成回路130は、k1(1/2)、rの値の組毎に、x=0~255の各値における重み付け係数a(x)、b(x)、c(x)、d(x)の各値を定義するフィルタテーブルを作成する(S118)。
【0082】
図10は、実施の形態1におけるフィルタテーブルの一例をグラフで示した図である。図10(a)では、横軸に、シフト量となる0から255の値を示し、縦軸に各重み付け係数a(x)、b(x)、c(x)、d(x)の値を示す。図10(b)では、シフト量xがとり得る0から255の256階調を0~1の値に変換した場合の図10(a)に示した各係数のフィルタ波形を示す。得られたフィルタテーブルは、記憶装置109に格納される。
【0083】
シフト量決定工程(S202)として、最適化処理部64(シフト量決定部)は、参照画像(第1の画像)の全体画像と参照画像の位置毎の部分画像との一方に対して、サブ画素単位のシフト量を決定する。ここでは、例えば、参照画像の全体に対して一定のシフト量xでシフトさせる場合について説明する。
【0084】
まず、スムージング処理部56は、記憶装置52から被検査画像となるフレーム画像(第2の画像)を読み出し、フレーム画像内の図形パターンに対してパターン端部をなめらかにするスムージング処理を行う。同様に、スムージング処理部54は、記憶装置50から対応するフレーム領域30の参照画像を読み出し、参照画像の図形パターンに対してパターン端部をなめらかにするスムージング処理を行う。スムージング処理用のフィルタとして、例えば、ガウシアンフィルタを用いると好適である。例えば、7行×7列のガウシアンフィルタを用いる。或いは、例えば、5行×5列のガウシアンフィルタを用いて構わない。或いは、7×7列よりも大きい行列のガウシアンフィルタを用いて構わない。ガウシアンフィルタの各要素値は、中心の要素値a(i,j)が最も大きく、中心から外れるに従い小さくなるように設定される。例えば、1/4096,6/4096,15/4096,20/4096,36/4096,90/4096,120/4096,225/4096,300/4096,400/4096のいずれかの値が設定される。かかる場合には、中心の要素値a(i,j)は400/4096となる。また、4隅の要素値a(i-3,j-3),a(i+3,j-3),a(i-3,j+3),a(i+3,j+3)は、共に1/4096となる。この場合のσは約1.3となる。7×7列の各要素値を1画素に当てはめ、例えば、512×512画素で構成されるマスクダイ画像内において、7×7画素の領域を2次元状に1画素ずつずらしながら移動させる。そして、それぞれのシフト位置において、7×7画素の中心画素の画素値g(x,y)を演算する。中心画素の画素値g(x,y)は、以下の式(2)(ガウシアンフィルタ関数)で定義できる。
【0085】
【数9】
【0086】
かかるスムージング処理によって、被検査画像と参照画像のショットノイズを含むノイズを低減できる。特に、ガウシアンフィルタの行列の要素数を多くするほど、その効果を大きくすることができる。実施の形態1では、7行×7列の行列で示すガウシアンフィルタを用いることで、実質的にノイズを消去することができる。このように、実質的にノイズを消去した状態で、以下に示すように、位置合わせのためのシフト量(ずらし量)を演算する。
【0087】
まず、サブ画素シフト処理部63は、スムージング処理が行われた参照画像をサブ画素単位で可変にずらす。1画素が例えば256階調で定義される場合、例えば、x,y方向に1/16画素ずつ、或いは1/8画素ずつシフトさせると好適である。そして、SSD値算出部62は、シフト量(ずらし量)毎に、フレーム画像の各画素値と参照画像の対応する画素値との差分二乗和(SSD)を演算する。
【0088】
次に、最適化処理部64は、差分二乗和(SSD)が最小となる画像シフト量(ずらし量)を演算する。そのために、サブ画素シフト処理部63は、画像シフト量を可変にずらして、その都度、SSD値算出部62は、上述したように差分二乗和(SSD)を演算し、演算結果を最適化処理部64に出力する。以上のようにして、最適化処理部64は、差分二乗和(SSD)が最小となる画像シフト量(ずらし量)を決定する。以上の繰り返し演算によって得られた、差分二乗和(SSD)が最小となる画像シフト量(ずらし量)は、サブ画素補間処理部60に出力される。
【0089】
上述した例では、参照画像全体を1つのシフト量でシフトされる場合を説明したが、これに限るものではない。位置毎にシフト量を変化させても好適である。
【0090】
図11は、実施の形態1における位置に依存させてシフトする場合のシフト量を求める方法を説明するための図である。図11において、フレーム領域30サイズの参照画像を複数の小領域35に分割する。図11の例では、フレーム領域30を例えば4×4の小領域35に分割する場合を示している。そして、SSD値算出部62は、小領域35毎に、小領域35に分割された部分画像を使ってシフト量を可変にずらしながら差分二乗和(SSD)を演算する。そして、最適化処理部64は、小領域35毎に、差分二乗和(SSD)が最小となる画像シフト量(ずらし量)を決定する。
【0091】
補間処理工程(S204)として、サブ画素補間処理部60(補間処理部)は、全体画像と位置毎の部分画像との一方に対して、画素毎に対象画素の階調値と対象画素の周辺画素の階調値とを用いてシフト量に応じた補間処理を行う。補間処理は、画素の位置における線形和の各項の重み付け係数の和が1となり、各項の重み付け係数の2乗和がシフト量xに依存しない定数Rとなるように設定された各項の重み付け係数数a(x)、b(x)、c(x)、d(x)を用いて、対象画素の補間値として、対象画素の階調値と周辺画素の階調値との線形和を演算する。参照画像全体に対して1つのシフト量が決定された場合には、かかる全体画像に対して、画素毎に対象画素の階調値と対象画素の周辺画素の階調値とを用いてシフト量に応じた補間処理を行う。参照画像を複数の小領域35に分割して小領域35毎にシフト量が決定された場合には、小領域35毎にかかる部分画像に対して、画素毎に対象画素の階調値と対象画素の周辺画素の階調値とを用いてシフト量に応じた補間処理を行う。具体的には、以下のように動作する。
【0092】
まず、サブ画素補間処理部60は、サブ画素単位のシフト量に応じた補間用の線形和の各項の重み付け係数a(x)、b(x)、c(x)、d(x)を定義するフィルタテーブルを参照して、決定されたシフト量xに対応する各項の重み付け係数a(x)、b(x)、c(x)、d(x)を取得する。
【0093】
そして、サブ画素補間処理部60は、補間の対象となる参照画像について、画素毎に、画素値f(x)(補間値)を算出する。補間処理では、上述したように、対象画素の階調値f(0)と3つの周辺画素の階調値f(-1),f(1),f(2)との合計4つの階調値を用いた線形和を演算する。対象画素の画素値f(x)(補間値)は、式(1)に示した、例えば、4タップフィルタを用いて、4つの周辺画素の画素値を用いた線形和によって算出される。 なお、通常画像の位置ずれは横方向のみでなく縦方向にも起こりえる。その場合、x方向のサブ画素補間処理とy方向のサブ画素補間処理を連続して行なう。シフト量xが、例えば画像全体で同じである場合には、x=constとなるため、a(x),b(x),c(x),d(x)は定数係数になり、パイプライン処理のように各画素の階調値をどんどん流すことで補間処理を行えばよい。
【0094】
以上のように補間処理によって位置合わせのために画像補正された参照画像を生成できる。実施の形態1では、上述したように、線形和の各項の重み付け係数a(x)、b(x)、c(x)、d(x)の和が1となり、各項の重み付け係数a(x)、b(x)、c(x)、d(x)の2乗和がシフト量xに依存しない定数Rとなるように設定されているので、シフト量に応じたノイズレベルの変動を回避できる。
【0095】
図12は、実施の形態1の比較例における補正前後の画像の一例を示す図である。図13は、実施の形態1における補正前後の画像の一例を示す図である。比較例では、図12(a)に示す画像の中心部分について、従来の4タップフィルタ処理の後に3タップの補償フィルタを実施した。その結果、図12(b)に示すように、画像の中心部分についてボケが残ることがわかる。これに対して、図12(a)に示した画像と同じ図13(a)に示す画像の中心部分について、実施の形態1の補間処理を実施した。その結果、図13(b)に示すように、画像の中心部分についてボケが低減されていることがわかる。
【0096】
また、上述した例では、4タップフィルタを用いて補間しているが、これに限るものではない。さらに多くのタップ数のフィルタを用いて補間しても好適である。例えば、対象画素の階調値f(0)と5つの周辺画素の階調値f(-2),f(-1),f(1),f(2),f(3)との合計6つの階調値を用いた4タップフィルタを用いても好適である。
【0097】
上述した例では、x方向について説明しているが、y方向についても同様に補間する。例えば、x方向に補間処理された補間値に対いて、y方向に補間処理すればよい。
【0098】
補間処理された参照画像は比較処理部72に出力されると共に、かかる状態で、被検査画像となるフレーム画像と参照画像とを比較する。なお、サブ画素補間処理部60による補間処理によって、参照画像は少しボケるので、フレーム画像についても、サブ画素補間処理部60での処理と同程度のスムージング効果が得られるスムージング処理を行って条件を同程度に近づけると好適である。かかる場合、スムージング処理部70は、記憶装置52からスムージング処理を行っていないフレーム画像を読み出し、フレーム画像内の図形パターンに対してパターン端部を若干なめらかにする弱めのスムージング処理を行っても好適である。スムージング処理用のフィルタとして、例えば、3行×3列のガウシアンフィルタを用いる。
【0099】
比較処理部72(比較部)は、補間処理が行われた参照画像(第1の画像)と、参照画像に対応するフレーム画像(第2の画像)とを比較する。具体的には、被検査画像と参照画像とを、画素毎に比較する。所定の判定閾値を用いて所定の判定条件に従って画素毎に両者を比較し、例えば形状欠陥といった欠陥の有無を判定する。例えば、画素毎の階調値差が判定閾値Thよりも大きければ欠陥候補と判定する。そして、比較結果が出力される。比較結果は、記憶装置109、モニタ117、若しくはメモリ118に、或いはプリンタ119より出力されればよい。
【0100】
或いは、比較処理部72(比較部)は、被検査画像と参照画像とからそれぞれ画像内の図形パターンの輪郭線を生成する。そして、マッチングする図形パターンの輪郭線同士のずれを比較して良い。例えば、輪郭線同士のずれが判定閾値Th’よりも大きければ欠陥候補と判定する。そして、比較結果が出力される。比較結果は、記憶装置74に出力されると共に、記憶装置109、モニタ117、若しくはメモリ118に出力される、或いはプリンタ119から出力されればよい。
【0101】
以上のように、実施の形態1によれば、シフト量に応じたノイズレベルの変動分が生じないように画像を補正できる。そのため、高精度なパターン検査ができる。また、従来のような4タップフィルタ処理の後にさらにノイズレベルの変動分を補償する3タップフィルタ処理(合計6タップ処理に相当する)を必要としないで済む。これにより、演算処理の負荷を低減できる。また、実施の形態1によれば、図11を使って説明したように、画像全体ではなく部分ごとにシフト量が異なる場合でも位置毎のシフト量に応じたノイズレベルの変動分が生じないように画像を補正できる。
【0102】
実施の形態2.
実施の形態1では、ノイズ成分自体を消去してから位置合わせを行う構成について説明したが、実施の形態2では、シフト量(ずらし量)に依存したノイズレベルの変動分が発生しない補間処理を行った上で位置合わせを行う構成について説明する。実施の形態2における検査装置100の構成は図1と同様である。また、以下、特に説明する点以外の内容は、実施の形態1と同様で構わない。
【0103】
図14は、実施の形態2における比較回路内の構成を示す内部構成図の一例である。図14の例では、まず、参照画像に対して設定されるシフト量に応じた補間処理を行った後で、差分二乗和(SSD)が算出される。
【0104】
サブ画素補間処理部60(サブ画素補間処理部)は、被検査画像に対応する参照画像を用いて、被検査画像と参照画像とを相対的にサブ画素単位で可変にずらしながら、当該参照画像を補間処理する。補間処理の内容は実施の形態1と同様である。サブ画素補間処理部60により補間処理されることでシフト量(ずらし量)xに依存したショットノイズのレベルの変動は生じない。
【0105】
次に、SSD値算出部62は、シフト量(ずらし量)毎に、被検査画像の各画素値と補間処理された参照画像の対応する画素値との差分二乗和(SSD)を演算する。
【0106】
次に、最適化処理部64は、差分二乗和(SSD)が最小となる画像シフト量(ずらし量)を演算する。そのために、最適化処理部64は、画像シフト量を可変にずらして、その都度、設定した画像シフト量をサブ画素補間処理部60に出力する。そして、サブ画素補間処理部60は上述したように設定された画像シフト量で参照画像を補間する。そして、SSD値算出部62が差分二乗和(SSD)を演算し、演算結果を最適化処理部64に出力する。以上のようにして、最適化処理部64は、差分二乗和(SSD)が最小となる画像シフト量(ずらし量)を得る。そして、差分二乗和(SSD)が最小となる画像シフト量にて補間処理された参照画像と、被検査画像とが、比較処理部72に出力される。
【0107】
以上のように、実施の形態2では、シフト量(ずらし量)xに依存するノイズレベル変動が生じない補間処理を行った参照画像を使って、被検査画像との位置合わせを行う。
【0108】
比較処理部72(比較部)は、補間処理が行われた参照画像(第1の画像)と、参照画像に対応するフレーム画像(第2の画像)とを比較する。比較の仕方は、実施の形態1と同様である。
【0109】
上述した例では、比較される2つの画像の一方(例えば参照画像)をシフトさせて位置合わせする場合を説明したが、これに限るものではない。参照画像と被検査画像との両画像をシフトさせて歩み寄らせるように構成しても良い。ずらす方向は、被検査画像と参照画像とで逆方向となる。所望の画像シフト量(ずらし量)xについて、参照画像を例えば+x/2、被検査画像を例えば-x/2ずつずらしていけばよい。そして、被検査画像と参照画像とに対して、それぞれシフト量に応じた補間処理を行う。なお、被検査画像と参照画像とのそれぞれの補間処理に用いる線形和の各項の重み付け係数a(x)、b(x)、c(x)、d(x)については、その和が1となり、各項の重み付け係数a(x)、b(x)、c(x)、d(x)の2乗和がシフト量xに依存しない定数Rとなるように設定されていることは言うまでもない。そして、差分二乗和(SSD)が最小となる画像シフト量の半分ずつで補間された被検査画像と参照画像とに対して比較処理を行えばよい。
【0110】
以上のように、実施の形態2によれば、補間処理後の画像を使って差分二乗和(SSD)を演算するので、シフト量自体の精度を高めることができる。よって、実施の形態2によれば、実施の形態1よりも、さらにノイズの影響を低減した画像同士の位置合わせができる。そのため、高精度なパターン検査ができる。
【0111】
実施の形態3.
上述した各実施の形態では、2つの画像の例えば一方を補間処理することで2つの画像の位置合わせを行う場合について説明した。但し、画像補正は位置合わせに限るものではない。実際の形態3では、画像自体の歪を補正する場合について説明する。
【0112】
図15は、実施の形態3における画像補正装置の構成の一例を示す図である。図15において、実施の形態3における画像補正装置200内には、磁気ディスク装置等の記憶装置50,51,53,54、シフト量演算部61、及びサブ画素補間処理部60が配置される。シフト量演算部61、及びサブ画素補間処理部60といった各「~部」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~部」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。シフト量演算部61、及びサブ画素補間処理部60内に必要な入力データ或いは演算された結果はその都度図示しないメモリに記憶される。
【0113】
記憶装置50には、補正対象の画像が外部から入力され、格納されている。また、記憶装置51には、上述したフィルタテーブルを格納しておく。
【0114】
図16は、実施の形態3における補正対象画像の形状の一例を示す図である。図16(a)に示すように、画像を取得する際の光学系の収差等により、画像に歪が生じてしまう場合がある。かかる歪の程度は、位置によって異なるため、画像全体を一様にシフトさせても補正されたことにはならない。そこで、実施の形態3では、予め実験或いはシミュレーション等によりレンズ等の光学系の特性に応じた位置に依存した歪量を測定しておく。歪曲補正などの場合には、レンズの歪曲特性があらかじめ分かっていれば、どの画素がどっちの方向にどのくらい移動するということが分かる。そのため、その値を使って補正できる。レンズの歪曲特性とは、例えば、たる型歪みや糸巻型歪みなどが知られている。あるいは、詳細な測定値にもとづいて、画素毎に補正量(シフト量)を決めるように構成しても良い。そして、位置に応じたシフト量を定義した相関データ(シフト量データ)を作成しておき、記憶装置53に格納しておく。
【0115】
シフト量演算部61は、記憶装置53に格納された相関データを参照して、記憶装置50に記憶された画像の位置毎の部分画像に対して、サブ画素単位のシフト量を演算し、位置毎にシフト量を決定する。
【0116】
サブ画素補間処理部60は、画像の位置毎の部分画像に対して、画素毎に対象画素の階調値と対象画素の周辺画素の階調値とを用いてシフト量に応じた補間処理を行う。実施の形態3では、上述した各実施の形態と同様、補間処理は、線形和の各項の係数の和が1となり、各項の係数の2乗和がシフト量xに依存しない定数Rとなるように設定された各項の重み付け係数a(x)、b(x)、c(x)、d(x)を用いて、式(1)に示すように、対象画素の補間値f(x)として、対象画素の階調値f(0)と周辺画素の階調値f(-1),f(1),f(2)との線形和を演算する。実際の各項の重み付け係数a(x)、b(x)、c(x)、d(x)の値は、位置毎に、決定されたシフト量に対応する各係数を記憶装置51のフィルタテーブルから求める点で実施の形態1と同様である。これにより、図16(b)に示すように、歪を補正できる。補間処理された画像(補間画像)は、記憶装置54に出力され、格納される。
【0117】
実施の形態3によれば、位置合わせだけではなく、個別の歪みを持った画像自体の補正が可能となる。
【0118】
以上の説明において、一連の「~回路」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置、磁気テープ装置、FD、或いはROM(リードオンリメモリ)等の記録媒体に記録されればよい。例えば、位置回路107、比較回路108、及び参照画像作成回路112等は、上述した少なくとも1つの処理回路で構成されても良い。
【0119】
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。実施の形態1,2では、参照画像をシフトする場合を示したが、これに限るものではない。被検査画像をシフトする場合であっても適用できる。また、上述したサブ画素単位のずらしについて、ずらし量が1画素以上の場合については、例えば、3+5/16画素分シフトする場合は、3画素分は画素単位でシフトさせ、5/16画素分は上述した方法によりサブ画素単位でシフトさせればよい。
【0120】
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
【0121】
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのパターン検査装置及びパターン検査方法は、本発明の範囲に包含される。
【符号の説明】
【0122】
10 1次電子ビーム
20 マルチビーム
22 穴
29 サブ照射領域
30 フレーム領域
31 フレーム画像
32 ストライプ領域
33 矩形領域
34 照射領域
35 小領域
50,51,52,53,74 記憶装置
54,56,70 スムージング処理部
60 サブ画素補間処理部
61 シフト量演算部
62 SSD値算出部
63 サブ画素シフト処理部
64 最適化処理部
72 比較処理部
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
112 参照画像作成回路
114 ステージ制御回路
117 モニタ
118 メモリ
119 プリンタ
120 バス
122 レーザ測長システム
123 チップパターンメモリ
124 レンズ制御回路
126 ブランキング制御回路
128 偏向制御回路
130 フィルタテーブル作成回路
142 ステージ駆動機構
150 画像取得機構
160 制御系回路
200 電子ビーム
201 電子銃
202 照明レンズ
203 成形アパーチャアレイ基板
205 縮小レンズ
207 対物レンズ
208 主偏向器
209 副偏向器
212 一括ブランキング偏向器
213 制限アパーチャ基板
214 ビームセパレーター
216 ミラー
218 偏向器
222 マルチ検出器
224,226 投影レンズ
300 2次電子
330 検査領域
332 チップ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16