(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022079586
(43)【公開日】2022-05-26
(54)【発明の名称】多重反射セル、ガス分析装置、及び多重反射セルの構成方法
(51)【国際特許分類】
G01N 21/03 20060101AFI20220519BHJP
G01N 21/61 20060101ALI20220519BHJP
G01N 21/39 20060101ALI20220519BHJP
【FI】
G01N21/03 B
G01N21/61
G01N21/39
【審査請求】有
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022054044
(22)【出願日】2022-03-29
(62)【分割の表示】P 2018182976の分割
【原出願日】2018-09-27
(31)【優先権主張番号】P 2017193889
(32)【優先日】2017-10-03
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000155023
【氏名又は名称】株式会社堀場製作所
(74)【代理人】
【識別番号】100121441
【弁理士】
【氏名又は名称】西村 竜平
(74)【代理人】
【識別番号】100154704
【弁理士】
【氏名又は名称】齊藤 真大
(72)【発明者】
【氏名】渋谷 享司
(72)【発明者】
【氏名】中根 正博
(57)【要約】
【課題】試料ガスが導入される内部空間Sの容積を小さくすることのできる多重反射セル20を提供する。
【解決手段】内部空間Sに試料ガスが導入されるセル本体1と、内部空間Sに対向して設けられた一対のミラー2とを具備し、セル本体1の入射窓W1から入射した光が一対のミラー2の間で多重反射してセル本体1の射出窓W1から射出する多重反射セル20であって、前記各ミラー2が、光の多重反射により各ミラー2の反射面21に形成される光スポットPが所定幅の細長領域Zに点在する形状であり、各ミラー2が、細長領域Zの長手方向に沿った細長形状をなすようにした。
【選択図】
図5
【特許請求の範囲】
【請求項1】
内部空間に試料ガスが導入されるセル本体と、前記内部空間に対向して設けられた一対のミラーとを具備し、前記セル本体の入射窓から入射した光が前記一対のミラーの間で多重反射して前記セル本体の射出窓から射出するヘリオットセルである多重反射セルであって、
前記一対のミラーが、球面ミラーであり、前記光の多重反射により前記各ミラーの反射面に形成される光スポットが所定幅の細長領域に点在するように構成されており、
前記各ミラーが、前記細長領域の長手方向に沿った細長形状をなし、前記セル本体の扁平形状の内部空間に設けられており、
前記各ミラーの細長形状の厚みの薄い方向が、前記セル本体の扁平形状の内部空間の厚みの薄い方向に沿っていることを特徴とする多重反射セル。
【請求項2】
前記細長領域の長手方向に沿った前記各ミラーの長さが、前記細長領域の長手方向と直交する幅方向に沿った前記各ミラーの長さの2倍以上である請求項1記載の多重反射セル。
【請求項3】
前記長手方向に沿った前記各ミラーの長さが、前記幅方向に沿った前記各ミラーの長さの3倍以上である請求項2記載の多重反射セル。
【請求項4】
前記光スポットが前記細長領域に直線上、放物線上、又は楕円上に点在する請求項1乃至3のうち何れか一項に記載の多重反射セル。
【請求項5】
前記ミラーの長手方向に沿った前記セル本体の長さが、前記ミラーの幅方向に沿った前記セル本体の長さよりも長い請求項1乃至4のうち何れか一項に記載の多重反射セル。
【請求項6】
前記セル本体が、当該セル本体を構成する少なくとも2つのセル要素を有し、
前記2つのセル要素の一方に前記一対のミラーの一方が固定されるとともに、前記2つのセル要素の他方に前記一対のミラーの他方が固定されており、
前記2つのセル要素の間に、前記一方のセル要素に対して前記他方のセル要素をスライドさせるスライド機構が設けられている請求項1乃至5のうち何れか一項に記載の多重反射セル。
【請求項7】
前記各ミラーが、所定の基準平面に対して当該基準平面と直交する方向に位置決めされており、
前記スライド機構が、前記一方のセル要素に対して前記他方のセル要素を前記基準平面と平行な面内方向に沿ってスライドさせる請求項6記載の多重反射セル。
【請求項8】
前記スライド機構が、前記一方のセル要素に形成された第1スライド面と、前記他方のセル要素に形成されるとともに前記第1スライド面に面接触する第2スライド面とを有している請求項6又は7記載の多重反射セル。
【請求項9】
前記スライド機構が、前記他方のセル要素に接触するとともに、当該他方のセル要素のスライド方向を規制するガイド面を有している請求項6乃至8のうち何れか一項に記載の多重反射セル。
【請求項10】
請求項1乃至9のうち何れか一項に記載された多重反射セルと、
前記入射窓に光を射出する光源と、
前記射出窓から射出された光を検出する光検出器と、
前記光検出器により検出された光強度信号に基づいて前記試料ガスを分析する情報処理装置とを具備するガス分析装置。
【請求項11】
試料ガスが導入されるセル本体の内部空間に対向して一対のミラーを設け、前記セル本体とともにヘリオットセルである多重反射セルを構成する方法であって、
前記一対のミラーが、球面ミラーであり、
前記一対のミラーの原型となる一対の原型ミラーを細長形状に切断し、光の多重反射により前記一対のミラーの反射面に形成される光スポットが所定幅の細長領域に点在するように、前記一対の原型ミラーを厚みの薄い形状に変更し、
前記一対のミラーを前記セル本体の扁平形状の内部空間に設け、
前記各ミラーの細長形状の厚みの薄い方向を、前記セル本体の扁平形状の内部空間の厚みの薄い方向に沿わせることを特徴とする多重反射セルの構成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多重反射セル、多重反射セルを備えるガス分析装置、及び多重反射セルの構成方法に関するものである。
【背景技術】
【0002】
光の吸収を利用したガス分析装置として、特許文献1に示すように、試料ガスを導入するセル本体内に一対のミラーを対向配置して、これらのミラーの間で光を多重反射させる所謂多重反射セルと呼ばれるものを用いたものがある。
【0003】
このように多重反射セルを用いることで、光路長が長くなるので、光と試料ガスとが相互作用する距離を長くすることができ、感度を向上させることができる。
【0004】
しかしながら、特許文献1に示す多重反射セルは、ヘリオットセルと称されるタイプのもので、一対のミラーとして反射面が平面視円形上の球面ミラーを用いており、セル本体の高さや幅は球面ミラー形状よりも大きくする必要があり、セル本体の内部空間の容積を小さくするには限度がある。
【0005】
これにより、内部空間に導入される試料ガスの置換速度を向上させるにも限度があり、例えば内燃機関の挙動に応じて各成分の排出量等が変動する排ガスなどを測定する場合に、分析に求められる応答速度を得られないという問題がある。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
そこで本発明は、上述した問題を解決すべくなされたものであり、試料ガスが導入される内部空間の容積を小さくすることのできる多重反射セルを提供することをその主たる課題とするものである。
【課題を解決するための手段】
【0008】
すなわち本発明に係る多重反射セルは、内部空間に試料ガスが導入されるセル本体と、前記内部空間に対向して設けられた一対のミラーとを具備し、前記セル本体の入射窓から入射した光が前記一対のミラーの間で多重反射して前記セル本体の射出窓から射出する多重反射セルであって、前記一対のミラーが、前記光の多重反射により前記各ミラーの反射面に形成される光スポットが所定幅の細長領域に点在するように構成されており、前記各ミラーが、前記細長領域の長手方向に沿った細長形状をなすことを特徴とするものである。
【0009】
このように構成された多重反射セルであれば、一対のミラーが、反射面における光スポットが所定幅の細長領域に点在するように構成されており、且つ、細長領域の長手方向に沿った細長形状をなすので、これら一対のミラーを従来よりも飛躍的に小型なものにすることができる。
これにより、セル本体の内部空間として必要な容積を非常に小さくすることができ、その結果、内部空間に導入される試料ガスの置換速度を向上させることが可能となり、分析の応答速度を大幅に向上させることができる。
【0010】
多重反射により光路長を長くしつつ、ミラーの小型化を図るためには、前記細長領域の長手方向に沿った前記各ミラーの長さが、前記長手方向と直交する幅方向に沿った前記各ミラーの長さの2倍以上であることが好ましく、より好ましくは3倍以上である。
【0011】
ところで、多重反射セルとしては、背景技術で述べたヘリオットセルとは別のタイプで非点収差(Astigmatic)ヘリオットセルと称されるタイプのものがある。このタイプは、一対のミラーとして、球面ミラーではなく、互いに直交する2つの軸の曲率半径が異なるトロイダルミラーを用いており、反射面のある領域に光スポットを集中させることで、ミラーの利用効率を向上させ、結果としてミラーの小型化を図ったものである。
しかしながら、トロイダルミラーを精度良く製作するためには、高度な加工技術が必要であり、球面ミラーに比べて製造コストが大幅に増加する。
【0012】
そこで、製造コストの大幅な増加を招くことなく、内部空間の容積の小型化を図るためには、前記各ミラーが、球面ミラーを用いて、前記細長領域に前記光スポットが点在するように構成されていることが好ましい。
【0013】
光スポットを所定幅の細長領域に点在させるための実施態様としては、前記光スポットが前記細長領域に直線上、放物線上、又は楕円上に点在する態様が挙げられる。
【0014】
前記ミラーの長手方向に沿った前記セル本体の長さが、前記ミラーの幅方向に沿った前記セル本体の長さよりも長ければ、セル本体が扁平形状なものとなり、従来のセル本体よりも内部空間の容積を小さくすることができる。
【0015】
ところで、多重反射セルを用いる場合、セル本体の入射窓から入射した光が一対のミラー間で多重反射してセル本体の射出窓から射出するようにミラーの位置を調整する必要がある。その調整方法としては、複数の調整ネジを用いてミラーの複数個所を押したり引いたりすることで、ミラーのあおり方向や首振り方向を変えながらミラーの向きを調整する方法が挙げられる。
しかしながら、上述した調整方法では、複数の調整ネジを押したり引いたりする作業を繰り返しながらミラーの向きを調整するので、調整に手間がかかるうえ、複数の調整ネジを設けることで部品点数が多くなり、それに準じてコストも増加する。
【0016】
そこで、前記セル本体が、当該セル本体を構成する少なくとも2つのセル要素を有し、記2つのセル要素の一方に前記一対のミラーの一方が固定されるとともに、前記2つのセル要素の他方に前記一対のミラーの他方が固定されており、前記2つのセル要素の間に、前記一方のセル要素に対して前記他方のセル要素をスライドさせるスライド機構が設けられていることが好ましい。
【0017】
このように構成された多重反射セルであれば、セル本体を構成する少なくとも2つのセル要素それぞれにミラーが固定されており、これらのセル要素の間に一方のセル要素に対して他方のセル要素をスライドさせるスライド機構が設けられているので、このスライド機構によって他方のセル要素をスライドさせればミラーを位置調整することができる。
これにより、例えばミラーのあおり方向や首振り方向を変えるための調整ネジ等を用いることなく、少ない部品点数でミラーの位置を簡単に調整することが可能となる。
【0018】
ミラーの位置決めをより簡単にするためには、前記各ミラーが、所定の基準平面に対して当該基準平面と直交する方向に位置決めされており、前記スライド機構が、前記一方のセル要素に対して前記他方のセル要素を前記基準平面と平行な面内方向に沿ってスライドさせることが好ましい。
このような構成であれば、基準平面に対して直交する方向にはミラーの位置調整を不要にすることができ、基準平面と平行な面内方向に沿ってセル要素をスライドさせることでミラーの位置調整を完了させることができる。
【0019】
2つのセル要素の間に別部材を介在させずに、少ない部品点数でスライド機構を構成するためには、前記スライド機構が、前記一方のセル要素に形成された第1スライド面と、前記他方のセル要素に形成されるとともに前記第1スライド面に面接触する第2スライド面とを有し、前記面内方向における前記一対のミラーの位置を変更するものであることが好ましい。
【0020】
前記スライド機構が、前記他方のセル要素に接触するとともに、当該他方のセル要素のスライド方向を規制するガイド面を有していることが好ましい。
このような構成であれば、セル要素をガイド面によって規制されたスライド方向にスライドさせることでミラーの位置調整を完了させることができ、ミラーの位置決めをより簡単にすることができる。
【0021】
また、本発明に係るガス分析装置は、上述した多重反射セルと、前記入射窓に光を射出する光源と、前記射出窓から射出された光を検出する光検出器と、前記光検出器により検出された光強度信号に基づいて前記試料ガスを分析する情報処理装置とを具備することを特徴とするものである。
このようなガス分析装置であれば、上述した多重反射セルと同様の作用効果を奏し得る。
【0022】
さらに、本発明に係る多重反射セル用ミラーの製造方法は、試料ガスが導入されるセル本体の内部空間に対向して設けられて、前記セル本体とともに多重反射セルを構成する一対のミラーの製造方法であって、前記一対のミラーの原型となる一対の原型ミラーを細長形状に切断し、光の多重反射により前記一対のミラーの反射面に形成される光スポットが所定幅の細長領域に点在するように、前記一対の原型ミラーの形状を変更することを特徴とする方法である。
【0023】
このような方法で製造された細長形状のミラーであれば、従来よりも飛躍的に小型なものにすることができる。これにより、セル本体の内部空間として必要な容積を非常に小さくすることができ、その結果、内部空間に導入される試料ガスの置換速度を向上させることが可能となり、分析の応答速度を大幅に向上させることができる。
【発明の効果】
【0024】
このように構成した本発明によれば、試料ガスが導入される内部空間の容積を小さくすることができ、試料ガスの置換速度を向上させることが可能となり、分析の応答速度を向上させることができる。
【図面の簡単な説明】
【0025】
【
図1】本発明の一実施形態に係るガス分析装置の全体模式図。
【
図2】同実施形態の多重反射セルの構成を示す断面図。
【
図4】同実施形態の一対のミラーの構成を示す斜視図。
【
図5】同実施形態の多重反射セルの構成を示す断面図。
【
図6】同実施形態の多重反射セルの構成を示す平面図。
【
図7】変形実施形態の多重反射セルの構成を示す断面図。
【
図8】変形実施形態の多重反射セルの構成を示す断面図。
【
図9】変形実施形態のミラーの反射面に形成される光スポットを示す図。
【
図10】変形実施形態における情報処理装置の機能ブロック図。
【
図11】変形実施形態におけるレーザ発振波長の変調方法を示す模式図。
【
図12】変形実施形態における変調信号、光検出器の出力信号、測定結果の一例を示す図。
【
図13】変形実施形態の分析装置の要部を示す模式図である。
【発明を実施するための形態】
【0026】
以下に本発明に係るガス分析装置の一実施形態について図面を参照して説明する。
【0027】
本実施形態のガス分析装置100は、例えば内燃機関から排出される排ガス等の試料ガスを例えばNDIR等の赤外分光法を用いて分析するものであり、具体的には
図1に示すように、光源たる半導体レーザ10と、試料ガスが導入されるとともに半導体レーザ10からの光を多重反射させる多重反射セル20と、多重反射セル20から射出した光を検出する光検出器30と、光検出器30により検出された光強度信号に基づいて試料ガスに含まれる成分を分析する情報処理装置40とを備えている。
本発明に係るガス分析装置100は、多重反射セル20が特徴的であるので、まずはそれ以外の各部について説明する。
【0028】
半導体レーザ10は、ここでは半導体レーザ10の一種である量子カスケードレーザ(QCL: Quantum Cascade Laser)であり、中赤外(4μm~10μm)のレーザ光を発振する。この半導体レーザ10は、与えられた電流(又は電圧)によって、発振波長を変調(変える)ことが可能なものである。なお、発振波長が可変でさえあれば、他のタイプのレーザを用いてよく、発振波長を変化させるために、温度を変化させるなどしても構わない。
【0029】
光検出器30は、ここでは、比較的安価なサーモパイルなどの熱型のものを用いているが、その他のタイプのもの、例えば、応答性がよいHgCdTe、InGaAs、InAsSb、PbSeなどの量子型光電素子を用いても構わない。
【0030】
情報処理装置40は、バッファ、増幅器などからなるアナログ電気回路と、CPU、メモリなどからなるデジタル電気回路と、それらアナログ/デジタル電気回路間を仲立ちするADコンバータ、DAコンバータなどとを具備したものであり、前記メモリの所定領域に格納した所定のプログラムに従ってCPUやその周辺機器が協働することによって、前記光検出器30からの出力信号を受信し、その値を演算処理して測定対象成分の濃度を算出する機能を発揮する。
【0031】
次に、本発明に係るガス分析装置100の特徴である多重反射セル200について詳述する。
【0032】
多重反射セル20は、
図2に示すように、内部空間Sに試料ガスが導入されるセル本体1と、セル本体1内に対向して設けられた一対のミラー2とを具備し、セル本体1の入射窓W1から入射した光が一対のミラー2の間で多重反射してセル本体1の射出窓W2から射出するように構成されている。なお、入射窓W1や射出窓W2は、試料ガスに含まれる測定対象成分(ここでは、例えばCOやCO
2など)の吸収波長帯域において光の吸収がほとんどない石英、フッ化カルシウム、フッ化バリウムなどの透明材質で形成されている。
【0033】
本実施形態の多重反射セル20は、ヘリオットセルと称されるタイプのものであり、一対のミラー2として球面ミラーが用いられている。これらのミラー2は、互いの光軸LA、LBが重なり合うように配置され、一方のミラー2に形成された光通過穴hを通過した光が、各ミラー2の反射面21の間で所定のパス数及び/又は所定の光路長となるように多重反射して、再び光通過穴hを通過するように設計されている。なお、ここでの光通過穴hは、反射面21からその裏面に向かって徐々に広がる形状としてあるが、光通過穴hの形状は適宜変更して構わない。以下、一対のミラー2を区別する場合は、光通過穴hが形成されたミラー2を第1ミラー2Aと言い、第1ミラー2Aに対向配置されたミラー2を第2ミラー2Bと言う。なお、光通過穴hの配置や数は適宜変更して良い。例えば、光通過穴hは、第1ミラー2Aのみならず第2ミラー2Bにも形成されていても良いし、第2ミラーBにのみ形成されていても良い。さらには、例えば第1ミラー2Aや第2ミラー2Bの周囲から各ミラー2A、2B間に光を導入・導出するのであれば、第1ミラー2A及び第2ミラー2Bのいずれにも光通過穴hが形成されていなくても良い。
【0034】
然して、本実施形態のミラー2は、
図3に示すように、光の多重反射により各ミラー2の反射面21に形成される光スポットPが所定幅の細長領域Zに点在するように構成されている。なお
図3では、一対のミラー2を代表して、第2ミラー2Bを図示しているが、光通過穴hが形成されている点を除けば、第1ミラー2Aも第2ミラー2Bと同じ構成である。
【0035】
より詳細に説明すると、細長領域Zは、
図3に示すように、ミラー2の反射面21の平面視において、互いに平行な一対の仮想線Xに挟まれた例えば幅数mm程度の領域であり、ここでは帯状の領域である。これらの仮想線Xは、反射面21において光スポットPを点在させようとする領域を規定する線である。本実施形態における一対の仮想線Xは、ミラー2の中心Oを通過する中心線Mを挟むとともに、この中心線Mから等距離に設けられた互いに平行な直線である。
図3における仮想線Xは、説明の便宜上、ミラー2の外縁よりも内側に図示しているが、実際にはミラー2の外縁と仮想線Xとは一致しており、言い換えれば反射面21全体が細長領域Zとして設定されている。ただし、仮想線Xをミラー2の外縁よりも内側に設定しても良く、言い換えれば反射面21の一部に細長領域Zを設定しても良い。なお、一対の仮想線Xは、必ずしも互いに平行である必要はないし、直線に限らず例えば曲線や波線としても良い。
【0036】
一対のミラー2は、上述した細長領域Zに光スポットPが例えば直線上、放物線上、楕円(楕円の一部も含む)上といった線上に点在するように設計されている。具体的に一対のミラー2は、ミラー直径、ミラー間距離、光通過穴hの穴径、反射面21の曲率半径などの種々のパラメータが適宜設定されており、ミラー2の中心Oを通る中心線M上に光スポットPが点在するように構成されている。
なお、光スポットPは、必ずしも1本の線上に点在する必要はなく、例えば複数の直線上や複数の放物線上や複数の楕円上に点在しても良い。
【0037】
次に、ミラー2の具体的な製造方法について一例を挙げると、一対のミラー2の原型となる原型ミラー(例えば平板ミラー)を細長形状に切断し、光の多重反射により一対のミラー2の反射面21に形成される光スポットPが上述した細長領域Zに点在するように、各原型ミラーの反射面の曲率を調整する方法が挙げられる。
【0038】
このような各ミラー2は、ミラー2の長手方向が細長領域Zの長手方向に平行な細長形状であり、具体的には、細長領域Zの長手方向に沿ったミラー2の長さLaが、細長領域Zの長手方向と直交する幅方向に沿ったミラー2の長さLbの少なくとも2倍以上であり、好ましくは3倍以上であり、本実施形態では約6倍である。
【0039】
各ミラー2には、
図4に示すように、上述した幅方向に各ミラー2を貫通して形成した複数の貫通孔2hが設けられており、各ミラー2はこれらの貫通孔2hを介してセル本体1にネジ留めされる。なお、貫通孔2hは、反射面21の裏面に形成されていても良い。
【0040】
続いて、セル本体1について説明する。
【0041】
セル本体1は、
図2、
図5、
図6に示すように、上述した一対のミラー2を内部空間Sに収容する例えば略直方体形状の筐体であり、長手方向に沿って一対のミラー2が対向して配置されている。本実施形態では、一対のミラー2を細長形状の厚みの薄いものにしているので、セル本体1として厚みの薄い扁平形状のものを用いている。これにより、セル本体1の内部形状も扁平となるので、内部空間Sを小容量にすることができ、具体的にここでの内部空間Sの容積は例えば数十ml程度である。なお、ここでいう扁平形状とは、平面視における形状は直方体形状や楕円形状など適宜変更して構わない。
以下では、説明の便宜上、
図2や
図6に示すように、セル本体1の長手方向を前後方向、セル本体2の長手方向に直交する方向を左右方向と言い、
図5に示すように、前後方向及び左右方向に直交する方向、つまりセル本体の厚み方向を上下方向と言う。
【0042】
セル本体1には、
図2や
図5に示すように、内部空間Sに連通するとともに外部から試料ガスを導入するための導入路L1と、内部空間Sに連通するとともに試料ガスを外部に導出するための導出路L2が形成されている。
【0043】
セル本体1の一の側壁(以下、前壁1aという)には、
図5に示すように、上述した入射窓W1及び射出窓W2が設けられており、本実施形態では、前壁1aに設けられた1枚の透光板3が入射窓W1及び射出窓W2として兼用されている。このように1枚の透光板3を入射窓W1及び射出窓W2として兼用できるのは、上述したように一方のミラー2に形成された光通過穴hが光の入口及び出口として兼用されているからであり、かかる構成により部品点数の削減及び製造コストの削減を図れる。
なお、入射窓W1及び射出窓W2は、互いに異なる側壁に設けられていても良いし、互いに異なる透光板3によって形成されていても良い。
【0044】
本実施形態の透光板3は、前壁1aに形成された凹部にパッキン等の弾性部材を介して嵌め込まれており、その外側にはさらにパッキン等の弾性部材を介して押さえ部材4が設けられている。押さえ部材4は、中心部に光が通過する光通過孔4aが形成された平板状のものであり、前壁1aにネジ留めされることにより、透光板3を押さえて固定している。
なお、透光板3の内部での多重反射による光の干渉によるノイズ(フリンジノイズ)を低減させるべく、透光板3の内部空間S側の面は、光源10からの光の進行方向に対して傾斜させている。
【0045】
本実施形態のセル本体1は、
図5及び
図6に示すように、2つのセル要素(以下、第1セル要素11、第2セル要素12という)に分割されており、第1セル要素11に一対のミラー2の一方(ここでは、第1ミラー2A)が固定されるとともに、第2セル要素12に一対のミラー2の他方(ここでは、第2ミラー2B)が固定されている。
【0046】
より具体的に説明すると、第1セル要素11及び第2セル要素12は、これらが組み合わさることでセル本体1を構成するものであり、言い換えれば、第1セル要素11及び第2セル要素12は、セル本体1を2つに分割した一方と他方とであって、例えば直方体を2つに分割した形状をなす。
【0047】
第1セル要素11は、少なくともセル本体1の底壁1bの一部を構成するものであり、この底壁1bを構成する部分に第1ミラー2Aがシール部材SMを介してネジ留めされている。本実施形態の第1セル要素11は、セル本体1の底壁1b及び側壁全周(すなわち、前壁1a、左壁1c、右壁1d、及び後壁1e)を構成している。
【0048】
第2セル要素12は、少なくともセル本体1の上壁1fの一部を構成するものであり、この上壁1fに第2ミラー2Bがシール部材SMを介してネジ留めされている。本実施形態の第2セル要素12は、セル本体1の上壁1fのほぼ全体を構成している。
【0049】
このように、第1セル要素11に第1ミラー2Aを固定するとともに、第2セル要素12に第2ミラー2Bを固定しているので、第1セル要素11及び第2セル要素12を組み合わせることにより、第1ミラー2A及び第2ミラー2Bは上下方向に位置決めされる。つまり、第1セル要素11及び第2セル要素12を組み合わせることにより、各ミラー2A、2Bは、これらの光軸LA、LBと平行な基準平面Bに対して位置決めされる。
例えば、第1セル要素11において第1ミラー2Aが取り付けられている面、すなわち底壁1bの内向き面を基準平面Bとした場合、第1ミラー2A及び第2ミラー2Bは、基準平面Bと直交する方向に位置決めされる。なお、基準平面Bは、光軸LA、LBと平行な平面であれば良く、底壁1bの外向き面としても良いし、第2セル要素12において第2ミラー2Bが取り付けられている面、すなわち上壁1fの内向き面としても良いし、セル本体1が載置される面としても良い。また、後述する第1スライド面51や第2スライド面52が各ミラー2A、2Bと平行な場合は、これらの第1スライド面51や第2スライド面52を基準平面Bとしても良い。
【0050】
第1ミラー2A及び第2ミラー2Bが上下方向に沿って位置決めされた状態において、第1ミラー2A及び第2ミラー2Bそれぞれの光軸LA、LBは、基準平面Bから上下方向に沿って所定の高さとなり、具体的にはそれぞれの光軸LA、LBが基準平面Bから同じ高さとなる。
【0051】
然して、本実施形態のセル本体1は、
図5及び
図6に示すように、第1セル要素11及び第2セル要素12の間に設けられて、一方のセル要素11、12に対して他方のセル要素12、11をスライドさせるスライド機構5を備えている。
【0052】
このスライド機構5は、基準平面Bと平行な面内方向に沿って第1セル要素11又は第2セル要素12をスライド移動させるものであり、本実施形態では、
図6に示すように、第2セル要素12を前後方向及び左右方向にスライド移動させるものである。
【0053】
具体的にスライド機構5は、第2セル要素12に形成された第1スライド面51と、この第1スライド面51が面接触する第2スライド面52とを有しており、ここでは第2セル要素12をスライド方向に沿って押し込む押し込み部材53をさらに有している。
【0054】
本実施形態では、第2セル要素12が第1セル要素11と面接触しながらスライド移動するように構成されており、第1スライド面51は、第2セル要素12における第1セル要素11に対向する面であり、第2スライド面52は、第1セル要素11における第2セル要素12に対向する面である。これらの第1スライド面51及び第2スライド面52は、いずれも平面である。
【0055】
より詳細に説明すると、セル本体1の側壁上面、すなわち前壁1a、左壁1c、右壁1d、及び後壁1eそれぞれの上面には、上壁1fよりも若干大きい段部が形成されており、この段部に上壁1fが載置されている。これにより、
図6に示すように、第2セル要素12たる上壁1fは、前壁1a、左壁1c、右壁1d、及び後壁1eとの間に隙間Gを介して配置されることになり、この隙間Gによって第2セル要素12が前後方向及び左右方向にスライド可能となる。なお
図6では、第2セル要素12たる上壁1fを左壁1c側に押し込んだ状態を示しており、上壁1fと左壁1cとの間における隙間Gが無い状態である。
【0056】
押し込み部材53は、第2セル要素12に対して進退可能に設けられたものであり、具体的には側壁を貫通するとともに、例えばドライバによって押し引き可能なボルト等である。
本実施形態では、側壁の複数箇所に押し込み部材53が設けられている。具体的に押し込み部材53は、前壁1a又は後壁1eの少なくとも一方に設けられるとともに、左壁1c又は右壁1dの少なくとも一方に設けられている。ここでの押し込み部材53は、前壁1a、後壁1e、及び右壁1dの3つの側壁には設けられているが、左壁1cには設けられていない。
【0057】
また、前壁1a、左壁1c、右壁1d、又は後壁1eの少なくとも1つには、複数箇所に押し込み部材53が設けられている。ここでの押し込み部材53は、前壁1aや右壁1dには2箇所に設けられており、後壁1eには1箇所に設けられている。このように、同じ側壁に複数の押し込み部材53を設けることで、本実施形態のスライド機構5は、第2セル要素12を前後方向及び左右方向にスライド移動させることのみならず、上下方向に沿った軸周りに回転させながらスライドさせることができる。なお、押し込み部材53の位置や個数は適宜変更して構わない。
【0058】
さらに本実施形態のスライド機構5は、第2セル要素12に接触するとともに、当該第2セル要素12のスライド方向を規制するガイド面54を有している。このガイド面54は、第2セル要素12のスライド方向に沿って延びる面であり、ここでは前後方向に延びて左右方向のスライド移動を規制している。具体的にガイド面54は、第2セル要素12が接触した状態で押し込み部材53による第2セル要素12の押し込みを規制する面であり、セル本体1の側壁(ここでは、左壁1c)において第2セル要素12の側壁に対向する部分である。このように、本実施形態のガイド面54は、第1セル要素11に設けられているが、第1セル要素11と第2セル要素12との間に別部材を介在させて、その別部材にガイド面54を設けても良い。
【0059】
このように構成された多重反射セル20であれば、一対のミラー2が、反射面21における光スポットPが所定幅の細長領域Zに点在するように構成されており、且つ、細長領域Zの長手方向に沿った細長形状をなすので、これら一対のミラー2を従来よりも飛躍的に小型なものにすることができる。
これにより、セル本体1の内部空間Sとして必要な容積を非常に小さくすることができ、その結果、内部空間Sに導入される試料ガスの置換速度を向上させることが可能となり、分析の応答速度を大幅に向上させることができる。
【0060】
具体的には、細長領域Zの長手方向に沿ったミラー2の長さLaが、細長領域Zの長手方向と直交する幅方向に沿ったミラー2の長さLbの2倍以上であり、本実施形態では約6倍である。そして、ミラー2の長手方向に沿ったセル本体1の長さが、ミラー2の幅方向に沿ったセル本体1の長さよりも長く、セル本体1の形状を扁平形状にしている。
これにより、多重反射により光路長を長くしつつ、ミラー2の小型化を図ることができ、従来のセル本体1よりも内部空間Sの容積を非常に小さくすることが可能となる。
【0061】
多重反射セル20におけるミラー2の小型化を図るためには、反射面21をトロイダル面とする態様が挙げられるが、トロイダルミラーを精度良く製作するためには、高度な加工技術が必要であり、製造コストが高い。
これに対して、本実施形態の多重反射セル20は、一対のミラー2として球面ミラーを用いたヘリオットセルであるので、内部空間Sの容積の小型化を図りつつ、製造コストを低減させることができる。
【0062】
また、トロイダルミラーは曲率半径が互いに異なる2つの軸を有していることから、一対のミラーの間で光を多重反射させるためには、多重反射セルを組み立てるうえで各ミラーの位置や向きなどをシビアに決める必要がある。
これに対して、本実施形態において一対のミラー2として用いている球面ミラーは、曲率半径が1つに定まっているので、トロイダルミラーを用いた場合に比べて、多重反射セル20の組み立て性が良い。
【0063】
さらに、第1セル要素11に第1ミラー2Aが固定されるとともに、第2セル要素12に第2ミラー2Bが固定されており、第1セル要素11及び第2セル要素12の間にスライド機構5が設けられているので、このスライド機構5によって第1セル要素11又は第2セル要素12をスライドさせれば各ミラー2の位置調整を簡単に行うことができる。
【0064】
加えて、一対のミラー2が、基準平面Bに対して当該基準平面Bと直交する方向に位置決めされており、スライド機構5が、一方のセル要素に対して他方のセル要素を基準平面Bと平行な面内方向に沿ってスライドさせるので、基準平面Bに対して直交する方向にはミラー2の位置調整を不要にすることができる。つまり、基準平面Bと平行な面内方向に沿って第1セル要素11又は第2セル要素12をスライドさせることで各ミラー2の位置調整を完了させることができ、ミラー2の位置決めがより簡単になる。
【0065】
さらに加えて、スライド機構5が、第1セル要素11に形成された第2スライド面52と、第2セル要素12に形成されるとともに第1スライド面51とを有しているので、2つのセル要素の間に別部材を介在させずに、少ない部品点数でスライド機構5を構成することができる。
【0066】
そのうえ、スライド機構5が、第2セル要素12に接触するとともに、第2セル要素12のスライド方向を規制するガイド面54を有しているので、第2セル要素12をガイド面54によって規制されたスライド方向にスライドさせることで一対のミラー2の位置調整を完了させることができ、一対のミラー2の位置決めを簡単にすることができる。
【0067】
また、第1セル要素11及び第2セル要素12が、略直方体形状をなすセル本体1を2つに分割したものであるので、多重反射セル20を構成する部品点数を極力少なくすることができる。
【0068】
さらに、第2セル要素12が、セル本体1の上壁1fの一部を構成しているので、第2セル要素12を第1セル要素11から取り外せば、セル本体1の内部を簡単に清掃などすることができ、セル本体1のメンテナンス性を向上させることができる。特に本実施形態のように排ガスを分析する場合、セル本体1の内部の汚れを簡単に清掃することができるようになる。しかも、清掃等のメンテナンスを終えた後は、第1セル要素11と第2セル要素12とを組み合わせることで、一対のミラー2の光軸を合わせることができるので、メンテナンス性及び組み立て性を一挙に向上させることができる。
【0069】
なお、本発明は前記各実施形態に限られるものではない。
【0070】
例えば、前記実施形態では、第2セル要素12がセル本体1の上壁1fを構成していたが、第1セル要素11がセル本体1の少なくとも一部を構成するとともに第1ミラー2Aが固定されており、第2セル要素12がセル本体1の少なくとも一部を構成するとともに第2ミラー2Bが固定されていれば、第1セル要素11及び第2セル要素12の形状は種々変更して構わない。
具体的には、
図7に示すように、第2セル要素12がセル本体1の上壁1fの一部を構成していても良いし、
図8に示すように、第1セル要素11が少なくとも底壁1b及び後壁1eを構成し、第2セル要素12が少なくとも上壁1f及び前壁1aを構成しても良い。
【0071】
また、前記実施形態のスライド機構5は、第2セル要素を前後方向及び左右方向にスライドイ動作させるものであったが、前後方向又は左右方向の何れか一方のみにスライド移動させるものであっても良いし、上下方向(セル本体1の厚み方向)にスライド移動させるものであっても良い。さらに、第2セル要素に対して、第1セル要素をスライド移動させるものであっても良い。
【0072】
セル本体1は、3つ以上のセル要素に分割されていても良いし、単一のセル要素から構成されていても良いし、セル本体1の形状は前記実施形態に限定されるものではない。さらには、セル本体1としては、スライド機構5を備えたものでなくても良い。
【0073】
一対のミラー2の製造方法は前記実施形態に限らず、例えばまず一対のミラー2の原型となる一対の原型ミラーを製造する。この原型ミラーは、反射面の形状が平面視において円形の球面ミラーである。
各原型ミラーは、これらの間で光が多重反射することにより各原型ミラーの反射面に形成される光スポットが、上述した細長領域に点在するように、ミラー直径、ミラー間距離、光通過穴の穴径、反射面の曲率半径などの種々のパラメータを適宜設定したものである。
そして、各原型ミラーの細長領域以外の部分を切断して取り除くことで、一対のミラーが細長領域に沿った細長形状に製造される。なお、細長領域Zを残すようにすれば、必ずしも各原型ミラーの細長領域以外の全部を取り除く必要はない。
【0074】
また、前記実施形態では、ミラー2の長手方向と細長領域Zの長手方向とが互いに平行である場合について説明したが、例えば
図9(a)に示すように、ミラー2の長手方向に対して細長領域Zの長手方向が傾いていても良い。
さらに、光スポットPは、直線上に点在する必要はなく、例えば
図9(b)のように楕円上に点在しても良い。
【0075】
スライド機構5は、前記実施形態では第1セル要素11と第2セル要素12とが互いに面接触するように構成されていたが、第1セル要素11及び第2セル要素12の間に別部材が介在するとともに、その別部材と第1セル要素11や第2セル要素とが面接触してスライドするように構成されていても良い。なお、別部材は1つに限らず複数設けられていても良い。
【0076】
また、試料ガス(サンプル)は、排ガスのみならず大気などでもよいし、サンプルとしては液体や固体でも構わない。その意味では、測定対象成分もガスのみならず液体や固体でも本発明を適用可能である。また、測定対象を貫通透過した光の吸光度のみならず、反射による吸光度算出にも用いることができる。
【0077】
前記実施形態では、多重反射セル20がヘリオットセルである場合について説明したが、多重反射セル20は、ホワイトセルであっても良い。
【0078】
前記実施形態では一対のミラー2が、球面ミラーであったが、一対のミラー2としてトロイダルミラーを用いても構わない。
【0079】
前記実施形態では、光源が半導体レーザの一種である量子カスケードレーザ(QCL: Quantum Cascade Laser)である場合について説明したが、光源は、量子カスケードレーザ以外の半導体レーザであっても良い。また、光源は、必ずしも半導体レーザである必要もなく、例えばフィラメントを用いたランプであっても良いし、LED光源であっても良い。さらに光源は、中赤外光を射出するものに限らず、近赤外光や遠赤外光を射出するものであっても良いし、紫外光を射出するものであっても良い。
【0080】
前記実施形態では、ガス分析装置100をNDIR法を用いたものとして説明したが、本発明に係るガス分析装置は、例えばFTIR法やNDUV法を用いたものであっても良い。
【0081】
さらに、分析原理としては以下に説明するものであっても良い。
【0082】
まず、分析原理について説明する前に、情報処理装置40の機能について説明する。
情報処理装置40は、
図10に示すように、前記半導体レーザ10の出力を制御する光源制御部41や、前記光検出器30からの出力信号を受信し、その値を演算処理して測定対象成分の濃度を算出する信号処理部42しての機能を発揮する。
【0083】
前記光源制御部41は、電流(又は電圧)制御信号を出力することによって半導体レーザ10の電流源(又は電圧源)を制御するものであり、このことによって、その駆動電流(又は駆動電圧)を所定周波数で変化させ、ひいては、半導体レーザ10から出力されるレーザ光の発振波長を前記所定周波数で変調させる。
【0084】
この実施形態においては、光源制御部41は駆動電流を正弦波状に変化させ、前記発振周波数を正弦波状に変調する(
図12の変調信号参照)。また、前記レーザ光の発振波長は、
図11に示すように、測定対象成分の光吸収スペクトルのピークを中心にして変調されるようにしてある。
【0085】
前記信号処理部42は、第1算出部421、周波数成分抽出部422、第2算出部423等からなる。
第1算出部421は、試料ガスが封入され、その中の測定対象成分による光吸収が生じる状態での前記多重反射セル20を透過したレーザ光(以下、測定対象光ともいう。)の光強度と、光吸収が実質的にゼロ状態での前記多重反射セル20を透過したレーザ光(以下、参照光ともいう。)の光強度との比の対数(以下、強度比対数ともいう。)を算出するものである。
【0086】
より詳細に説明すると、前者、後者いずれの光強度も前記光検出器30により測定され、その測定結果データはメモリの所定領域に格納されるところ、前記第1算出部421は、この測定結果データを参照して前記強度比対数を算出する。
【0087】
しかして、前者の測定(以下、サンプル測定ともいう。)は、当然のことながら、試料ガスごとに都度行われる。後者の測定(以下、参照測定ともいう。)は、前記サンプル測定の前後にいずれかに都度行ってもよいし、適宜のタイミングで、例えば1回だけ行い、その結果をメモリに記憶させて各サンプル測定に共通に用いてもよい。
【0088】
なお、この実施形態においては、光吸収が実質的にゼロとなる状態とするために、前記測定対象成分の光吸収がみられる波長帯域において、光吸収が実質的にゼロとなるゼロガス、例えばN2ガスを多重反射セル20に封入しているが、その他のガスでもよいし、多重反射セル20内を真空にしても構わない。
【0089】
前記周波数成分抽出部422は、前記第1算出部421が算出した強度比対数(以下、吸光度信号ともいう。)を、前記変調周波数のn倍(nは1以上の整数)の周波数を有する参照信号でロックイン検波して、当該強度比対数から参照信号の有する周波数成分を抽出するものである。なお、ロックイン検波は、デジタル演算で行ってもよいし、アナログ回路による演算で行ってもよい。また、周波数成分の抽出は、ロックイン検波のみならず、例えばフーリエ級数展開といった方式を用いても構わない。
【0090】
第2算出部423は、前記周波数成分抽出部422による検波結果に基づいて、前記測定対象成分の濃度を算出するものである。
【0091】
次に、前記各部の詳細説明を兼ねて、このガス分析装置100の動作の一例を説明する。
【0092】
まず、光源制御部41が、前述したように、半導体レーザ10を制御し、前記変調周波数で、かつ測定対象成分の吸収スペクトルのピークを中心に、レーザ光の波長を変調する。
【0093】
次に、オペレータにより又は自動的に、多重反射セル20内にゼロガスが封入されると、これを検知した前記第1算出部421は、参照測定を行う。
具体的には、ゼロガスが多重反射セル20に封入された状態での光検出器30からの出力信号を受信し、その値を測定結果データ格納部に格納する。この参照測定における光検出器30の出力信号の値、すなわち参照光強度を時系列グラフで表すと、
図12(a)のようになる。すなわち、レーザの駆動電流(電圧)の変調による光出力の変化のみが光検出器30の出力信号に表れている。
【0094】
そこで、オペレータにより又は自動的に多重反射セル20内に試料ガスが封入されると、前記第1算出部421は、サンプル測定を行う。具体的には、試料ガスが多重反射セル20に封入された状態での光検出器30からの出力信号を受信し、その値をメモリの所定領域に格納する。このサンプル測定における光検出器30の出力信号の値、すなわち測定対象光強度を時系列グラフで表すと、
図12(b)のようになる。変調の半周期ごとに吸収によるピークが現れることがわかる。
【0095】
次に、第1算出部421は、各測定データを変調周期に同期させ、測定対象光の光強度と、参照光の光強度との強度比対数を算出する。具体的には、以下の式(数1)と均等な演算を行う。
【数1】
ここで、D
m(t)は測定対象光強度、D
z(t)は参照光強度、A(t)は強度比対数(吸光度信号)である。この吸光度信号を時間を横軸にとってグラフに表すと
図12(c)のようになる。
【0096】
なお、強度比対数の求め方としては、測定対象光強度と参照光強度との比を算出してからその対数を求めてもよいし、測定対象光の対数及び参照光強度の対数をそれぞれ求め、それらを差し引いても構わない。
【0097】
次に、周波数成分抽出部422が、前記強度比対数を前記変調周波数の2倍の周波数を有する参照信号でロックイン検波、すなわち、該変調周波数の2倍の周波数成分を抽出し、そのデータ(以下、ロックインデータともいう。)を、メモリの所定領域に格納する。なお、測定対象光の対数と参照光強度の対数とをそれぞれロックイン検波したものを差し引くことによりロックインデータを得ても良い。
【0098】
このロックインデータの値が、測定対象成分の濃度に比例した値となり、第2算出部423が、該ロックインデータの値に基づいて、測定対象成分の濃度を示す濃度指示値を算出する。
【0099】
しかして、このような構成によれば、何らかの要因でレーザ光強度が変動したとしても前述した強度比対数には、一定のオフセットが加わるだけで、波形は変化しない。したがって、これをロックイン検波して算出された各周波数成分の値は変化せず、濃度指示値は変化しないため、精度のよい測定が期待できる。
【0100】
その理由を詳細に説明すると以下のとおりである。
一般的に、吸光度信号A(t)をフーリエ級数展開すると、次式(数2)で表される。
なお、式(数2)におけるa
nが測定対象成分の濃度に比例する値であり、この値a
nに基づいて前記第2算出部423が測定対象成分の濃度を示す濃度指示値を算出する。
【数2】
ここで、f
mは変調周波数であり、nは変調周波数に対する倍数である。
【0101】
一方、A(t)は、前記式(数1)とも表される。
【0102】
次に、測定中に何らかの要因でレーザ光強度がα倍変動した場合の、吸光度信号A‘(t)は、以下の式(数3)のように表される。
【数3】
【0103】
この式(数3)から明らかなように、A‘(t)は、レーザ光強度の変動のない場合の吸光度信号A(t)に一定値である-ln(α)が加わるだけとなり、レーザ光強度が変化しても各周波数成分の値anは変化しないことがわかる。
【0104】
よって、変調周波数の2倍の周波数成分の値に基づいて決定している濃度指示値には影響はでない。
以上が、試料ガスに測定対象成分以外の干渉成分が含まれていない場合のガス分析装置100の動作例である。
【0105】
次に、測定対象成分のピーク光吸収波長に光吸収を有する1又は複数の干渉成分(例えばH2O)が試料ガスに含まれている場合の本ガス分析装置100の動作例について説明する。
【0106】
まず、原理を説明する。
測定対象成分と干渉成分の光吸収スペクトルは形状が違うため、それぞれの成分が単独で存在する場合の吸光度信号は波形が異なり、各周波数成分の割合が異なる(線形独立)。このことを利用し、測定された吸光度信号の各周波数成分の値と、あらかじめ求めた測定対象成分と干渉成分の吸光度信号の各周波数成分の関係を用いて、連立方程式を解くことにより、干渉影響が補正された測定対象成分の濃度を得ることができる。
【0107】
測定対象成分、干渉成分のそれぞれが単独で存在する場合の単位濃度当たりの吸光度信号をそれぞれA
m(t)、A
i(t)とし、それぞれの吸光度信号の各周波数成分をa
nm、a
niとすると、以下の式(数4、数5)が成り立つ。
【数4】
【数5】
【0108】
測定対象成分、干渉成分の濃度がそれぞれC
m、C
iで存在する場合の吸光度信号値A(t)は、各吸光度の線形性により、以下の式(数6)で表される。
【数6】
【0109】
ここで、A(t)のf
mと2f
mの周波数成分をそれぞれa
1、a
2とすれば、上式(数6)より、以下の連立方程式(数7)が成り立つ。
【数7】
【0110】
測定対象成分、干渉成分のそれぞれが単独で存在する場合の各周波数成分anm、ani(nは自然数、ここではn=1,2)は、あらかじめ、各スパンガスを流して求めておくことができるので、上式(数7)の連立方程式を解くという簡単かつ確実な演算により、干渉影響が取り除かれた測定対象ガスの濃度Cmを決定することができる。
【0111】
上述した原理に基づいてガス分析装置100は動作する。
すなわち、この場合のガス分析装置100は、メモリの所定領域に、例えば事前にスパンガスを流して予め測定するなどして、前記測定対象成分及び干渉成分が単独で存在する場合のそれぞれの吸光度信号の周波数成分a1m、a2m、a1i、a2iを記憶している。具体的には、前例同様、測定対象成分及び干渉成分それぞれにおいて、測定対象光強度と参照光強度とを測定して、それらの強度比対数(吸光度信号)を算出し、該強度比対数からロックイン検波するなどして前記周波数成分a1m、a2m、a1i、a2iを求め、これらを記憶する。なお、前記周波数成分ではなく、単位濃度当たりの吸光度信号Am(t)、Ai(t)を記憶して、前記式(数4)から周波数成分a1m、a2m、a1i、a2iを算出するようにしてもよい。
【0112】
そして、該ガス分析装置100は、オペレータからの入力などによって、測定対象成分及び干渉成分を特定する。
【0113】
次に、前記第1算出部421が、前記式(数1)に従って強度比対数A(t)を算出する。
その後、前記周波数成分抽出部422が、前記強度比対数を前記変調周波数fm及びその2倍の周波数2fmを有する参照信号でロックイン検波して、各周波数成分a1、a2(ロックインデータ)を抽出し、メモリの所定領域に格納する。
【0114】
そして、第2算出部423が、前記ロックインデータの値a1、a2及びメモリに記憶された周波数成分a1m、a2m、a1i、a2iの値を前記式(数7)に当てはめ、あるいはこれと均等な演算を行って、干渉影響が取り除かれた測定対象ガスの濃度を示す濃度(又は濃度指示値)Cmを算出する。このとき、各干渉成分の濃度(又は濃度指示値)Ciを算出してもよい。
【0115】
なお、干渉成分が2以上存在する場合でも、干渉成分の数だけ、より高次の周波数成分を追加して、成分種の数と同じ元数の連立方程式を解くことで、同様に干渉影響が取り除かれた測定対象成分の濃度を決定することができる。
【0116】
すなわち、一般に測定対象成分と干渉成分を合わせてn種のガスが存在する場合、k番目のガス種のi×f
mの周波数成分を、a
ik、k番目のガス種の濃度をC
kとすると、以下の式(数8)が成り立つ。
【数8】
【0117】
この式(数8)で表されるn元連立方程式を解くことで、測定対象成分及び干渉成分の各ガスの濃度を決定することができる。
【0118】
またnより大きい次数の高調波成分も追加して、ガス種の数より大きい元数の連立方程式を作り、最小二乗法で、各ガス濃度を決定してもよく、こうすることで、より測定ノイズに対しても誤差の小さい濃度決定が可能となる。
【0119】
前記実施形態では1つの光検出器によりサンプル測定及び参照測定を行っているが、
図13に示すように、2つの光検出器31、32を用いて、一方の光検出器31をサンプル測定用とし、他方の光検出器32を参照測定用としても良い。この場合、ハーフミラ33により光源2からの光を分岐させる。また、参照測定の光路上に参照セルを配置しても良い。なお、参照セルには、ゼロガス又は濃度既知の基準ガスを封入することが考えられる。
【0120】
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
【符号の説明】
【0121】
100・・・ガス分析装置
20 ・・・多重反射セル
S ・・・内部空間
1 ・・・セル本体
2A、B・・・ミラー
21 ・・・反射面
P ・・・光スポット
Z ・・・細長領域
11 ・・・第1セル要素
12 ・・・第2セル要素
5 ・・・スライド機構
51 ・・・第1スライド面
52 ・・・第2スライド面
53 ・・・押し込み部材
54 ・・・ガイド面