IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キッコーマン株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023123240
(43)【公開日】2023-09-05
(54)【発明の名称】予測モデルの学習方法
(51)【国際特許分類】
   G06Q 10/04 20230101AFI20230829BHJP
   G01N 33/02 20060101ALI20230829BHJP
【FI】
G06Q10/04
G01N33/02
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022027197
(22)【出願日】2022-02-24
(71)【出願人】
【識別番号】000004477
【氏名又は名称】キッコーマン株式会社
(74)【代理人】
【識別番号】110000800
【氏名又は名称】デロイトトーマツ弁理士法人
(72)【発明者】
【氏名】大野 直土
(72)【発明者】
【氏名】東原 美穂
(72)【発明者】
【氏名】戸塚 直哉
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049AA04
(57)【要約】
【課題】官能評価データを目的変数として予測する予測モデルにおいて、その予測精度を向上させることができる予測モデルの学習方法を提供する。
【解決手段】学習装置1は、未選択特徴量を取得し(STEP1)、目的変数の実測値を教師データとして取得し(STEP2)、未選択特徴量及び教師データを用いて、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストにより、予測モデルのモデルパラメータの学習を実行し(STEP3~6)、その際の未選択特徴量の重要度に基づいて、未選択特徴量から学習用特徴量を選択し(STEP7)、学習用特徴量及び教師データを用いて、部分的最小二乗回帰により、予測モデルのモデルパラメータの学習を実行する(STEP8)。
【選択図】図2
【特許請求の範囲】
【請求項1】
人が所定食品を摂取した際の味覚、嗅覚、触覚、聴覚及び視覚のうちの少なくとも1つの感覚を数値化したデータである官能評価データを目的変数として予測する予測モデルのモデルパラメータを、学習装置によって学習する予測モデルの学習方法であって、
前記学習装置は、
前記目的変数の実測値を教師データとして取得する教師データ取得ステップと、
前記所定食品の前記目的変数以外の前記官能評価データ、前記所定食品の分析結果を数値化した分析データ、前記所定食品の調理に用いた調味料の分析結果を数値化した分析データ、及び、当該調味料の前記官能評価データのうちのいずれか1種である特徴量を未選択特徴量として取得する未選択特徴量取得ステップと、
所定の選択手法により、前記未選択特徴量から学習用特徴量を選択する学習用特徴量選択ステップと、
当該学習用特徴量及び前記教師データを用いて、所定の教師あり第1機械学習法により、前記予測モデルの前記モデルパラメータの学習を実行する学習ステップと、
を実行し、
前記所定の選択手法では、前記未選択特徴量及び前記教師データを用いて、所定の教師あり第2機械学習法により、機械学習モデルのモデルパラメータが学習された後、当該機械学習モデルにおける前記未選択特徴量の重要度に基づき、前記学習用特徴量が前記未選択特徴量から選択されることを特徴とする予測モデルの学習方法。
【請求項2】
請求項1に記載の予測モデルの学習方法において、
前記所定の教師あり第2機械学習法は、互いに異なる複数の教師あり機械学習法を含んでおり、
前記機械学習モデルは、互いに異なる複数の機械学習モデルであり、
前記所定の選択手法では、前記未選択特徴量及び前記教師データを用いて、前記複数の教師あり機械学習法により、前記複数の機械学習モデルにおけるモデルパラメータが学習された後、当該複数の機械学習モデルの各々における前記未選択特徴量の前記重要度に基づき、前記学習用特徴量が前記未選択特徴量から選択されることを特徴とする予測モデルの学習方法。
【請求項3】
請求項2に記載の予測モデルの学習方法において、
前記所定の選択手法では、前記各機械学習モデルにおける前記未選択特徴量の前記重要度が得点化されるとともに、当該重要度の得点の総和が所定値以上の前記未選択特徴量が、前記学習用特徴量として選択されることを特徴とする予測モデルの学習方法。
【請求項4】
請求項2又は3に記載の予測モデルの学習方法において、
前記複数の教師あり機械学習法は、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストのうちの少なくとも2つを含むことを特徴とする予測モデルの学習方法。
【請求項5】
請求項1ないし4のいずれかに記載の予測モデルの学習方法において、
前記所定の教師あり第1機械学習法は、部分的最小二乗回帰であることを特徴とする予測モデルの学習方法。
【請求項6】
請求項1ないし5のいずれかに記載の予測モデルの学習方法において、
前記所定食品は、醤油であり、前記特徴量は、当該醤油の前記目的変数以外の前記官能評価データ及び前記分析データの一方であることを特徴とする予測モデルの学習方法。
【請求項7】
請求項1ないし5のいずれかに記載の予測モデルの学習方法において、
前記調味料は、醤油であり、前記所定食品はフライドライスであり、前記特徴量は、当該醤油の前記分析データであることを特徴とする予測モデルの学習方法。
【請求項8】
請求項1ないし7のいずれかに記載の予測モデルの学習方法において、
前記分析データは、前記所定食品から調製した試料を、ガスクロマトグラフ質量分析法及び核磁気共鳴分光法の少なくとも一方の方法によって分析したデータを含むことを特徴とする予測モデルの学習方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、食品を摂取した際の味覚などを数値化したデータである官能評価データを目的変数として予測する予測モデルの学習方法に関する。
【背景技術】
【0002】
従来、予測モデルの学習方法として、特許文献1に記載されたものが知られている。この特許文献1の実施例4は、焙煎して粉砕した粉砕コーヒー豆におけるカビ臭コメントの有無を予測する予測モデルの学習方法に関するものである。この実施例4の学習方法では、カビ臭あり及びカビ臭なしとコメントされた多数の検体から一部の検体が学習用検体としてランダムに選択され、残りの検体がテスト用検体として選択される。
【0003】
次いで、学習用検体の高速液体クロマトグラフィーによる分析結果が数値化された後、グラフ化され、このグラフの画像データを説明変数とし、カビ臭の有無を目的変数とするディープラーニング手法により、ニューラルネットワークが予測モデルとして作成される。さらに、テスト用検体の機器分析結果の数値データを入力とし、実際の検体におけるカビ臭の有無を教師データとして用いることにより、上記のニューラルネットワークのモデルパラメータの学習が実行される。以上により、学習済みのニューラルネットワークが作成される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2018-18354号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
近年、予測モデルとして、食品を摂取した際の味覚などを数値化したデータである官能評価データを目的変数として精度よく予測できるものが望まれている。これに対して、上記従来の予測モデルの学習方法をそのような予測モデルに適用した場合、以下に述べるような問題が発生するおそれがある。
【0006】
すなわち、味覚などを数値化する定量型の官能評価データの場合、これが官能評価手法によって取得される関係上、誰でも容易に判別可能で、サンプルを集めやすいカビ臭の有無と比べて、感覚疲労などに起因して、サンプル数が制限されやすいという特性がある。また、定量型の官能評価データの場合、食品の官能特性は様々な成分から複雑に影響を受ける関係上、カビ臭の有無と比べて、網羅的に成分データを取得する必要があり、最適な特徴量すなわち説明変数を選択するのが難しいという問題もある。
【0007】
以上の理由により、上記従来の学習方法を定量型の官能評価データを予測する予測モデルに適用した場合、目的変数の予測精度の低下を招いてしまうとともに、モデルパラメータの学習時に過学習が発生しやすいというおそれがある。その結果、予測モデルにおいて、高い予測精度を確保することができなくなってしまう。
【0008】
本発明は、上記課題を解決するためになされたもので、官能評価データを目的変数として予測する予測モデルにおいて、その予測精度を向上させることができる予測モデルの学習方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために、請求項1に係る発明は、人が所定食品を摂取した際の味覚、嗅覚、触覚、聴覚及び視覚のうちの少なくとも1つの感覚を数値化したデータである官能評価データを目的変数として予測する予測モデルのモデルパラメータを、学習装置によって学習する予測モデルの学習方法であって、学習装置は、目的変数の実測値を教師データとして取得する教師データ取得ステップと、所定食品の目的変数以外の官能評価データ、所定食品の分析結果を数値化した分析データ、所定食品の調理に用いた調味料の分析結果を数値化した分析データ、及び、調味料の官能評価データのうちのいずれか1種である特徴量を未選択特徴量として取得する未選択特徴量取得ステップと、所定の選択手法により、未選択特徴量から学習用特徴量を選択する学習用特徴量選択ステップと、学習用特徴量及び教師データを用いて、所定の教師あり第1機械学習法により、予測モデルのモデルパラメータの学習を実行する学習ステップと、を実行し、所定の選択手法では、未選択特徴量及び教師データを用いて、所定の教師あり第2機械学習法により、機械学習モデルのモデルパラメータが学習された後、機械学習モデルにおける未選択特徴量の重要度に基づき、学習用特徴量が未選択特徴量から選択されることを特徴とする。
【0010】
この予測モデルの学習方法によれば、目的変数の実測値が教師データとして取得され、所定食品の目的変数以外の官能評価データ、所定食品の分析結果を数値化した分析データ、所定食品の調理に用いた調味料の分析結果を数値化した分析データ、及び、調味料の官能評価データのうちのいずれか1種である特徴量が未選択特徴量として取得される。さらに、所定の選択手法により、未選択特徴量から学習用特徴量が選択され、この学習用特徴量及び教師データを用いて、所定の教師あり機械学習法により、予測モデルのモデルパラメータの学習が実行される。
【0011】
ここで、所定の選択手法では、未選択特徴量及び教師データを用いて、所定の教師あり第2機械学習法により、機械学習モデルのモデルパラメータが学習された後、機械学習モデルにおける未選択特徴量の重要度に基づき、学習用特徴量が未選択特徴量から選択される。したがって、そのような学習用特徴量を用いて、予測モデルのモデルパラメータの学習を実行した場合、未選択特徴量を用いた場合と比べて、モデルパラメータの学習精度を向上させることができ、予測モデルの予測精度を向上させることができる。
【0012】
請求項2に係る発明は、請求項1に記載の予測モデルの学習方法において、所定の教師あり第2機械学習法は、互いに異なる複数の教師あり機械学習法を含んでおり、機械学習モデルは、互いに異なる複数の機械学習モデルであり、所定の選択手法では、未選択特徴量及び教師データを用いて、複数の教師あり機械学習法により、複数の機械学習モデルにおけるモデルパラメータが学習された後、複数の機械学習モデルの各々における未選択特徴量の重要度に基づき、学習用特徴量が未選択特徴量から選択されることを特徴とする。
【0013】
この予測モデルの学習方法によれば、所定の選択手法では、互いに異なる複数の教師あり機械学習法により複数の機械学習モデルが学習された後、複数の機械学習モデルの各々における重要度に基づき、学習用特徴量が未選択特徴量から選択される。したがって、そのような学習用特徴量を用いて、予測モデルのモデルパラメータの学習を実行した場合、1つの機械学習モデルにおける重要度に基づいて選択された学習用特徴量を用いた場合と比べて、モデルパラメータの学習精度をさらに向上させることができ、予測モデルの予測精度を向上させることができる。
【0014】
請求項3に係る発明は、請求項2に記載の予測モデルの学習方法において、所定の選択手法では、各機械学習モデルにおける未選択特徴量の重要度が得点化されるとともに、重要度の得点の総和及び平均値の一方が所定値以上の未選択特徴量が、学習用特徴量として選択されることを特徴とする。
【0015】
この予測モデルの学習方法によれば、各機械学習モデルにおける重要度を得点化するという汎用性が高くかつ評価しやすい手法によって、学習用特徴量が選択されるので、適切な学習用特徴量を容易に選択することができる。
【0016】
請求項4に係る発明は、請求項2又は3に記載の予測モデルの学習方法において、複数の教師あり機械学習法は、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストのうちの少なくとも2つを含むことを特徴とする。
【0017】
この予測モデルの学習方法によれば、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストのうちの少なくとも2つを用いて、少なくとも2つの機械学習モデルにおけるモデルパラメータの学習が実行される。ここで、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストの各々は、機械学習モデルのモデルパラメータの学習を実行した際、ノイズの影響及び多重共線性を回避できるとともに、その機械学習モデルにおける未選択特徴量の重要度を把握しやすいという特徴を有している。したがって、この予測モデルの学習方法によれば、未選択特徴量の重要度を適切に把握できることによって、予測モデルのモデルパラメータの学習において高い学習精度を確保することができ、予測モデルにおいて高い予測精度を確保することができる。
【0018】
請求項5に係る発明は、請求項1ないし4のいずれかに記載の予測モデルの学習方法において、所定の教師あり第1機械学習法は、部分的最小二乗回帰であることを特徴とする。
【0019】
一般に、部分的最小二乗回帰は、多重共線性を回避でき、データに含まれるノイズの影響を抑制できるという特徴を備えている。したがって、この予測モデルの学習方法によれば、多重共線性を回避し、かつ学習用特徴量に含まれるノイズの影響を抑制しながら、予測モデルのモデルパラメータの学習を実行することができる。
【0020】
請求項6に係る発明は、請求項1ないし5のいずれかに記載の予測モデルの学習方法において、所定食品は、醤油であり、特徴量は、醤油の目的変数以外の官能評価データ及び分析データの一方であることを特徴とする。
【0021】
この予測モデルの学習方法によれば、醤油の目的変数以外の官能評価データ及び分析データの一方を用いて、予測モデルのモデルパラメータの学習が実行される。そして、そのようにモデルパラメータが学習された予測モデルを用いて、醤油を摂取した際の感覚を数値化した官能評価データを予測することができ、それにより、官能評価データにおいて、高い予測精度を確保することができる。
【0022】
請求項7に係る発明は、請求項1ないし5のいずれかに記載の予測モデルの学習方法において、調味料は、醤油であり、所定食品はフライドライスであり、特徴量は、醤油の分析データであることを特徴とする。
【0023】
この予測モデルの学習方法によれば、醤油の分析データを用いて、予測モデルのモデルパラメータの学習が実行される。そして、そのようにモデルパラメータが学習された予測モデルを用いて、醤油を調理に用いたフライドライスを摂取した際の感覚を数値化した官能評価データを予測することができ、それにより、フライドライスの官能評価データにおいて、高い予測精度を確保することができる。
【0024】
請求項8に係る発明は、請求項1ないし7のいずれかに記載の予測モデルの学習方法において、分析データは、所定食品から調製した試料を、ガスクロマトグラフ質量分析法及び核磁気共鳴分光法の少なくとも一方の方法によって分析したデータを含むことを特徴とする。
【0025】
この予測モデルの学習方法によれば、食品分析において一般的なガスクロマトグラフ質量分析法及び核磁気共鳴分光法の少なくとも一方の方法を用いて、分析データを取得することができる。それにより、分析データの取得における汎用性を確保することができる。
【図面の簡単な説明】
【0026】
図1】本発明の第1実施形態に係る予測モデルの学習方法を実行する学習装置を示す図である。
図2】予測モデルの学習処理を示すフローチャートである。
図3】未選択特徴量の一例を示す図である。
図4】教師データの一例を示す図である。
図5】未選択特徴量における高得点のデータの一例を示す図である。
図6】学習用特徴量の一例を示す図である。
図7】最終予測モデルの1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の一例を示す図である。
図8図7の実測値と予測値の関係をグラフ化した図である。
図9】最終予測モデルの1点除外交差検証におけるテストデータを用いたときの予測値と実測値の一例を示す図である。
図10図9の実測値と予測値の関係をグラフ化した図である。
図11】最終予測モデルの1点除外交差検証における予測精度を示す図である。
図12】第1~第4学習モデルにおいて、1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の一例を示す図である。
図13A図12の実測値と第1予測値の関係をグラフ化した図である。
図13B図12の実測値と第2予測値の関係をグラフ化した図である。
図13C図12の実測値と第3予測値の関係をグラフ化した図である。
図13D図12の実測値と第4予測値の関係をグラフ化した図である。
図14】第1~第4学習モデルにおいて、1点除外交差検証におけるテストデータを用いたときの予測値と実測値の一例を示す図である。
図15A図14の実測値と第1予測値の関係をグラフ化した図である。
図15B図14の実測値と第2予測値の関係をグラフ化した図である。
図15C図14の実測値と第3予測値の関係をグラフ化した図である。
図15D図14の実測値と第4予測値の関係をグラフ化した図である。
図16】第1~第4予測モデルの1点除外交差検証における予測精度を示す図である。
図17A】最終学習処理で、Lasso回帰による予測モデルの学習を実施した場合において、1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図17B】最終学習処理で、Elastic Netによる予測モデルの学習を実施した場合において、1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図17C】最終学習処理で、ランダムフォレストによる予測モデルの学習を実施した場合において、1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図18A】最終学習処理で、Lasso回帰による予測モデルの学習を実施した場合において、1点除外交差検証におけるテストデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図18B】最終学習処理で、Elastic Netによる予測モデルの学習を実施した場合において、1点除外交差検証におけるテストデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図18C】最終学習処理で、ランダムフォレストによる予測モデルの学習を実施した場合において、1点除外交差検証におけるテストデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図19】最終学習処理で、Lasso回帰、Elastic Net及びランダムフォレストによる予測モデルの学習を実施した場合の1点除外交差検証における予測精度を示す図である。
図20】第2実施形態における未選択特徴量の一例を示す図である。
図21】第2実施形態における教師データの一例を示す図である。
図22】第2実施形態における学習用特徴量の一例を示す図である。
図23】第2実施形態の最終予測モデルの1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の一例を示す図である。
図24図23の実測値と予測値の関係をグラフ化した図である。
図25】第2実施形態の最終予測モデルの1点除外交差検証におけるテストデータを用いたときの予測値と実測値の一例を示す図である。
図26図25の実測値と予測値の関係をグラフ化した図である。
図27】第2実施形態の最終予測モデルの1点除外交差検証における予測精度を示す図である。
図28】第2実施形態の第1~第4学習モデルにおいて、1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の一例を示す図である。
図29A図28の実測値と第1予測値の関係をグラフ化した図である。
図29B図28の実測値と第2予測値の関係をグラフ化した図である。
図29C図28の実測値と第3予測値の関係をグラフ化した図である。
図29D図28の実測値と第4予測値の関係をグラフ化した図である。
図30】第2実施形態の第1~第4学習モデルにおいて、1点除外交差検証におけるテストデータを用いたときの予測値と実測値の一例を示す図である。
図31A図30の実測値と第1予測値の関係をグラフ化した図である。
図31B図30の実測値と第2予測値の関係をグラフ化した図である。
図31C図30の実測値と第3予測値の関係をグラフ化した図である。
図31D図30の実測値と第4予測値の関係をグラフ化した図である。
図32】第1~第4予測モデルの1点除外交差検証における予測精度を示す図である。
図33A】第2実施形態の最終学習処理で、Lasso回帰による予測モデルの学習を実施した場合において、1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図33B】第2実施形態の最終学習処理で、Elastic Netによる予測モデルの学習を実施した場合において、1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図33C】第2実施形態の最終学習処理で、ランダムフォレストによる予測モデルの学習を実施した場合において、1点除外交差検証におけるトレーニングデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図34A】第2実施形態の最終学習処理で、Lasso回帰による予測モデルの学習を実施した場合において、1点除外交差検証におけるテストデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図34B】第2実施形態の最終学習処理で、Elastic Netによる予測モデルの学習を実施した場合において、1点除外交差検証におけるテストデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図34C】第2実施形態の最終学習処理で、ランダムフォレストによる予測モデルの学習を実施した場合において、1点除外交差検証におけるテストデータを用いたときの予測値と実測値の関係をグラフ化した図である。
図35】第2実施形態の最終学習処理で、Lasso回帰、Elastic Net及びランダムフォレストによる予測モデルの学習を実施した場合の1点除外交差検証における予測精度を示す図である。
【発明を実施するための形態】
【0027】
以下、図面を参照しながら、本発明の第1実施形態に係る予測モデルの学習方法について説明する。本実施形態は、以下に述べる学習手法により、予測モデルのモデルパラメータを学習するものであり、本実施形態の予測モデルは、醤油の分析データを特徴量(説明変数)とし、官能評価データを目的変数として予測するものである。なお、以下の説明では、予測モデルのモデルパラメータを学習することを、適宜、「予測モデルの学習」という。
【0028】
官能評価データは、醤油を摂取した際の味覚などの感覚を数値化したデータであり、官能評価データの実測値は、CATA(Check All That Apply)法又は定量的記述分析(Quantitative Descriptive Analysis)法などの官能評価法を用いて、評点が付けられたデータである。
【0029】
本実施形態の場合、官能評価データの実測値としては、例えば、醤油を摂取した際の、「甘い香り」、「甘味」、「旨味」、「後味の旨味」、「味の厚み」、「塩味」、「酸味」、「苦味」及び「刺激臭」の9項目の官能評価データが取得される。これらの官能評価データの実測値は、予測モデルのモデルパラメータの学習において教師データとして用いられる。なお、上記の9項目は、一例であり、上記9項目以外の項目の官能評価データの実測値を用いることが可能である。
【0030】
本実施形態の学習方法は、具体的には、図1に示す学習装置1によって実行される。この学習装置1は、パーソナルコンピュータタイプのものであり、ディスプレイ1a、装置本体1b及び入力インターフェース1cなどを備えている。装置本体1bは、HDDなどのストレージ、プロセッサ及びメモリ(RAM、ROMなど)などを備えている(いずれも図示せず)。
【0031】
この装置本体1bのストレージ内には、後述する学習処理を実行するためのアプリケーションソフトがインストールされており、装置本体1bのメモリ内には、データベースが記憶されている。このデータベースには、後述する醤油の分析データ(図3参照)及び教師データ(図4参照)が含まれている。
【0032】
また、入力インターフェース1cは、学習装置1を操作するためのキーボード及びマウスなどで構成されており、上述した醤油の分析データ及び官能評価データは、オペレータ(図示せず)による入力インターフェース1cの操作により、データベースとしてメモリ内に記憶される。
【0033】
次に、図2を参照しながら、本実施形態の学習装置1によって実行される学習処理の内容について説明する。この学習処理では、以下に述べるように、醤油の分析データ及び教師データを用いて、予測モデルの学習が実行される。なお、ここでは、前述した9項目のうちの「甘い香り」を目的変数とする予測モデルの学習を例にとって説明する。
【0034】
図2に示すように、この学習処理では、まず、未選択特徴量がデータベースから読み出される(図2/STEP1)。この未選択特徴量は、醤油の分析データにおいて後述する選択処理を実施していない状態のデータであり、例えば、図3に示すデータが読み出される。なお、本実施形態では、この処理が未選択特徴量取得ステップに相当する。
【0035】
図3に示す未選択特徴量の場合、14個の醤油の試料(醤油_1~醤油_14)における678種類(3種類のみ図示)の分析データが含まれている。これらの分析データは、下記の条件下で、ガスクロマトグラフ質量分析法及び核磁気共鳴分光法によって、醤油_1~醤油_14の香気・呈味成分を分析したものである。
【0036】
ガスクロマトグラフ質量分析法
醤油を、食塩(NaCl)1.0gを添加した20mL容量のヘッドスペースバイアルに2.0g秤量した。次いで、ヘッドスペース-固相マイクロ抽出(HS-SPME)法により、気相中の香気成分をファイバーに吸着させた。SPMEファイバーとしてDivinylbenzen/Carboxen/Polydimethylsiloxane(DVB/CAR/PDMS)ファイバー(75mm、DVB/CAR/PDMS、fused silica、23Ga;Merck社製)を使用し、平衡条件を40℃、5分間の条件とし、吸着条件を40℃、20分間の条件とした。
【0037】
捕集した香気成分をオートサンプラー「AOC5000」(島津製作所社製)を用いて、GC-MS「GCMS QP 2010 Ultra」(島津製作所社製)に導入して分析した。GC-MSにおける条件は以下のとおりとした。
【0038】
測定モード:Scan
カラム:DB-WAX(長さ60m、口径0.25mm、膜厚0.25μm)(Agilent Technologies社製)
注入口温度:240℃
温度条件:40℃(3min)保持 → 110℃まで5℃/min昇温 → 240℃まで10℃/min昇温 → 5min保持
キャリア:高純度ヘリウム
制御モード:線速度40cm/min
圧力:233.3kpa
スキャン質量範囲:m/z 40.0~250.0
イオン化方式:EI
【0039】
核磁気共鳴分光法
重水を用いて0.5 mg/mL濃度の基準物質トリメチルシリルプロピオン酸ナトリウムを調製し、しょうゆサンプルと等量混合した溶液を分析用試料とした。核磁気共鳴分光装置AVANCE NEO 400 Nanobay(Burker社製)を用いてNMR分析用チューブ(Φ5×7 inch)に分析用試料を600μL添加し、測定用ソフト(Topspin 4.0) に登録されているパラメータセットZGPR(Presaturation法)C13DEPTQ135(DEPTQ法)を用いて測定を行った。Presaturation法では照射中心 (O1P) を4.7 ppm、照射時間(D1) を4.0 sec、測定回数 (NS) を8とし、その他の設定はパラメータセットの初期値を用いた。DEPTQ法では測定回数 (NS) を2048回に設定し、その他の設定はパラメータセットの初期値を用いた。
【0040】
図3に示す未選択特徴量において、「GC_20.496_57」の列のデータは、ガスクロマトグラフ質量分析法による分析結果において、保持時間が20.496分におけるm/zが57のイオンのピークの面積値を表している。また、「1H_0.840 - 0.800」の列のデータは、1H-核磁気共鳴分光法による分析結果において、試料中の水シグナルを事前に飽和させるPresaturation法での測定により得られた0.800ppmから0.840ppmまでのシグナル強度の積分値を表している。さらに、「13CDEPTQ_99.80 - 99.60」の列のデータは、13C-核磁気共鳴分光法による分析結果において、4級炭素の測定も可能なDEPTQ法での測定により得られた99.60ppmから99.80ppmまでの範囲内のシグナル強度の積分値を表している。以上の点は、後述する図5及び図6などの分析データにおいても同様である。
【0041】
次いで、教師データがデータベースから読み出される(図2/STEP2)。この教師データは、前述した目的変数としての「甘い香り」の実測値であり、例えば、図4に示すデータが読み出される。なお、本実施形態では、この処理が教師データ取得ステップに相当する。
【0042】
次に、第1学習処理が実行される(図2/STEP3)。この第1学習処理では、図3に示す未選択特徴量を説明変数とし、前述した図4に示すデータを教師データとし、部分的最小二乗回帰(Partial Least Squares Regression)を学習アルゴリズムとして用いることにより、予測モデル(すなわち機械学習モデル)の学習が実行される。以下の説明では、第1学習処理により、モデルパラメータの学習が終了した予測モデルを「第1予測モデル」という。
【0043】
さらに、第2学習処理が実行される(図2/STEP4)。この第2学習処理では、図3に示す未選択特徴量を説明変数とし、前述した図4に示すデータを教師データとし、Lasso回帰(Least Absolute Shrinkage and Selection Operator Regression)を学習アルゴリズムとして用いることにより、予測モデルの学習が実行される。以下の説明では、第2学習処理により、モデルパラメータの学習が終了した予測モデルを「第2予測モデル」という。
【0044】
次いで、第3学習処理が実行される(図2/STEP5)。この第3学習処理では、図3に示す未選択特徴量を説明変数とし、前述した図4に示すデータを教師データとし、Elastic Netを学習アルゴリズムとして用いることにより、予測モデルの学習が実行される。以下の説明では、第3学習処理により、モデルパラメータの学習が終了した予測モデルを「第3予測モデル」という。
【0045】
次に、第4学習処理が実行される(図2/STEP6)。この第4学習処理では、図3に示す未選択特徴量を説明変数とし、前述した図4に示すデータを教師データとし、ランダムフォレスト(Random Forest)を学習アルゴリズムとして用いることにより、予測モデルの学習が実行される。以下の説明では、第4学習処理により、モデルパラメータの学習が終了した予測モデルを「第4予測モデル」という。
【0046】
次いで、学習用特徴量の選択処理が実行される(図2/STEP7)。なお、本実施形態では、この処理が学習用特徴量取得ステップに相当する。この選択学習処理では、以下に述べる(c1)~(c5)の手法により、上述した4つの学習処理において、未選択特徴量から、予測モデルに対する重要度の高いデータが学習用特徴量として選択され、学習用特徴量のデータベースが作成される。
【0047】
(c1)第1学習処理の実行後において、VIP値が値1より大きい未選択特徴量に対しては第1得点として値1が付与され、それ以外の未選択特徴量に対しては、第1得点として値0が付与される。
【0048】
(c2)第2学習処理の実行後において、Lasso回帰により選択された未選択特徴量に対しては第2得点として値1が付与され、それ以外の未選択特徴量に対しては、第2得点として値0が付与される。この場合、Lasso回帰により選択された未選択特徴量とは、Lasso回帰において、未選択特徴量の係数が値0にならなかったものを意味している。
【0049】
(c3)第3学習処理の実行後において、Elastic Netにより選択された未選択特徴量に対しては第3得点として値1が付与され、それ以外の未選択特徴量に対しては、第3得点として値0が付与される。この場合、Elastic Netにより選択された未選択特徴量とは、Elastic Netにおいて、未選択特徴量の係数が値0にならなかったものを意味している。
【0050】
(c4)第4学習処理の実行後において、ランダムフォレストのfeature_importanceにより、未選択特徴量の重要度が決定される。そして、その重要度が上位25%の範囲内に入っている未選択特徴量に対しては、第4得点として値1が付与され、それ以外の未選択特徴量に対しては、第4得点として値0が付与される。
【0051】
(c5)全ての未選択特徴量において、以上の(c1)~(c4)の手法で付与された第1~第4得点の総和である合計得点が算出され、合計得点が値3以上の未選択特徴量が、学習用特徴量として選択される。この場合、値3が所定値に相当する。なお、所定値は、値3に限らず、未選択特徴量の重要度を適切に判定できるような値であればよい。
【0052】
また、この場合、第1~第4得点の総和に代えて、第1~第4得点の平均値を用いてもよく、その場合には、第1~第4得点の平均値が値0.75以上の未選択特徴量が学習用特徴量として選択されるように構成すればよい。
【0053】
本実施形態の場合、例えば、図5に示すように合計得点が算出された場合、これらの合計得点に基づいて学習用特徴量が選択されることにより、図6に示すように、学習用特徴量のデータベースが作成される。この学習用特徴量のデータベースでは、24種類(3種類のみ図示)の学習用特徴量が含まれている。
【0054】
以上のように、学習用特徴量が選択された後、最終学習処理が実行される(図2/STEP8)。なお、本実施形態では、この処理が学習ステップに相当する。この最終学習処理では、図6に示す学習用特徴量を説明変数とし、前述した図4に示すデータを教師データとし、部分的最小二乗回帰を学習アルゴリズムとして用いることにより、予測モデルの学習が実行される。その後、本処理が終了する。以下の説明では、最終学習処理により、モデルパラメータの学習が実行された予測モデルを「最終予測モデル」という。
【0055】
なお、学習用特徴量の選択手法は、上記の手法に限らず、機械学習モデルにおける未選択特徴量の重要度に基づき、未選択特徴量から学習用特徴量を選択するものであればよい。例えば、上記4つの学習アルゴリズム以外の学習アルゴリズムを用いた場合には、その学習アルゴリズムにおいて公知の重要度を算出/決定する方法を用いて、未選択特徴量の重要度を算出/決定し、その重要度が上位数%又は数十%のものを、学習用特徴量として未選択特徴量から選択するように構成してもよい。
【0056】
なお、本実施形態では、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストが、所定の教師あり第2機械学習法及び複数の教師あり機械学習法に相当し、部分的最小二乗回帰が所定の教師あり第1機械学習法に相当する。
【0057】
本実施形態では、以上の学習手法により、「甘い香り」を目的変数とする予測モデルの学習が実行される。さらに、データは図示しないが、以上と同じ学習方法により、「甘味」、「旨味」、「後味の旨味」、「味の厚み」、「塩味」、「酸味」、「苦味」及び「刺激臭」の8項目を目的変数とする予測モデルの学習が実行される。
【0058】
次に、本実施形態の学習処理を実行した後の最終予測モデルの予測精度の検証結果について、「甘い香り」を目的変数とする最終予測モデルの検証結果を例にとって説明する。
【0059】
本実施形態の場合、本出願人は、1点除外交差検証(leave-one-out cross-validation)を用いて、最終予測モデルの予測精度を検証した。すなわち、本出願人は、前述した14個の醤油_1~醤油_14のデータセットにおいて、13個をトレーニングデータとし、残り1個をテストデータとして用いて、最終予測モデルの予測精度を検証した。
【0060】
図7は、実測値及びトレーニングデータによる予測値を示しており、図8は、図7に示す実測値及び予測値の関係を表すグラフである。この場合、トレーニングデータによる予測値は、トレーニングデータ及び部分的最小二乗回帰を用いて、最終予測モデルのモデルパラメータの学習を実施した後、その予測モデルによる予測値に相当する。
【0061】
図8を参照すると明らかなように、図8のグラフのデータは、傾きが値1の1次直線上に並んでおり、最終予測モデルにおいて高い予測精度が確保されていることが判る。
【0062】
さらに、図9は、実測値とテストデータによる予測値を示しており、図10は、図9に示す実測値及び予測値の関係を表すグラフである。この場合、テストデータによる予測値は、トレーニングデータによる学習が終了した予測モデルに対して、テストデータを入力したときの予測値を表している。
【0063】
図10のグラフのデータの場合、図8のグラフのデータと比べて、少しばらついているものの、傾きが値1の1次直線に沿って並んでおり、最終予測モデルにおいて高い予測精度が確保されていることが判る。
【0064】
さらに、図11は、以上のように1点除外交差検証を実施した場合において、トレーニングデータ及びテストデータを用いたときの決定係数R及び2乗平均平方根誤差RSME(Root Mean Square Error)の値を表している。
【0065】
図11において、「R2」と表記したデータがトレーニングデータを用いたときの決定係数Rの値であり、「R2cv」と表記したデータがテストデータを用いたときの決定係数Rの値である。また、「RSME」と表記したデータがトレーニングデータを用いたときの2乗平均平方根誤差RSMEの値であり、「RSMEcv」と表記したデータがテストデータを用いたときの2乗平均平方根誤差RSMEの値である。
【0066】
図11を参照すると明らかなように、トレーニングデータ及びテストデータを用いたときの決定係数Rは、いずれも値1に近い値となっており、最終予測モデルにおいて高い予測精度が確保されていることが判る。
【0067】
さらに、トレーニングデータ及びテストデータを用いたときの2乗平均平方根誤差RSMEは、いずれも値0に近い値となっており、最終予測モデルにおいて高い予測精度が確保されていることが判る。
【0068】
次に、比較のために、1点除外交差検証を用いて、前述した第1~第4学習モデルの予測精度を検証した結果について説明する。
【0069】
図12は、前述した第1~第4学習モデルにおいて1点除外交差検証を実施した際の実測値及びトレーニングデータによる予測値を示している。同図において、第1~第4予測値は、第1~第4学習モデルの予測値をそれぞれ表している。また、図13A~13Dは、図12に示す実測値と第1~第4予測値の関係をそれぞれ表すグラフである。
【0070】
さらに、図14は、実測値とテストデータによる第1~第4予測値を示しており、図15A~15Dは、図14に示す実測値と第1~第4予測値の関係をそれぞれ表すグラフである。これに加えて、図16は、第1~第4予測モデルにおいて、トレーニングデータ及びテストデータを用いたときの決定係数R及び2乗平均平方根誤差RSMEの値を表している。
【0071】
前述した図8図13Aを比較すると明らかなように、部分的最小二乗回帰による学習を実施した予測モデルの場合、トレーニングデータによる予測結果においては、最終予測モデルの方が、第1予測モデルと比べて予測精度が向上していることが判る。また、図8図13B~13Dを比較した場合、トレーニングデータによる予測結果においては、第2~第4学習モデルにおいて、最終予測モデルと同等の予測精度が確保されていることが判る。
【0072】
一方、前述した図10図15A図15Dを比較すると明らかなように、テストデータによる予測結果においては、最終予測モデルの方が、第1~第4予測モデルと比べて予測精度が極めて高いことが判る。
【0073】
以上の点は、図11に示す最終予測モデルの予測精度と、図16に示す第1~第4学習モデルの予測精度とを比較した場合でも明らかである。すなわち、テストデータを用いたときの決定係数Rの値R2cvを比較した場合、最終予測モデルの方が第2~第4予測モデルと比べて予測精度の高い値を示している。
【0074】
さらに、テストデータを用いたときの2乗平均平方根誤差RSMEの値RSMEcvを比較した場合、最終予測モデルの方が第1~第4予測モデルと比べて予測精度の高い値を示している。すなわち、本実施形態の学習法により予測モデルのモデルパラメータの学習を実施した場合、第1~第4学習処理のいずれか1つのみを実施した場合と比べて、予測モデルにおける目的変数の予測精度が向上することが確認できた。
【0075】
次に、比較のために、前述した最終学習処理(図2/STEP8)において、学習アルゴリズムとして、第1実施形態の部分的最小二乗回帰に代えて、Lasso回帰、Elastic Net及びランダムフォレストを用いた場合について説明する。
【0076】
図17A~17Cは、最終学習処理でLasso回帰、Elastic Net及びランダムフォレストを用いた場合の予測モデル(以下「参考予測モデル」という)において、1点除外交差検証におけるトレーニングデータによる予測値と実測値の関係をグラフ化したものである。また、図18A~18Cは、1点除外交差検証におけるテストデータによる予測値と実測値の関係をグラフ化したものであり、図19は、それらの予測モデルの予測精度(図19では「参考予測精度」と表記)である。
【0077】
図8図17A~17Cを比較した場合、トレーニングデータによる予測値に関しては、3つの参考予測モデルにおいて、第1実施形態の最終予測モデルと同等の予測精度が確保されていることが判る。一方、図10図18A~18Cを比較した場合、第1実施形態の最終予測モデルの方が、3つの参考予測モデルよりも高い予測精度を確保できていることが判る。
【0078】
以上の点は、図15の予測精度と図19の参考予測精度とを比較した場合でも明らかである。すなわち、テストデータを用いたときの決定係数Rの値R2cvを比較した場合、最終予測モデルの方が3つの参考予測モデルと比べて予測精度の高い値を示している。この理由により、第1実施形態の最終学習処理では、部分的最小二乗回帰を用いて最終予測モデルの学習が実行される。
【0079】
なお、第1実施形態の最終学習処理において、学習アルゴリズムとして、部分的最小二乗回帰に代えて、Lasso回帰、Elastic Net及びランダムフォレストのいずれかを用いてもよい。その場合、上記のように、学習精度の観点からは、部分的最小二乗回帰の方が、Lasso回帰、Elastic Net及びランダムフォレストよりも有利である。
【0080】
以上のように、第1実施形態の学習方法によれば、目的変数の実測値(醤油を摂取した際の「甘い香り」など)が教師データとして取得され、ガスクロマトグラフ質量分析法及び核磁気共鳴分光法によって、14個の醤油の試料における香気・呈味成分の分析データが取得される。
【0081】
さらに、教師データ及び未選択特徴量を用いて、第1~第4学習処理を実施した際の4つの学習アルゴリズムにおける未選択特徴量の重要度が取得され、これらの重要度が得点化されるとともに、未選択特徴量の総得点が算出される。そして、総得点が値3以上の未選択特徴量が学習用特徴量として選択され、最終学習処理では、これらの学習用特徴量及び教師データを用いて、部分的最小二乗回帰により、最終予測モデルのモデルパラメータの学習が実行される。
【0082】
このように、総得点が値3以上の未選択特徴量を学習用特徴量として用いて、最終予測モデルのモデルパラメータの学習が実行されるので、未選択特徴量を用いた場合と比べて、モデルパラメータの学習精度を向上させることができ、最終予測モデルの予測精度を向上させることができる。さらに、4つの学習アルゴリズムにおける未選択特徴量の重要度を得点化するという汎用性が高くかつ評価しやすい手法によって、学習用特徴量が選択されるので、適切な学習用特徴量を容易に選択することができる。
【0083】
また、第1~第4学習処理において、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストを用いて、第1~第4予測モデルにおけるモデルパラメータの学習が実行される。ここで、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストの各々は、機械学習モデルのモデルパラメータの学習を実行した際、ノイズの影響及び多重共線性を回避できるとともに、その機械学習モデルにおける未選択特徴量の重要度を把握しやすいという特徴を有している。したがって、本実施形態の学習方法によれば、未選択特徴量の重要度を適切に把握できることによって、最終予測モデルのモデルパラメータの学習において高い学習精度を確保することができ、最終予測モデルにおいて高い予測精度を確保することができる。
【0084】
さらに、最終学習処理において、部分的最小二乗回帰を用いて、最終予測モデルにおけるモデルパラメータの学習が実行される。一般に、部分的最小二乗回帰は、多重共線性を回避でき、データに含まれるノイズの影響を抑制できるという特徴を備えている。したがって、本実施形態の学習方法によれば、多重共線性を回避し、かつ学習用特徴量に含まれるノイズの影響を抑制しながら、最終予測モデルのモデルパラメータの学習を実行することができる。
【0085】
これに加えて、食品分析において一般的なガスクロマトグラフ質量分析法及び核磁気共鳴分光法を用いて、未選択特徴量としての分析データを取得することができる。それにより、未選択特徴量の取得における汎用性を確保することができる。
【0086】
なお、第1実施形態は、未選択特徴量として、14個の醤油の試料の分析データを用いた例であるが、これに代えて、13個以下又は15個以上の醤油の試料の分析データを未選択特徴量として用いてもよい。
【0087】
また、第1実施形態は、第1~第4学習処理を実行した後、4つの予測モデルにおける未選択特徴量の重要度を得点化し、その総得点に基づいて、学習用特徴量を選択した例であるが、これに代えて、以下に述べる手法により、学習用特徴量を選択してもよい。
【0088】
例えば、第1~第4学習処理のうちの3つ以下の学習処理を実行し、3つ以下の予測モデルにおける未選択特徴量の重要度を得点化するとともに、その総得点に基づいて、学習用特徴量を選択するように構成してもよい。
【0089】
これとは逆に、第1~第4学習処理に加えて、第1実施形態の4つの学習アルゴリズム以外の学習アルゴリズムを用いて、1つ以上の学習処理(例えば、Xgboost、LightGBMなど)を実行し、5つ以上の予測モデルにおける未選択特徴量の重要度を得点化するとともに、その総得点に基づいて、学習用特徴量を選択してもよい。
【0090】
また、例えば、4つの予測モデルにおける未選択特徴量の重要度をその平均値に基づいて正規化し、その正規化した重要度の総和を算出するとともに、その総和の上位数十%の未選択特徴量を、学習用特徴量として選択するように構成してもよい。
【0091】
さらに、第1~第4学習処理で用いられる学習アルゴリズムは、第1実施形態の4つの学習アルゴリズムに限らず、4つの学習アルゴリズムのうちの少なくとも2つが含まれていればよい。例えば、第1~第2学習処理では、第1実施形態と同じ学習アルゴリズムを用いるとともに、第3~第4学習処理において、Xgboost、LightGBMなどを用いてもよい。
【0092】
一方、第1実施形態は、複数の教師あり機械学習法として、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストを用いた例であるが、複数の教師あり機械学習法はこれらに限らず、Xgboost、LightGBMなどを用いてもよい。
【0093】
また、第1実施形態は、所定食品としての醤油を用いた例であるが、本発明の所定食品は、これに限らず、人が摂取するものであればよい。例えば、トマトケチャップ、オイスターソースを所定食品として用いてもよい。
【0094】
さらに、第1実施形態は、未選択特徴量として、前述した9項目の官能評価データを用いた例であるが、本発明の未選択特徴量は、これらに限らず、人が所定食品を摂取した際の味覚、嗅覚、触覚、聴覚及び視覚のうちの少なくとも1つの感覚を数値化したデータであればよい。例えば、未選択特徴量として、醤油の「とろみ」、「膜がはる」、「だしの香り」、「こげ」などを数値化したデータを用いてもよい。
【0095】
一方、第1実施形態は、所定食品としての醤油の分析データを未選択特徴量とした例であるが、これに代えて、目的変数以外の醤油の官能評価データを未選択特徴量としてもよい。例えば、「甘い香り」が目的変数である場合、醤油を摂取した際の「甘味」、「旨味」、「後味の旨味」、「味の厚み」、「塩味」、「酸味」、「苦味」、「刺激臭」及び「とろみ」などの官能評価データの全て又は一部を未選択特徴量として用いてもよい。
【0096】
また、第1実施形態は、ガスクロマトグラフ質量分析法及び核磁気共鳴分光法の双方を用いて、未選択特徴量を取得した例であるが、本発明の学習方法において、ガスクロマトグラフ質量分析法及び核磁気共鳴分光法の一方を用いて、未選択特徴量を取得するように構成してもよい。
【0097】
さらに、第1実施形態は、学習装置として、パーソナルコンピュータタイプのものを用いた例であるが、これに代えて、学習装置として、サーバ又はクラウドサーバなどを用いてもよい。
【0098】
次に、本発明の第2実施形態に係る予測モデルの学習方法について説明する。第2実施形態における予測モデルは、醤油の分析データを特徴量とし、醤油を用いて調理したフライドライスの官能評価データを目的変数として予測するものである。
【0099】
本実施形態の場合、醤油の分析データは第1実施形態と同じ手法によって取得され、フライドライスの官能評価データは、前述した醤油の官能評価データと同じ官能評価法を用いて取得される。
【0100】
また、本実施形態の場合、官能評価データの実測値としては、フライドライスを摂取した際の「旨味」を含む複数の官能評価データが取得される。この場合、官能評価データの項目は、分析対象に応じて決定される。
【0101】
さらに、本実施形態の学習処理は、前述した学習装置1によって実行されるとともに、その処理内容は、以下に述べるように、前述した図2の学習処理と同じである。ここでは、前述した複数の項目のうちの「旨味」を目的変数とする予測モデルの学習を例にとって説明する。
【0102】
まず、図2のSTEP1と同様に、例えば、図20に示す未選択特徴量がデータベースから読み出される。この未選択特徴量の場合、7個の醤油の試料(醤油_A~醤油_G)における825種類(3種類のみ図示)の分析データが含まれている。
【0103】
次いで、図2のSTEP2と同様に、例えば、図21に示す教師データがデータベースから読み出される。この教師データは、前述した目的変数としての「旨味」の実測値である。
【0104】
次に、図2のSTEP3~STEP5と同様に、第1~第4学習処理が実行される。これらの第1~第4学習処理では、図20に示す未選択特徴量を説明変数とし、図21に示すデータを教師データとし、部分的最小二乗回帰、Lasso回帰、Elastic Net及びランダムフォレストを学習アルゴリズムとして用いることにより、第1~第4予測モデルの学習がそれぞれ実行される。
【0105】
そして、図2のSTEP7と同様に、学習用特徴量の選択処理が実行される。すなわち、前述した(c1)~(c5)の手法により、未選択特徴量から、予測モデルに対する重要度の高いデータが学習用特徴量として選択され、学習用特徴量のデータベースが作成される。
【0106】
本実施形態の場合、例えば、図22に示すように、学習用特徴量のデータベースが作成される。この学習用特徴量のデータベースでは、7個の醤油の試料(醤油_A~醤油_G)における23種類(3種類のみ図示)の分析データが含まれている。
【0107】
その後、図2のSTEP8と同様に、最終学習処理が実行される。この最終学習処理では、図22に示す学習用特徴量を説明変数とし、図21に示すデータを教師データとし、部分的最小二乗回帰を学習アルゴリズムとして用いることにより、最終予測モデルの学習が実行される。
【0108】
本実施形態では、以上の学習手法により、フライドライスの「旨味」を目的変数とする予測モデルの学習が実行される。さらに、データは図示しないが、以上と同じ学習方法により、「甘い香り」、「甘味」、「後味の旨味」、「味の厚み」、「塩味」、「酸味」、「苦味」及び「刺激臭」の8項目を目的変数とする予測モデルの学習が実行される。
【0109】
次に、本実施形態の学習処理を実行した後の最終予測モデルの予測精度の検証結果について、フライドライスの「旨味」を目的変数とする最終予測モデルの検証結果を例にとって説明する。
【0110】
本実施形態の場合、1点除外交差検証を用いて、最終予測モデルの予測精度を検証した。すなわち、前述した7個の醤油の試料(醤油_A~醤油_G)において、6個をトレーニングデータとし、残り1個をテストデータとして用いて、最終予測モデルの予測精度を検証した。
【0111】
図23は、実測値及びトレーニングデータによる予測値を示しており、図24は、図23に示す実測値及び予測値の関係を表すグラフである。
【0112】
図24を参照すると明らかなように、図24のグラフのデータは、傾きが値1の1次直線上に並んでおり、最終予測モデルにおいて高い予測精度が確保されていることが判る。
【0113】
さらに、図25は、実測値とテストデータによる予測値を示しており、図26は、図25に示す実測値及び予測値の関係を表すグラフである。図26のグラフのデータの場合、図23のグラフのデータと比べて、少しばらついているものの、傾きが値1の1次直線に沿って並んでおり、最終予測モデルにおいて高い予測精度が確保されていることが判る。
【0114】
さらに、図27は、以上のように1点除外交差検証を実施した場合において、トレーニングデータ及びテストデータを用いたときの決定係数R及び2乗平均平方根誤差RSMEの値を表している。
【0115】
この図27を参照すると明らかなように、トレーニングデータを用いたときの決定係数Rは、値1に近い値となっており、最終予測モデルにおいて高い予測精度が確保されていることが実証されている。また、トレーニングデータを用いたときの2乗平均平方根誤差RSMEは、値0に近い値となっており、最終予測モデルにおいて高い予測精度が確保されていることが判る。
【0116】
さらに、テストデータを用いたときの決定係数R及び2乗平均平方根誤差RSMEの値は、トレーニングデータを用いたときよりも予測精度が低いものの、最終予測モデルにおいて高い予測精度が確保されていることが判る。
【0117】
次に、比較のために、1点除外交差検証を用いて、前述した第1~第4学習モデルの予測精度を検証した結果について説明する。
【0118】
図28は、前述した第1~第4学習モデルにおいて1点除外交差検証を実施した際の実測値及びトレーニングデータによる予測値を示している。同図において、第1~第4予測値は、第1~第4学習モデルの予測値をそれぞれ表している。また、図29A~29Dは、図28に示す実測値と第1~第4予測値の関係をそれぞれ表すグラフである。
【0119】
さらに、図30は、実測値とテストデータによる第1~第4予測値を示しており、図31A~31Dは、図30に示す実測値と第1~第4予測値の関係をそれぞれ表すグラフである。これに加えて、図32は、第1~第4予測モデルにおいて、トレーニングデータ及びテストデータを用いたときの決定係数R及び2乗平均平方根誤差RSMEの値を表している。
【0120】
前述した図24図29Aを比較した場合、部分的最小二乗回帰による学習を実施した予測モデルのトレーニングデータによる予測結果においては、第1学習モデルにおいて、最終予測モデルと同等の予測精度が確保されていることが判る。また、図24図29B~29Dを比較した場合、トレーニングデータによる予測結果においては、最終予測モデルの方が、第1予測モデルと比べて予測精度が向上していることが判る。
【0121】
一方、前述した図26図31A図31Dを比較した場合、テストデータによる予測結果においては、最終予測モデルの方が、第1~第4予測モデルと比べて予測精度が極めて高いことが判る。
【0122】
以上の点は、図27に示す最終予測モデルの予測精度と、図32に示す第1~第4学習モデルの予測精度とを比較した場合でも明らかである。すなわち、テストデータを用いたときの決定係数Rの値R2cv及び2乗平均平方根誤差RSMEの値RSMEcvを比較した場合、最終予測モデルの方が第1~第4予測モデルと比べて予測精度の高い値を示している。
【0123】
すなわち、本実施形態の学習法により予測モデルのモデルパラメータの学習を実施した場合、第1~第4学習処理のいずれか1つのみを実施した場合と比べて、予測モデルにおける目的変数の予測精度が向上することが確認できた。
【0124】
次に、比較のために、前述した最終学習処理において、学習アルゴリズムとして、第2実施形態の部分的最小二乗回帰に代えて、Lasso回帰、Elastic Net及びランダムフォレストを用いた場合の予測モデルについて説明する。
【0125】
図33A~33Cは、最終学習処理でLasso回帰、Elastic Net及びランダムフォレストを用いた場合の3つの予測モデル(以下「参考予測モデル」という)において、1点除外交差検証を適用したときのトレーニングデータにおける予測値と実測値の関係をグラフ化したものである。また、図34A~34Cは、テストデータにおける予測値と実測値の関係をグラフ化したものであり、図35は、3つの参考予測モデルにおける予測精度(図35では「参考予測精度」と表記)である。
【0126】
図24図33A~33Cを比較した場合、トレーニングデータによる予測値に関しては、3つの参考予測モデルにおいて、第2実施形態の最終予測モデルと同等の予測精度が確保されていることが判る。一方、図26図34A~34Cを比較した場合、第2実施形態の最終予測モデルの方が、3つの参考予測モデルよりも高い予測精度を確保できていることが判る。
【0127】
以上の点は、図27の予測精度と図35の参考予測精度とを比較した場合でも明らかである。すなわち、テストデータを用いたときの決定係数Rの値R2cv及び2乗平均平方根誤差RSMEの値RSMEcvを比較した場合、いずれの値においても、最終予測モデルの方が3つの参考予測モデルと比べて予測精度の高い値を示している。この理由により、第2実施形態の最終学習処理では、部分的最小二乗回帰を用いて最終予測モデルの学習が実行される。
【0128】
なお、第2実施形態の最終学習処理において、学習アルゴリズムとして、部分的最小二乗回帰に代えて、Lasso回帰、Elastic Net及びランダムフォレストのいずれかを用いてもよい。その場合、上述したように、予測精度の観点からは、部分的最小二乗回帰を用いた方が有利である。
【0129】
以上のように、第2実施形態の予測モデルの学習方法によれば、醤油の分析データを特徴量とし、醤油を用いて調理したフライドライスの官能評価データを目的変数として予測する予測モデルのモデルパラメータを学習する場合において、第1実施形態の学習方法と同様の作用効果を得ることができる。
【0130】
なお、第2実施形態は、所定食品としてフライドライスを用いた例であるが、本発明の所定食品は、これに限らず、調味料を調理に用いるものであればよい。例えば、マリネ、照り焼き、焼き鳥、スープ及び焼きそばなどを所定食品として用いてもよい。
【0131】
また、第2実施形態は、調味料として醤油を用いた例であるが、本発明の調味料は、これに限らず、所定食品の調理に用いられるものであればよい。例えば、トマトケチャップ、オイスターソースなどを調味料として用いてもよい。
【0132】
さらに、第2実施形態は、所定食品としてのフライドライスの分析データを未選択特徴量とした例であるが、これに代えて、目的変数以外のフライドライスの官能評価データを未選択特徴量としてもよい。例えば、フライドライスの「旨味」が目的変数である場合、フライドライスを摂取した際の「甘い香り」、「甘味」、「後味の旨味」、「味の厚み」、「塩味」、「酸味」、「苦味」及び「刺激臭」などの官能評価データの全て又は一部を未選択特徴量として用いてもよい。
【符号の説明】
【0133】
1 学習装置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13A
図13B
図13C
図13D
図14
図15A
図15B
図15C
図15D
図16
図17A
図17B
図17C
図18A
図18B
図18C
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29A
図29B
図29C
図29D
図30
図31A
図31B
図31C
図31D
図32
図33A
図33B
図33C
図34A
図34B
図34C
図35