(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022094375
(43)【公開日】2022-06-27
(54)【発明の名称】荷電粒子線装置、計算機および荷電粒子線装置の信号処理方法
(51)【国際特許分類】
H01J 37/22 20060101AFI20220620BHJP
H01J 37/28 20060101ALI20220620BHJP
H01J 37/244 20060101ALI20220620BHJP
【FI】
H01J37/22 502H
H01J37/28 B
H01J37/244
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2020207203
(22)【出願日】2020-12-15
(71)【出願人】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテク
(74)【代理人】
【識別番号】110002066
【氏名又は名称】特許業務法人筒井国際特許事務所
(72)【発明者】
【氏名】生沼 寛
(72)【発明者】
【氏名】李 ウェン
(72)【発明者】
【氏名】和田 正司
【テーマコード(参考)】
5C033
【Fターム(参考)】
5C033NP08
5C033UU04
5C033UU05
(57)【要約】
【課題】検出画像の画質を高めることが可能な荷電粒子線装置、計算機および荷電粒子線装置の信号処理方法を提供する。
【解決手段】荷電粒子線装置は、シンチレータが発した光子を電気信号に変換する検出器109と、検出器109からの電気信号を処理する信号処理部110と、を有する。信号処理部110は、電気信号のピーク位置と、ピーク位置に伴う立上り区間の急峻度および立下り区間の急峻度とを検出し、立上り区間の急峻度と立下り区間の急峻度とに基づいてピーク位置を分類する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
シンチレータが発した光子を電気信号に変換する検出器と、
前記検出器からの前記電気信号を処理する信号処理部と、
を有する荷電粒子線装置であって、
前記信号処理部は、前記電気信号のピーク位置と、前記ピーク位置に伴う立上り区間の急峻度および立下り区間の急峻度とを検出し、前記立上り区間の急峻度と前記立下り区間の急峻度とに基づいて前記ピーク位置を分類する、
荷電粒子線装置。
【請求項2】
請求項1記載の荷電粒子線装置において、
前記信号処理部は、前記立上り区間の急峻度と前記立下り区間の急峻度との差分を算出し、前記差分と、前記差分のしきい値を表す第1の分類パラメータとに基づいて前記ピーク位置を分類する、
荷電粒子線装置。
【請求項3】
請求項2記載の荷電粒子線装置において、
前記信号処理部は、さらに、前記ピーク位置の波高値を検出し、前記波高値と、前記波高値のしきい値を表す第2の分類パラメータとに基づいて前記ピーク位置を分類する、
荷電粒子線装置。
【請求項4】
請求項2記載の荷電粒子線装置において、
前記信号処理部は、前記ピーク位置を、前記第1の分類パラメータに基づいて前記光子に起因する信号成分か、または、ノイズ成分かに分類する、
荷電粒子線装置。
【請求項5】
請求項3記載の荷電粒子線装置において、
前記信号処理部は、第1の時点の前記ピーク位置における第1の前記波高値と、第1の時点に続く第2の時点の前記ピーク位置における第2の前記波高値とを検出し、前記第1の時点および前記第1の波高値を起点として予め定めたモデル波形に基づいて前記波高値を時系列に変化させることで前記第2の時点での前記波高値を算出し、当該算出された波高値を前記第2の波高値から減算することで、前記第2の波高値を補正する、
荷電粒子線装置。
【請求項6】
請求項1記載の荷電粒子線装置において、
前記信号処理部と並列に設けられ、前記検出器からの前記電気信号に対してフィルタリングおよびオフセット値の調整を行う第2の信号処理部と、
検出画像の基となる信号として、前記信号処理部からの信号か前記第2の信号処理部からの信号かを前記検出器の受光量に基づいて選択する選択部と、
を有する、
荷電粒子線装置。
【請求項7】
荷電粒子線装置の検出器からの電気信号、または、前記電気信号に基づいて生成された検出画像の輝度変化を表す画素信号を対象信号として記憶するメモリと、
前記対象信号を処理するプロセッサと、
を有する計算機であって、
前記プロセッサは、前記対象信号のピーク位置と、前記ピーク位置に伴う立上り区間の急峻度および立下り区間の急峻度とを検出し、前記立上り区間の急峻度と前記立下り区間の急峻度とに基づいて前記ピーク位置を分類する、
計算機。
【請求項8】
請求項7記載の計算機において、
前記プロセッサは、前記立上り区間の急峻度と前記立下り区間の急峻度との差分を算出し、前記差分と、前記差分のしきい値を表す第1の分類パラメータとに基づいて前記ピーク位置を分類する、
計算機。
【請求項9】
請求項8記載の計算機において、
前記プロセッサは、さらに、前記ピーク位置の波高値を検出し、前記波高値と、前記波高値のしきい値を表す第2の分類パラメータとに基づいて前記ピーク位置を分類する、
計算機。
【請求項10】
請求項8記載の計算機において、
前記プロセッサは、前記ピーク位置を、前記第1の分類パラメータに基づいて前記光子に起因する信号成分か、または、ノイズ成分かに分類する、
計算機。
【請求項11】
荷電粒子線装置の検出器からの電気信号、または、前記電気信号に基づいて生成された検出画像の輝度変化を表す画素信号を対象信号として記憶するメモリから前記対象信号を読み出し、
前記対象信号のピーク位置と、前記ピーク位置に伴う立上り区間の急峻度および立下り区間の急峻度とを検出し、前記立上り区間の急峻度と前記立下り区間の急峻度とに基づいて前記ピーク位置を分類する、
荷電粒子線装置の信号処理方法。
【請求項12】
請求項11記載の荷電粒子線装置の信号処理方法において、
前記立上り区間の急峻度と前記立下り区間の急峻度との差分を算出し、前記差分と、前記差分のしきい値を表す第1の分類パラメータとに基づいて前記ピーク位置を分類する、
荷電粒子線装置の信号処理方法。
【請求項13】
請求項12記載の荷電粒子線装置の信号処理方法において、
さらに、前記ピーク位置の波高値を検出し、前記波高値と、前記波高値のしきい値を表す第2の分類パラメータとに基づいて前記ピーク位置を分類する、
荷電粒子線装置の信号処理方法。
【請求項14】
請求項12記載の荷電粒子線装置の信号処理方法において、
前記ピーク位置を、前記第1の分類パラメータに基づいて光子に起因する信号成分か、または、ノイズ成分かに分類する、
荷電粒子線装置の信号処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子線装置、計算機および荷電粒子線装置の信号処理方法に関する。
【背景技術】
【0002】
荷電粒子線装置の1つとして、走査電子顕微鏡(SEM:Scanning Electron Microscope)が知られている。SEMは、電子線を試料上に照射し、この照射によって発生する二次電子線などを検出することによって検出画像を形成する。この際に、SEMは、電子線あるいは試料ステージを二次元的に走査することによって、試料の表面の凹凸などを反映した二次元的な検出画像を得ることができる。
【0003】
一般的に、電子を信号として検出するときは、電子をシンチレータに衝突させて光子に変換し、変換された光子を光電子増倍管などの検出器によって電気信号に変換する。変換された電気信号は、検出した電子数に応じた波高値を持つ。このため、この電気信号のピーク値をアナログデジタル変換器によってデジタル信号に変換し、当該デジタル信号を荷電粒子線装置の走査位置に対応した画素データとすることで、走査領域に対応した検出画像を生成することができる。
【0004】
このような荷電粒子線装置の技術として、例えば、国際公開第2018/179029号(特許文献1)の荷電粒子線システムが知られている。当該荷電粒子線システムは、検出器によって変換された電気信号の中からピークを検出し、当該電気信号を立上り部分と立下り部分とに分離して処理する。これにより、電気信号からリンギング成分を除去することができ、検出画像に基づいて正確な計測や観察を行うことが可能になる。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
検出器からの電気信号の中からピークを検出する場合、例えば、電気信号の微分値を取得し、微分値の符号が正から負に切り替わるゼロクロス点を検出するような方式が用いられる。ただし、検出器が出力する電気信号には、光子に起因する本来の信号成分に加えて、電源からのスイッチングノイズや検出器自体のノイズといった各種ノイズ成分が重畳し得る。このため、特許文献1の方式では、例えば、電気信号に信号成分と同レベルのノイズ成分が重畳したような場合、信号成分のピークに加えてノイズ成分のピークも検出され得る。その結果、S/Nが低下し、検出画像の画質が低下する恐れがあった。
【0007】
また、ノイズ成分を除去する方式として、一般的に、電気信号の波高値にしきい値を設け、しきい値以下の成分を除去するような方式が用いられる。一方、信号成分には、波形の特徴が異なる高エネルギー信号パルス、低エネルギー信号パルス、などが含まれ得る。このため、しきい値によってノイズ成分を除去すると、ノイズ成分に加えて低エネルギー信号パルス等も除去され得る。その結果、情報損失によって検出画像のコントラスト等に影響が生じ、検出画像の画質が低下する恐れがあった。
【0008】
本発明は、このようなことに鑑みてなされたものであり、その目的の一つは、検出画像の画質を高めることが可能な荷電粒子線装置、計算機および荷電粒子線装置の信号処理方法を提供することにある。
【0009】
本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【課題を解決するための手段】
【0010】
本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記の通りである。
【0011】
本発明の代表的な実施の形態による荷電粒子線装置は、シンチレータが発した光子を電気信号に変換する検出器と、検出器からの電気信号を処理する信号処理部と、を有する。信号処理部は、電気信号のピーク位置と、ピーク位置に伴う立上り区間の急峻度および立下り区間の急峻度とを検出し、立上り区間の急峻度と立下り区間の急峻度とに基づいてピーク位置を分類する。
【発明の効果】
【0012】
本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、荷電粒子線装置を用いて得られる検出画像の画質を高めることが可能になる。
【図面の簡単な説明】
【0013】
【
図1】本発明の実施の形態1による荷電粒子線装置の構成例を示す概略図である。
【
図2】
図1における信号処理部周りの詳細な構成例を示すブロック図である。
【
図3】
図2における形状分類部の詳細な構成例を示すブロック図である。
【
図4】
図2の信号処理部において、ピーク解析部による分類方法の具体例を説明する図である。
【
図5】
図2における画像表示部の表示内容の一例を示す図である。
【
図6】
図2における画像表示部の他の表示内容の一例を示す図である。
【
図7】本発明の実施の形態1による計算機の構成例を示す概略図である。
【
図8】本発明の実施の形態1による荷電粒子線装置の信号処理方法において、主要部の処理内容の一例を示すフロー図である。
【
図9】本発明の実施の形態2による荷電粒子線装置において、
図1における信号処理部周りの詳細な構成例を示すブロック図である。
【
図10】
図9におけるモデル演算部および減算部の処理内容の一例を説明する概念図である。
【
図11】本発明の実施の形態3による荷電粒子線装置において、
図1における信号処理部周りの詳細な構成例を示すブロック図である。
【発明を実施するための形態】
【0014】
以下、本発明の種々の実施の形態を図面に従い順次説明する。以下の実施の形態においては、荷電粒子線装置が電子線を用いる走査電子顕微鏡(SEM)である場合を例とする。ただし、荷電粒子線装置は、走査電子顕微鏡(SEM)に限らず、例えば、イオンビームを用いるイオン顕微鏡等であってよい。
【0015】
(実施の形態1)
《荷電粒子線装置の概略》
図1は、本発明の実施の形態1による荷電粒子線装置の構成例を示す概略図である。
図1に示す荷電粒子線装置10は、電子顕微鏡本体101と信号処理部110と画像表示部118とを備える。電子顕微鏡本体101には、電子線(一次電子)103を発生する電子銃102が設置される。偏向器104は、電子銃102からの電子線103の軌道を調整し、対物レンズ(電子レンズ)105は、軌道調整された電子線103を収束する。そして、ステージ上に設置された試料106には、この収束された電子線103が照射される。
【0016】
試料106は、この電子線103の照射に応じて信号電子(例えば、二次電子、反射電子)107を発生する。シンチレータ108は、衝突した信号電子107を光子に変換する。検出器109は、光子を電気信号に変換し、当該電気信号を信号処理部110へ送信する。検出器109は、例えば、SiPM(Silicon PhotoMultiplier)や、PMT(PhotoMultiplier Tube)等である。信号処理部110は、主に、検出器109からの電気信号を処理することで検出画像を形成する。画像表示部118は、主に、信号処理部110で形成された検出画像を表示する。
【0017】
《信号処理部の詳細》
図2は、
図1における信号処理部周りの詳細な構成例を示すブロック図である。
図3は、
図2における形状分類部の詳細な構成例を示すブロック図である。
図2に示す信号処理部110は、A/D変換器111と、ピーク解析部112と、画像処理部116と、メモリ117とを有する。メモリ117は、例えば、RAM(Random Access Memory)と、不揮発性メモリとの組み合わせによって構成される。
【0018】
A/D変換器111は、検出器109からの電気信号をデジタルデータに変換する。ピーク解析部112は、A/D変換器111からのデジタルデータを受け、当該デジタルデータの特徴、ひいては電気信号の特徴を解析することで、電気信号を予め定めたカテゴリに分類する。このカテゴリには、例えば、光子に起因する信号成分に対応するカテゴリや、ノイズ成分に対応するカテゴリ等が含まれ得る。
【0019】
より詳細には、ピーク解析部112は、傾き値算出部113と、形状分類部114と、波高値分類部115とを備える。傾き値算出部113は、例えば、A/D変換器111からのデジタルデータの微分値等を算出することで、微分値データを出力する。形状分類部114は、傾き値算出部113からの微分値データに基づいて、A/D変換器111からのデジタルデータ、ひいては検出器109からの電気信号を、波形形状によって分類する。形状分類部114は、詳細には、
図3に示されるように、ゼロクロス検出部119と、立下り急峻度算出部120と、立上り急峻度算出部121と、形状判定部122とを備える。
【0020】
ゼロクロス検出部119は、傾き値算出部113からの微分値データに基づいて、微分値データの符号が正から負になるゼロクロス点のタイミングを検出することで、A/D変換器111からのデジタルデータ、ひいては検出器109からの電気信号に含まれるピーク位置(ピークタイミング)を検出する。立下り急峻度算出部120は、微分値データに基づいて、ゼロクロス点後の立下り区間の急峻度(言い換えれば、傾きの強度、または、傾きの絶対値)を算出する。
【0021】
この際に、立下り区間の長さは、検出器109の機種毎または個体毎によって変化し得る。そのため、予め、検出器109の立下り特性を取得しておくことで、立下り区間の長さを決定してもよい。立下り急峻度算出部120は、例えば、立下り区間のある一点の微分値データを抽出したり、または、立下り区間における微分値データの平均値を求めることなどで、急峻度を算出する。
【0022】
同様に、立上り急峻度算出部121は、傾き値算出部113からの微分値データに基づいて、ゼロクロス点前の立上り区間の急峻度を算出する。立上り区間の長さも、検出器109の機種毎または個体毎によって変化し得る。そのため、予め、検出器109の立上り特性を取得しておくことで、立上り区間の長さを決定してもよい。立上り急峻度算出部121は、例えば、立上り区間のある一点の微分値データを抽出したり、または、立上り区間における微分値データの平均値を求めることなどで、急峻度を算出する。
【0023】
形状判定部122は、立下り急峻度算出部120による立下り区間の急峻度と、立上り急峻度算出部121による立上り区間の急峻度と、入力された分類パラメータPAとに基づいて、ピーク位置およびピーク位置に伴う立上り区間および立下り区間を含む電気信号を、波形形状によって分類する。詳細には、形状判定部122は、立上り区間の急峻度と立下り区間の急峻度との差分に基づいて、ピーク位置を含む電気信号を、例えば、対称な波形形状または非対称な波形形状に分類する。分類パラメータPAは、例えば、この対称と非対称と区別するための差分のしきい値等であってよい。
【0024】
図2に戻り、波高値分類部115は、形状分類部114で検出されたピーク位置に基づいて、A/D変換器111からのデジタルデータ、ひいては検出器109からの電気信号の中からピーク位置毎の波高値を検出する。そして、波高値分類部115は、当該ピーク位置毎の波高値と、入力された分類パラメータPBとに基づいて、形状分類部114で分類された電気信号を、更に、波高値によって分類する。詳細には、波高値分類部115は、例えば、検出した波高値が分類パラメータPBで定められるしきい値よりも大きいか否かに応じて、ピーク位置を含む電気信号を、高い波高値または低い波高値に分類する。
【0025】
このような処理により、ピーク解析部112では、電気信号に含まれるピーク位置(ピークタイミング)と、ピーク位置毎の波高値と、ピーク位置毎の波形形状および波高値に基づく分類結果とが得られる。なお、A/D変換器111からのデジタルデータおよび傾き値算出部113からの微分値データは、タイミングデータと共にメモリ117に格納される。タイミングデータは、
図1における試料106の走査位置を表す。ピーク解析部112は、このメモリ117に格納された各データを用いて、前述したような処理を行えばよい。
【0026】
画像処理部116は、ピーク解析部112からのピーク位置と、ピーク位置毎の波高値および分類結果とに基づいて、画素毎の画素値を算出し、当該画素値を含む画像用信号を生成する。具体的には、画像処理部116は、例えば、1画素に対応する区間に含まれるピーク位置の波高値を積算または平均化すること等で当該画素の画素値を算出する。この際に、画像処理部116は、ピーク位置毎の分類結果に基づいて、例えば、各ピーク位置の波高値を画素値の算出に反映させるか否かを選択すること等が可能である。
【0027】
画像表示部118は、画像処理部116からの画像用信号に基づいて検出画像を生成し、画面に表示する。また、画像表示部118は、例えば、信号処理部110内の図示しない設定部の処理に基づいて、設定画面(GUI:Graphical User Interface)を表示することが可能となっている。ユーザは、この設定画面を介して、前述した分類パラメータPA,PBを任意に設定することができる。
【0028】
なお、
図2におけるピーク解析部112および画像処理部116は、例えば、メモリ117に格納されたプログラムをCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)等のプロセッサが実行することで実現される。ただし、ピーク解析部112および画像処理部116は、このようなソフトウェアに限らず、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)等のハードウェアで実現されてもよく、あるいは、ハードウェアとソフトウェアの組み合わせで実現されてもよい。
【0029】
ここで、
図2の信号処理部110は、代表的には、マイクロコントローラ等が実装された配線基板等で構成される。この場合、A/D変換器111およびメモリ117は、当該マイクロコントローラ等に搭載され得る。また、ピーク解析部112および画像処理部116は、当該マイクロコントローラ内のプロセッサによって実現され得る。
図2の画像表示部118は、例えば、液晶ディスプレイ等を代表とする一般的なディスプレイによって構成される。
【0030】
《ピーク解析部による分類方法》
図4は、
図2の信号処理部において、ピーク解析部による分類方法の具体例を説明する図である。
図4には、A/D変換器111からのデジタルデータ、ひいては検出器109からの電気信号の時系列的な変化の一例が示される。
図4において、T1~T5は、電気信号に対して、形状分類部114内のゼロクロス検出部119によって検出されたピーク位置(ピークタイミング)である。ピーク位置T1を例として、形状分類部114内の立上り急峻度算出部121および立下り急峻度算出部120は、それぞれ、ピーク位置T1に伴う立上り区間201の急峻度および立下り区間202の急峻度を算出する。他のピーク位置T2~T5に関しても同様である。
【0031】
形状分類部114内の形状判定部122は、ピーク位置T1~T5毎に、立上り区間の急峻度(Δtrとする)と、立下り区間の急峻度(Δtfとする)との差分を算出し、この急峻度の差分が分類パラメータPAに基づくしきい値の範囲内か否かに基づいて、各ピーク位置を波形形状によって分類する。また、波高値分類部115は、ピーク位置T1~T5毎に、波高値が分類パラメータPBに基づくしきい値よりも大きいか否かに基づいて、各ピーク位置を波高値によって分類する。
【0032】
このような分類によって、
図4の例では、各ピーク位置T1~T5は、それぞれ、5個のカテゴリC1~C5に分類される。具体的には、ピーク位置T1は、|Δtf-Δtr|≦PA、かつ、波高値≦PBであり、立上り区間201と立下り区間202の急峻度がほぼ同等、かつ、波高値が低いことを表すカテゴリC1に分類される。ピーク位置T2は、|Δtf-Δtr|>PA、かつ、波高値>PBであり、立上り区間203と立下り区間204の急峻度が異なり、波高値が高いことを表すカテゴリC2に分類される。
【0033】
ピーク位置T3は、|Δtf-Δtr|≦PA、かつ、波高値>PBであり、立上り区間205と立下り区間206の急峻度がほぼ同等、かつ、波高値が高いことを表すカテゴリC3に分類される。ピーク位置T4は、|Δtf-Δtr|>PA、かつ、波高値≦PBであり、立上り区間207と立下り区間208の急峻度が異なり、波高値が低いことを表すカテゴリC4に分類される。ピーク位置T5は、|Δtf-Δtr|>PA×K(K:定数)、かつ、波高値>PBであり、立上り区間209と立下り区間210の急峻度が大きく異なり、波高値が低いことを表すカテゴリC5に分類される。
【0034】
ここで、分類結果が表す内容の一例として、立上り区間と立下り区間の急峻度がほぼ同等であるピーク位置T1,T3は、ノイズ成分である可能性が高い。ノイズ成分として、例えば、信号処理部110に供給される電源のスイッチングノイズ、検出器109自体のノイズ、電子顕微鏡本体101から混入されるノイズ等が挙げられる。立上り区間と立下り区間の急峻度が異なり、詳細には、立下り区間の急峻度が立上り区間よりも小さく、かつ、波高値が高いピーク位置T2は、光子に起因する信号成分と考えられる。
【0035】
また、立上り区間と立下り区間の急峻度が異なるが、波高値が低いピーク位置T4は、低エネルギー信号パルスであるか、または、検出器109のノイズ成分である可能性もある。立上り区間と立下り区間の急峻度が大きく異なり、波高値が高いピーク位置T5は、信号成分と考えられるが、通常の信号成分とは異なる可能性がある。
【0036】
この例のように、ピーク位置を、波形形状および波高値によって分類することで、信号成分とノイズ成分とを区別することが可能になる。例えば、波高値が高いピーク位置T3であっても、当該ピーク位置T3を、波形形状に基づいてノイズ成分に分類することができる。この場合、
図2の画像処理部116は、例えば、カテゴリC3のピーク位置T3を除外して画像処理を行えばよい。その結果、例えば、S/Nを上げることができ、検出画像の画質を高めることが可能になる。
【0037】
また、波高値が低く、一般的にノイズ成分として除外され得るピーク位置T4であっても、当該ピーク位置T4を、波形形状に基づいて信号成分に分類することができる。この場合、例えば、
図2の画像処理部116は、カテゴリC4のピーク位置T4を反映して画像処理を行えばよい。その結果、例えば、検出画像のコントラストを拡大することができ、検出画像の画質を高めることが可能になる。
【0038】
なお、実施の形態の分類方法は、必ずしも
図4のような方法に限定されず、少なくとも立上り区間と立下り区間の急峻度を用いた分類方法であればよく、望ましくは、これに波高値を組みわせた分類方法であればよい。このように、ピークを含んだ電気信号を、少なくとも波形形状によって、望ましくは波形形状に加えて波高値によって分類することで、電気信号に対して好適な分類を行えるようになる。そして、分類された各カテゴリを、信号成分やノイズ成分を含めた様々な意味合いに対応付けることで、検出画像の画質、ひいては検出画像に基づく計測精度等を高めることが可能になる。この際には、分類パラメータPA,PBを任意に設定できるようにすることで、より好適な分類を行えるようになる。
【0039】
《画像表示部の表示内容》
図5は、
図2における画像表示部の表示内容の一例を示す図である。
図5の画像表示部118には、ユーザがGUIを介して設定した分類パラメータPA,PBの値と、当該分類パラメータPA,PBによる分類結果を反映して生成された検出画像との対応関係が複数表示される。この際に、例えば、各カテゴリと、信号成分またはノイズ成分との対応関係に関しては、予め、
図2の画像処理部116によって定められているものとする。ユーザが分類パラメータPA,PBを変更すると、各カテゴリに分類されるピーク位置の数が変わり、これに応じて検出画像の画質(明るさやコントラスト等)も変わる。ユーザは、例えば、複数の検出画像を見比べながら、画質が高くなるように分類パラメータPA,PBを変更することができる。
【0040】
図6は、
図2における画像表示部の他の表示内容の一例を示す図である。
図6の画像表示部118には、画像化前の電気信号の波形と、分類パラメータPA,PBの値と、1枚の検出画像に含まれるカテゴリC1~C5毎のピーク位置の数とが表示される。これにより、ユーザは、表示された電気信号の波形と、カテゴリC1~C5毎のピーク位置の数とを確認しながら、分類パラメータPA,PBの値を適切に定めることができる。この際に、ユーザは、例えば、カテゴリC4のような信号成分かノイズ成分かの判別が困難なピーク位置に対して、実際に波形を目視した上で信号成分かノイズ成分かを判別し、その判別結果が得られるように分類パラメータPA,PBを適切に定めることができる。
【0041】
《信号処理部の実装形態(各種変形例)》
図7は、本発明の実施の形態1による計算機の構成例を示す概略図である。
図7に示す計算機251は、メモリ255と、信号処理部110aと、画像表示部118とを備える。メモリ255は、例えば、RAMおよび不揮発性メモリの組み合わせで構成され、信号処理プログラム260と、対象信号のデジタルデータとを記憶する。対象信号は、
図2に示した荷電粒子線装置の検出器109からの電気信号261か、または、当該電気信号に基づいて生成された検出画像の輝度変化を表す画素信号262である。
【0042】
信号処理部110aは、プロセッサがメモリ255に格納された信号処理プログラム260を実行することで実現され、
図2に示したピーク解析部112および画像処理部116として機能する。画像表示部118は、
図2の場合と同様である。このように、信号処理部は、
図2で述べたような、荷電粒子線装置に付属する配線基板上のマイクロコントローラ等に限らず、計算機251のプロセッサによって実現されてもよい。すなわち、
図7の電気信号261に該当する
図2のA/D変換器111からのデジタルデータを予めメモリ255に格納しておくことで、ユーザは、計算機251を用いたオフライン作業によって、前述したような分類パラメータPA,PBの調整等を行うことができる。
【0043】
ここで、
図2のA/D変換器111からのデジタルデータを、
図2に示したようなピーク解析部112を介さずにそのまま画像化した場合、電気信号261と等価な画素信号262のデジタルデータが得らえる。
図7の信号処理部110aは、この画素信号262に対して、ピーク解析部112を用いて画素信号262の特徴を解析してもよい。この観点で、
図4に示した横軸は、時間またはピクセルとなっており、縦軸は、電気信号または画素信号の波高値となっている。
【0044】
また、
図7において、計算機251は、LAN(Local Area Network)等の通信ネットワーク252を介してサーバ253に接続される。サーバ253は、通信ネットワーク252を介して計算機251へ信号処理プログラム260を配信してもよい。または、サーバ253上に信号処理部110aを設けてもよい。この場合、計算機251は、サーバ253上の信号処理部110aで用いる分類パラメータPA,PBを調整し、これに応じて、サーバ253は、計算機251上の画像表示部118に、
図5および
図6のような画面を表示させればよい。
【0045】
さらに、図示は省略されるが、同様にして、
図2の信号処理部110は、通信ネットワークを介してサーバに接続されてもよい。例えば、
図2の信号処理部110をFPGA等で構成する場合、サーバは、通信ネットワークを介して当該FPGAのコンフィグレーションを行うことができる。なお、このようなコンフィグレーションデータ、または、
図7の信号処理プログラム260は、非一時的な有形のコンピュータ可読記録媒体に格納された上で、計算機に供給され得る。このような記録媒体として、例えば、ハードディスクドライブ等を代表とする磁気記録媒体、DVD(Digital Versatile Disc)やブルーレイディスク等を代表とする光記録媒体、フラッシュメモリ等を代表とする半導体メモリ等が挙げられる。
【0046】
《信号処理方法》
図8は、本発明の実施の形態1による荷電粒子線装置の信号処理方法において、主要部の処理内容の一例を示すフロー図である。
図8において、信号処理部110(110a)は、検出器109からの電気信号、または当該電気信号に基づいて生成された検出画像の輝度変化を表す画素信号を対象信号として取得する(ステップS101)。続いて、信号処理部110(110a)は、対象信号のピーク位置を検出する(ステップS102)。
【0047】
次いで、信号処理部110(110a)は、検出したピーク位置毎に、ピーク位置に伴う立上り区間の急峻度と、立下り区間の急峻度とを検出する(ステップS103)。続いて、信号処理部110(110a)は、検出したピーク位置毎の波高値を検出する(ステップS104)。その後、信号処理部110(110a)は、検出した立上り区間/立下り区間の急峻度に基づいてピーク位置を分類し(ステップS105)、さらに、検出した波高値に基づいてピーク位置を分類する(ステップS106)。
【0048】
《実施の形態1の主要な効果》
以上、実施の形態1の方式を用いることで、代表的には、荷電粒子線装置を用いた検出画像の画質を高めることが可能になる。具体的には、ピーク位置を、信号成分かノイズ成分かに高精度に分類することができ、S/Nが高めることができる。また、ピーク位置を、低エネルギー信号パルスかノイズ成分かを区別して分類することができ、情報損失を防止して検出画像のコントラストを高めることができる。さらに、この際には、例えば、オフラインで検出画像の画質を高めるための仕組み、すなわち、分類パラメータを調整させる仕組みをユーザに提供することが可能になる。その結果、ユーザの利便性の向上等が図れる。
【0049】
(実施の形態2)
《信号処理部の詳細》
図9は、本発明の実施の形態2による荷電粒子線装置において、
図1における信号処理部周りの詳細な構成例を示すブロック図である。
図10は、
図9におけるモデル演算部および減算部の処理内容の一例を説明する概念図である。
図9に示す信号処理部110bは、
図2の信号処理部110に対して、モデル波形304のデータを記憶するメモリ301と、モデル演算部302と、減算部303とが追加されている。その他の構成、動作については
図2の場合と同様である。
【0050】
図10の減算前の波形に示されるように、特に、検出器109の受光量が大きい場合、ひいては、
図1の電子銃102に設定されるエネルギーが高いような場合等で、検出器109からの電気信号には、1つ目の時点のピーク位置T11に伴う立下り区間の途中で2つ目の時点のピーク位置T12が生じる場合がある。このような現象は、パイルアップと呼ばれる。パイルアップが生じると、ピーク位置T12の波高値として、正しい値が得られなくなる。
【0051】
そこで、まず、ピーク解析部112内の波高値分類部115は、実施の形態1で述べたように、1つ目の時点のピーク位置T11における波高値と、2つ目の時点のピーク位置T12における波高値307とを検出する。モデル演算部302は、
図10に示されるように、ピーク位置T11の時点および波高値を起点として、メモリ301に格納されるモデル波形304のデータに基づいて波高値を時系列に変化させることで、2つ目の時点での波高値305を算出する。
【0052】
この際に、より詳細には、モデル演算部302は、検出した2個のピーク位置T11,T12間の時間を算出する。モデル演算部302は、予め、検出器109の立下り特性(時間)を保持しておき、ピーク位置T11,T12間の時間が、この予め保持した立下り特性(時間)以下の場合に、パイルアップが生じているとみなす。そして、この場合に、モデル演算部302は、メモリ301に格納されたモデル波形304のデータに基づいて2つ目の時点での波高値305を算出する。モデル波形304のデータは、例えば、検出器109の立下り特性の時系列変化を表す演算式またはテーブル等である。
【0053】
減算部303は、
図10の減算後の波形に示さるように、モデル演算部302で算出された波高値305をピーク位置T12における波高値307から減算することで、当該波高値307を、減算結果となる波高値306に補正する。波高値分類部115は、この補正後の波高値306に基づいて、ピーク位置T12を分類する。
【0054】
《実施の形態2の主要な効果》
以上、実施の形態2の方式を用いることで、実施の形態1で述べた各種効果と同様の効果が得られる。さらに、検出器109からの電気信号にパイルアップが生じた場合でも、ピーク位置の波高値を高精度に検出し、ピーク位置を正しく分類することが可能になる。
【0055】
(実施の形態3)
《信号処理部の詳細》
図11は、本発明の実施の形態3による荷電粒子線装置において、
図1における信号処理部周りの詳細な構成例を示すブロック図である。
図11に示す信号処理部110cは、
図2の信号処理部110に対して、アナログ方式処理部(第2の信号処理部)401と、選択部405とが追加されている。その他の構成、動作については
図2の場合と同様である。
【0056】
例えば、検出器109の受光量が増加した場合に、実施の形態2で述べたようなパイルアップによって電気信号の波形同士が重なり合い、結果してDC信号に近い電気信号が得られる場合がある。この場合、実施の形態1で述べたようなピーク位置の検出が困難となる恐れがある。そこで、ピーク解析部112と並列にアナログ方式処理部401が設けられる。
【0057】
アナログ方式処理部401は、フィルタ402と、ゲイン調整部403と、オフセット調整部404とを備える。フィルタ402は、例えば、LPF(Low Pass Filter)等であり、検出器109からの電気信号、詳細には、A/D変換器111からのデジタルデータに対してフィルタリングを行うことで高周波ノイズを除去する。ゲイン調整部403は、電気信号を画像化した際に適切なコントラストになるように、電気信号、詳細にはデジタルデータの振幅値を調整する。オフセット調整部404は、電気信号を画像化した際に適切な明るさになるように、電気信号、詳細にはデジタルデータのオフセット値を調整する。また、当該オフセット値の調整により、オフセット値以下のノイズを除去することも可能である。
【0058】
選択部405は、検出画像の基となる信号として、ピーク解析部112からの信号かアナログ方式処理部401からの信号かを検出器109の受光量に基づいて選択する。そして、選択部405は、選択した信号を画像処理部116へ出力する。ここで、選択部405の選択信号SSは、例えば、画像表示部118のGUIを介してユーザによって定められる。具体的には、ユーザは、例えば、
図1の電子銃102に高いエネルギーを設定するような場合には、選択信号SSを、アナログ方式処理部401側に定めればよい。ただし、例えば、この電子銃102に設定されるエネルギーがしきい値よりも高いか否かに応じて、選択信号SSを自動的に定めるような構成を用いてもよい。
【0059】
《実施の形態3の主要な効果》
以上、実施の形態3の方式を用いることで、実施の形態1で述べた各種効果と同様の効果が得られる。さらに、検出器109の受光量が大きく、ピーク位置の検出が困難となる場合でも、検出器109からの電気信号を処理することが可能になる。
【0060】
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
【0061】
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0062】
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
【符号の説明】
【0063】
10:荷電粒子線装置、101:電子顕微鏡本体、106:試料、107:信号電子、108:シンチレータ、109:検出器、110,110a,110b,110c:信号処理部、112:ピーク解析部、114:形状分類部、115:波高値分類部、116:画像処理部、117,255,301:メモリ、118:画像表示部、201,203,205,207,209:立上り区間、202,204,206,208,210:立下り区間、251:計算機、260:信号処理プログラム、261:電気信号、262:画素信号、302:モデル演算部、303:減算部、304:モデル波形、305~307:波高値、401:アナログ方式処理部、402:フィルタ、403:ゲイン調整部、404:オフセット調整部、405:選択部、C1~C5:カテゴリ、PA,PB:分類パラメータ、T1~T5,T11,T12:ピーク位置